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Tumour metabolismis controlled by coordinated changes in metabolite
abundance and gene expression, but simultaneous quantification of
metabolites and transcripts in primary tissue is rare. To overcome this
limitation and to study gene-metabolite covariation in cancer, we assemble
the Cancer Atlas of Metabolic Profiles of metabolomic and transcriptomic
datafrom 988 tumour and control specimens spanning 11 cancer typesin
published and newly generated datasets. Meta-analysis of the Cancer Atlas
of Metabolic Profiles reveals two classes of gene-metabolite covariation
that transcend cancer types. The first corresponds to gene-metabolite
pairs engaged in direct enzyme-substrate interactions, identifying putative
genes controlling metabolite pool sizes. A second class of gene-metabolite
covariation represents a small number of hub metabolites, including
quinolinate and nicotinamide adenine dinucleotide, which correlate to
many genes specifically expressed inimmune cell populations. These
results provide evidence that gene-metabolite covariation in cellularly
heterogeneous tissue arises, in part, from both mechanistic interactions
between genes and metabolites, and from remodelling of the bulk
metabolome in specificimmune microenvironments.

Coordinated changes of genetically encoded metabolic enzymes
and transporters, and the metabolites they act on, underpin diverse
cancer-associated phenomena, including tumorigenesis’, pluripo-
tency”’, the onset of drug resistance*®and the modulation ofimmune
responses’ . However, despite the high value of joint profiling of
metabolites and gene expression/protein levels, previous large-scale
studies of tumour metabolism have overwhelmingly focused on the

analysis of gene expression data'?. Conversely, the few instances of mul-
timodal metabolomic and transcriptomic profiling of human tumour
specimens have largely been performed in disparate, unrelated stud-
ies by amultitude of research teams®™ . Integration of metabolomic
datasets produced in different patient cohorts is challenging due to
technical batch effects and the semi-quantitative nature of untargeted
metabolomicdata(reportedinarbitrary units of relative abundance).
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Table 1| Overview of cancer type, sample size and type of gene expression data in the study

Cohort Cancer type Reference Samples (tumour/normal) Gene expression data type
BRCA1 Breast cancer Terunuma et al.” 61/47 Microarray
BRCA2 Breast cancer Tang et al.?° 18/- RNA-seq
COAD Colon adenocarcinoma Satoh etal.” 37/39 Microarray
DLBCL Diffuse large B cell lymphoma Calvo-Vidal et al.” 62/- RNA-seq
GBM Glioblastoma Wangetal.™ 74/6 RNA-seq
HiirthleCC Huirthle cell carcinoma Ganly etal. ®* 28/3 RNA-seq
HCC Hepatocellular carcinoma Chaisaingmongkol et al. ™ 54/- Microarray
ICC Intrahepatic cholangiocarcinoma Chaisaingmongkol et al. ® 86/- Microarray
ov High-grade serous ovarian cancer Gentricetal. ™ 45/- Microarray
PDAC Pancreas adenocarcinoma Zhangetal.” 2712 Microarray
PRAD Prostate adenocarcinoma Penney et al. % 91/46 Microarray
ccRCC1 Clear-cell renal carcinoma Hakimi et al. % 32/- RNA-seq
ccRCC2 Clear-cell renal carcinoma Golkaram et al. ®° 30/- RNA-seq
ccRCC3 Clear-cell renal carcinoma Golkaram et al. ® 67/47 RNA-seq
ccRCC4 Clear-cell renal carcinoma Golkaram et al. ® 52/24 RNA-seq

Thus, both the scarcity of multimodal metabolomic/transcriptomic
datafromtissue specimens and the challenges of harmonizing available
datasets fundamentally impede the discovery of recurrent, coordi-
nated changesin metabolic gene expression and metabolite abundance
across cancers.

Tumours fromdiverse cancer types differ in their cell-type compo-
sition, vascularization and other factors ultimately influencing metabo-
lism. Yet, they share a convergent set of metabolic alterations* . For
example, several meta-analyses of the tumour metabolic transcrip-
tome have identified recurrent upregulation of genes in one-carbon
metabolism and oxidative phosphorylation across cancer types***%.
Analogously, meta-analyses of metabolomics data have demonstrated
that numerous central carbon metabolites (for example, lactate) and
effector metabolites (for example, kynurenine) are at higher abun-
dancein tumour tissue compared to normal tissue across many cancer
types”*°. These studies have illustrated the power of meta-analysis for
distilling highly recurrent metabolic phenotypes from heterogene-
ousdatabut have left unresolved the question of how metabolic gene
expressionand metabolite abundance are coordinated and ultimately
shape tumour physiology.

To systematically investigate gene-metabolite covariation in
cancer, we assembled, harmonized and integratively analysed metabo-
lomics and transcriptomics profiles from 988 primary tumour and
matched adjacent normal tissue collected in 15 independent studies
covering 11 cancer types. The preprocessed and harmonized data
constitute the Cancer Atlas of Metabolic Profiles (CAMP), representing
what is, to our knowledge, the largest harmonized dataset of multi-
modal metabolomic and transcriptomic data on primary tumour speci-
mens. The CAMP s publicly available for download on Zenodo (https://
doi.org/10.5281/zenodo.7150252) and can be interactively explored at
https://rezniklab.shinyapps.io/CAMP-shiny-app/. Leveraging the diver-
sity of diseasesin our dataset, we designed aconcordance-based statis-
ticalmeta-analysis approachto discover instances of gene-metabolite
interactions (GMIs) that transcended cancer type. This revealed two
distinct classes of GMIs: First, we identified a small number of strong
interactions between enzymes and metabolitesinvolvedinthe same or
subsequentreactions (‘proximal’ GMIs), suggesting that these enzymes
arethe primary determinants of their respective metabolite pool sizes.
A second group of GMIs consisted of a small number of metabolites
broadly correlated to large numbers of genes. Interestingly, this second
class of GMIs was enriched for genes specifically expressed inimmune

cells, and for metabolites related to nicotinamide adenine dinucleotide
(NAD"), apleiotropic metabolite that actsboth as acentral cofactorin
metabolism® and as a signalling molecule influencing cell identity*.
Taken together, these findings suggest that gene-metabolite covari-
ationin tumours emerges, in part, from two complementary phenom-
ena: the expression of enzymes with strong control over metabolite
poolsize, and the presence of specific cell populations in the tumour
microenvironment with characteristic metabolomic profiles.

Results

The Cancer Atlas of Metabolic Profiles

Since metabolomic profiling has so far been excluded from large mul-
timodal tumour profiling projects (for example, the TCGA®), there is
no unified resource of metabolomic/transcriptomic datain the cancer
research field. However, several groups have independently produced
andreleased matched metabolomic/transcriptomic datain diverse can-
certypes” 2?2, We combined these datasets with several in-house stud-
ies to create acomprehensive collection of 988 samples (764 tumour
samples and 224 adjacent normal samples) across 11 different cancer
types, covering 15 datasets, which we called the CAMP (Table 1 and
Fig.1a). The overall collection includes a total of more than 40,000
unique transcripts and almost 2,500 unique metabolites. To maxi-
mize comparability across these heterogeneous studies, we applied
a unified workflow to process RNA expression from microarray and
RNA-sequencing (RNA-seq) data, harmonize metabolite names and
annotations, and standardize data normalization and preprocess-
ing (Methods). The CAMP represents an unprecedented resource to
investigate the covariation of metabolite levels and gene expression at
scaleacross diverse lineages of human cancers and normal tissues. To
ensure high quality of the data, we evaluated several measures of quality
control (QC). These included confirming that changes in metabolite
abundance and gene expression between tumour and normal sam-
ples recapitulated those from prior work (Extended Data Fig. 1a,b),
and demonstrating that covariation between pairs of metabolites was
strongest between proximal metabolites in the metabolic network
(thatis, metabolite pairs acted upon by acommon enzyme; Extended
DataFig. 1c).

We interrogated the CAMP dataset for recurrent covariation
between genes and metabolites across datasets and cancers. Such
gene-metabolite covariation could emerge vianumerous mechanisms
including direct metabolic interactions, for example, via expression
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Fig.1|Summary of the Cancer Atlas of Metabolic Profiles. a, The CAMP
integrates metabolomic and transcriptomic data from 15 datasets covering
11different cancer types, comprising both tumour and normal tissue. BRCA1/
BRCA2, breast cancer; COAD, colon adenocarcinoma; DLBCL, diffuse large B cell
lymphoma; GMB, glioblastoma; HiirthleCC, Hiirthle cell carcinoma; OV, high-
grade serous ovarian cancer; PDAC, pancreas adenocarcinoma; PRAD, prostate
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adenocarcinoma; ccRCC1/ccRCC2/ccRCC3/ccRCC4, clear-cell renal carcinoma.
b, Overview of non-parametric concordance meta-analysis. For a given transcript
(T) and metabolite (M) pair, all measurements from all datasets were considered
and weighted according to sample size. The concordance is a non-parametric
measure of bivariate association between T and M that can be applied in meta-
analysis across multiple datasets.

changes of arate-limiting enzyme, or by the accumulation/depletion of
metabolites as part of abroader phenotype, suchasacytotoxicimmune
response® ¢, While each cancer type is likely to demonstrate its own
unique pattern of transcriptomic and metabolomic changes, the CAMP
enables discovery of metabolomic/transcriptomic covariation that
transcends diseases. Toidentify cancer-type-agnostic metabolite and
transcript covariation across CAMP datasetsin astatistically principled
manner, we developed a concordance-based meta-analysis approach
(Fig. 1b and Methods). Concordance is a non-parametric measure of
correlation, which enables the identification of consistently posi-
tive or negative gene-metabolite associations across datasets®. Our
measure of concordance ranges from -1to 1and is closely related to
non-parametric correlation coefficients such as Kendall’s tau, with a
value of -1corresponding to strong discordance and 1 corresponding
to strong concordance (Methods). We focused our analysis on tumour
samples only in the CAMP (although analogous analysis could be car-
ried out on normal samples), and focused onthe 276 metabolites that
were quantified in more than half of the tumour datasets (at least 8 of
15 tumour datasets) and the 16,082 genes that were quantified in all 15
studies. Of all possible gene-metabolite pairs (276 metabolites x 16,082
genes = 4,438,632 pairs), a total of 22,619 pairs (0.51%) were signifi-
cantly correlated after multiple-testing correction at afalse discovery
rate (FDR) of 0.01 (Fig. 2a). This included 269 metabolites (-97%) and
7,987 genes (-50%) participating in at least one significant association
(Supplementary Table 1), which we refer to as GMIs. Post-hoc QC con-
firmedthat 7,737/22,619 (78%) of GMIs were statistically significant in
two or more individual datasets (Extended Data Fig. 1d). Statistically
significant GMIs identified in single-study concordance analysis of
the BRCAI (microarray) and BRCA2 (RNA-seq) were highly consist-
ent, indicating that the choice of transcriptomic profiling technology
(that is, microarray versus RNA-seq) did not introduce substantial
artefacts (Extended DataFig.2). Importantly, theresults of the concord-
ance were not affected by imputation, and an analogous concordance
analysis omitting all imputed data reproduced 20,291/22,619 (89.7%)
of statistically significant GMIs. Finally, we examined the consistency

of GMIs (considering only those measured in >7 distinct datasets)
generated from two distinct, non-overlapping subsamples of the full
CAMP dataset. This analysis identified a high degree of consistency
between estimates of concordance for each GMI (Spearmanrho 0.31, P
value <107%), confirming the robustness of the results of our concord-
ance meta-analysis.

Asubset of gene-metabolite covariation represent direct
enzyme-substrate interactions
Among the statistically significant GMIs (Fig. 2a), we noted that the
strongest positively correlated GMI (/DOI-kynurenine, adjusted P
value = 4.82 x 10*) and the two strongest negatively correlated GMIs,
GDA-guanine (adjusted Pvalue = 2.31 x 107°) and CD38-nicotinamide
mononucleotide (NMN; adjusted Pvalue =3.90 x 107) corresponded
to ‘proximal’ metabolicinteractions, whichareinteractions between an
enzymeanditsdirect or nearly direct substrate/product. For example,
IDO1 catalyses the catabolism of tryptophan to N-formyl-kynurenine,
which is subsequently metabolized to kynurenine®, and both CD38
and GDA directly degrade the metabolites guanine and NMN, respec-
tively***°. We confirmed that statistical significance for these three GMIs
was likely driven by several cancer types rather than a single dataset
with very strong associations (Extended Data Fig. 3).
Thedirectbiochemical relationship between the three GMIs above
raised the possibility that functional proximity between enzymes and
their substrates/products might underlie a large fraction of GMIs.
To test this, we systematically computed the biochemical distance
between all gene-metabolite pairs using the highly curated Human-1
metabolic network model from Robinson et al.*. In this framework,
a distance of one represents molecules that are involved in the same
metabolicreaction,and adistance of two indicates agene-metabolite
pair that take part in subsequent reaction steps (Methods). Although
statistically significant GMIs were enriched for proximal interactions
relative to nonsignificant gene-metabolite pairs (odds ratio 1.42, Fish-
er'sexacttest Pvalue =3.09 x107), proximal interactions themselves
constituted only a small fraction of the total ensemble of statistically
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significant GMIs (2.5%, 565/22,619; Fig. 2b). Thus, while several of the
strongest GMIs arose from proximal interactions, gene-metabolite
proximity was a weak determinant of the full GMI landscape.

Tofurtherinvestigate the above observations about the strength
of specific proximal GMIs and the overall relationship between meta-
bolic proximity and GMIs, we investigated the relative strength of dif-
ferent GMIs affecting a common metabolite. We then focused on the
22 metabolites whose strongest GMI was proximal, covering diverse
molecules involved in nucleotide metabolism (guanine, cytidine),
cofactor metabolism (NAD"), redox metabolism (cystine, oxidized glu-
tathione (GSSG)) and other pathways (Fig. 2c). Interestingly, we found
that for 8 of 22 metabolites (kynurenine, guanine, NMN, GSSG, tryp-
tophan, glycerophosphocholine (GPC), cystine and cytidine), a large
gap existed between the most significant GMI and the second-highest
correlating transcript. This gap suggested that the pool size of these
metabolites was strongly controlled, inalineage-agnostic manner, by
asingle, dominant gene. Consequently, we hypothesized that targeted
genetic knockdown of dominant GMIs for these 8 metabolites would
have a higher likelihood of producing significant changes in pool size
than for other metabolites with multiple, comparably strong GMls,
each of which might control the pool size of the metabolite (Fig. 2c).
Similar results were found when relaxing the threshold for calling
gene-metabolite proximity (Extended DataFig. 4).

We sought to functionally validate a subset of these predicted,
metabolite pool-controlling genes. First, we investigated the associa-
tion between /DO1 and two metabolites, kynurenine and tryptophan.
IDO1 converts tryptophan to N-formylkynurenine, which is subse-
quently catabolized to kynurenine by AFMID. We observed that kynure-
nine levels were strongly associated with /DOI (Fig. 2d) but not AFMID
(whichacts directly to produce kynurenine; Fig. 2e) expression across
the CAMP. These findings were consistent withindependent measure-
ments of the metabolome and transcriptome obtained from the Cancer
Cell Line Encyclopedia consortium on ~900 cell lines, where IDO1
expressionwas associated with kynurenine abundance (P=8.6 x10~°)
but AFMID expression was not (P =0.8) (ref. 36) (Extended Data
Fig. 5a,b). To experimentally test the hypothesis that disruption of
IDO1 impacts both tryptophan and kynurenine pool sizes, we used
CRISPR-Cas9-mediated knockout with single-guide RNAs (sgRNAs)
targeted against/DOI human colorectal carcinoma HCT116 cells. These
experiments corroborated earlier data indicating that knockout of
IDO1 depleted kynurenine pools (Fig. 2f,g). However, while the asso-
ciation between /DOI and kynurenine has been widely described in
the literature®®, our analysis indicated that IDOI is also expected to

determine the pool size for tryptophan, an amino acid involved in
numerous other reactions in the cell, most obviously the synthesis of
proteins (Fig. 2h). Consistent with this observation, we observed that
knockout of IDO1was sufficient toincrease tryptophan levels, indicat-
ing that the pool size of this highly connected proteinogenic amino
acid could be perturbed in part through disruption of IDO1 activity
(Fig. 2i). Second, in support of a proximal GMI between GGTI and
GSSG (Fig. 2j), we reanalysed existing metabolomic data from a func-
tional knockdown of GGT1 versus controlin humanembryonickidney
HEK293T cells*>**, This data confirmed that knockdown of GGTI was
associated with an increase in GSSG levels with respect to mock con-
trol (Pvalue =2.90 x107%), suggesting that GGT1is apool-determining
consumer of GSSG (Fig. 2k). Taken together, these data demonstrate
that lineage-transcending GMIs discovered through pathway-based
analysis of the CAMP represent examples of genes exerting strong
control over metabolite pool sizes.

Pathway-level metabolic and transcriptomic changes weakly
covary
Despite theinteresting findings related to proximal GMIs, most (97.5%)
statistically significant GMIs represented distant, non-proximalinter-
actions beyond obvious enzyme-substrate metabolic relationships
(Fig. 2b). One possibleimplication of such nonlocal covariationis that
genes and metabolitesin the same metabolic pathway would show asyn-
chronous and uncorrelated changes across different groups of samples,
suchastumours and normal tissues. To investigate this hypothesis, we
studied the consistency of transcriptional and metabolic differencesin
tumour versus adjacent normal tissue across cancer types. Tothisend,
we performed differential analysis of metabolite and transcriptlevels
between tumour and normal tissues in the 7 CAMP datasets where both
tissues were available (Table 1) and aggregated the resultsinto 85 Kyoto
Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Of
these, we considered 63 pathways with at least one metabolite or gene
measuredin atleast 5ofthe 7CAMP datasets (Supplementary Table 2).
For each KEGG pathway, we evaluated (using a differential abun-
dance (DA) score; Methods) whether metabolites and transcripts
showed synchronous accumulation or depletion patterns in tumours
relative tonormal tissues. Pathways were biased towards asynchronous
changes (276/441, 63%), where increases in metabolite levels coincided
with decreases in transcript levels, and vice versa (Fig. 3a). Only one
pathway (histidine metabolism) demonstrated fully synchronous
changesin all datasets, whereas afew others demonstrated uniformly
asynchronous changes (for example, primary bile acid biosynthesis).

Fig.2|Meta-analysis across the CAMP captures lineage-transcending
gene-metabolite interactions. a, Volcano plot of the GMIs computed between
the 16,082 genes present in all datasets, and the 276 metabolites presentin at
least 8 of our 15 tumour cohorts. The x axis indicates the scaled concordance
value, where values above O indicate positive association and values below O
indicate negative association. They axis represents the corresponding -log,,
FDR-adjusted Pvalue. Two-tailed Pvalues were estimated from the unscaled
concordance value’s z-score (Methods) and were corrected for multiple testing
using the Benjamini-Hochberg method. The horizontal line indicates the
significance cut-off of 0.01 FDR. Light grey dots indicate nonsignificant gene-
metabolite pairs, and black dots indicate significant pairs. Three top hits have
been highlighted. b, Statistically significant GMIs are enriched for proximal
interactions, but proximal interactions nevertheless constitute a minority

of all statistically significant GMIs. Of all significant gene-metabolite pairs
inour concordance meta-analysis, 3,304/22,619 pairs had a defined distance
(-14.61%), but only 565/22,619 (-2.50%) of these were proximal. ¢, Proximal GMI
prioritization. GMIs for the 22 metabolites whose strongest GMI was proximal
(distance less or equal 2). For each metabolite, we ranked genes by their statistical
significance. Two-tailed Pvalues were estimated from the unscaled concordance
value’s z-score (Methods) and were corrected for multiple testing using the
Benjamini-Hochberg method. Red and black dots indicate proximal and non-
proximal genes significantly associated with the corresponding metabolite,

respectively, while grey dots indicate genes with nonsignificant associations.
Bold metabolites exhibit alarge gap between the dominant GMI and all other
GMIs for ametabolite. d,e, Scatterplots of the association between kynurenine
levels and two proximal genes (/DO1, d; AFMID, e). Metabolite abundances
were scaled within each dataset to be displayed together. Two-tailed P values
were estimated from the unscaled concordance value’s z-score (Methods)

and were corrected for multiple testing using the Benjamini-Hochberg
method. f, CRISPR-CAS9-mediated knockout of IDOI depleted IDO1 protein
levels in HCT116 cells. Western blot was performed once and not repeated.

g, Kynurenine levels were depleted upon knockout of IDO1in HCT116 cells
(n=3ineach condition). Data are presented as mean values *s.d. h, Scatterplot
ofthe association between tryptophan levels and /DO1 in the CAMP. Two-tailed
Pvalues were estimated from the unscaled concordance value’s z-score
(Methods) and were corrected for multiple testing using the Benjamini—
Hochberg method.i, Tryptophan levelsincrease upon /DO1 knockout (n =3
ineach condition). Data are presented as mean values + s.d.j, Scatterplot of
oxidized glutathione (GSSG) and GGT1. Two-tailed P values were estimated
from the unscaled concordance value’s z-score (Methods) and were corrected
for multiple testing using the Benjamini-Hochberg method. k, Validation of
the GSSG and GGT1 relationship was based on the study from Priolo etal.””. The
datasetincludes four data points for each condition. The two-tailed P value was
estimated with a Wilcoxon rank-sum test. a.u., arbitrary units.
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We also assessed whether there was a correlation between the extent
of metabolomic versus transcriptomic disruption regardless of the
direction (using a differential fraction (DF) score; Methods). A minority
of pathways (9/63) demonstrated significant associations (nominal P
value < 0.05) between RNA and metabolite DF scores (Fig. 3b; see Fig. 3¢
asanexample). Interestingly, these 9 pathways belonged tojust2KEGG
pathway classes (Supplementary Table 3): amino acid metabolism and
carbohydrate metabolism. Enrichment analysis indicated that the class
of carbohydrate metabolism pathway (of 8 in total) was significantly
over-represented relative to the others (Fisher’s exact test P value:
2.36 x 1072). Thus, most pathways showed no evidence of a correlation

between metabolomicand transcriptomic disruption, emphasizing the
implications of predominantly distally acting GMIs and prompting the
question of which biological phenomena produce these distal GMIs.

Hub metabolites are enriched forimmune genes associations

Having established that most GMIs do not represent biochemically
proximal interactions, we adopted a broader approach to identify
the driving factors of metabolite-transcript correlations. First, we
investigated the distribution of GMIs across metabolites and genes,
observing that GMIs were strongly concentrated in a small number
of metabolites (Fig. 4a). The top three metabolites with the highest

a b c
Meta-analysis GMIs Top proximal GMIs
. IDO1-kynurenine 100 IDO1
) . .
304 1 30
2 ¥ ] E
g =
© 1 R S
> . . 2 a
Q. . ~
T 20 4 CEDA-guanlne| i‘ 9 g 20 GPA
3 CD38-NMN | 2 3
5 : ] 8 3 .
3 R o ® . GGT1
104 . 1 & 10 S 10 o * 4 IDO1
® 1 25 —- 9 1 T
= ] - e .
' ! 15 I H l‘ _| : '_ } 1. P
l - - —_ —_— —_ -
L= -+ - - 05 o4 I -I I I_ -Illlli--i_lllr
o T T T T 0 4 T T T T T T T T T T T T T T T T T T T T T T
04 02 0 oz o 5 25 gegosspseeeeeezrozgese
Concordance £ £ ggz@}‘ﬁOZggggEsﬁgeaigﬁq
= = g g 5 K] SSo% 3E S2o88a
® Significant © Not significant > 2 EO S z O« % or 5 % é % S - S
< = @ = Zalb ©
@ £ 8 = <
Proximal pairs &L= 2
M o 5
Yes ® Significant proximal @ Significant NOT proximal Not significant
d IDOT1 - kynurenine e f g
Tryptophan ~ 15
| 1D01 AFMID - kynurenine > o PRI z ’ 2.7x107°
Formyl-kynurenine £ £0 T T T 2.7x107
| AFMID 5552 2 o -
Kynurenine £ 25555 3 10
27 24 £ s2 00 aQ =
@ o zz22 29 2
.g 'E | : | ad 0C>
g o] ol DOT | L st s ) 5 05
c § >
§>2 ~ ~
) Vinculin - e e - -
o 5 ]
Concordance: Adjusted P value: Concordance: Adjusted P value: o
0.41 48x107% 5.3x10 0.97 3 O
T T T T T T T T € o 1)
-2 0 2 4 -2 0 2 4 § 2 a
> 2 P
IDO1 AFMID )
h i j k Priolo et al. (2018)
IDOT1 - tryptophan 8.7x10° GGT1- GSSG GGTI-GSSG
7 Bx10° _29x107
24 T 2
%
~ 3
c 3 04
ERCE ) 14
5 g 2
= c 2 175 (O]
_2 .
g, 5 3 2 o
= koY o
= g "
= 4
-4 4 Concordance: Adjusted P value: Concordance: Adjusted P value: 14 —
-0.25 1.9x107° -0.32 25x10™"
T T T T 0 — — P < -6 1 T T T T \. T
_ <)
2 o] 2 4 2 6' 6' -2 o] 2 4 Control GGT1KO
IDO1 é a a GGT1
o O
g @ @
BRCA1 BRCA2 ccRCC1 ccRCC2 ccRCC3
ccRCC4 COAD DLBCL HurthleCC ov
PDAC PRAD

Nature Metabolism | Volume 5 | June 2023 | 1029-1044

1033


http://www.nature.com/natmetab

Article

https://doi.org/10.1038/s42255-023-00817-8

number of GMIs, quinolinate, NMN and 5’-methylthioadenosine alone
contributed to 17% (3,823/22,619) of all GMIs in our analysis, and the
top ten metabolites covered 35% of the GMIs (8,048/22,619), far higher
thanthefraction covered by the top eight genes (Fig. 4b and Extended
DataFig. 6a,b). Thatis, asmall number of metabolites participatedinan
exceptionally high number of GMIs, acting as ‘hubs’ for strong covaria-
tion with gene expression. Interestingly, hub metabolites concentrated
in certain metabolic pathways. Among the top ten most correlated
metabolites, we found several constituents of the NAD* biosynthesis
pathway (quinolinate, NMN and NAD") and nucleotide metabolism
(thymine, uracil and adenine).

To determine whether the genes correlated with a particular
metabolite were enriched for specific cellular functions, we performed
an unsupervised pathway enrichment analysis. For each metabolite
with atleast one GMI, we investigated whether specific pathways and
processes were over-represented in the transcripts correlated with that
metabolite. Overall, the considered transcripts spanned over 146 KEGG
pathways (Supplementary Table 4), covering the 85 metabolic pro-
cessesinFig.3aswellas cellular processes (for example, cellgrowthand
death), signalling pathways, genetic processing pathways (for example,
transcription and translation) and organismal systems pathways (for
example,immune, endocrine and sensory systems). Atotal of 32 unique
pathways were over-represented across 40 metabolites (adjusted
Pvalue < 0.01; Fig. 4¢). Interestingly, only 2 of those 32 pathways repre-
sented metabolic processes: oxidative phosphorylation, for which the
top three most associated metabolites were adenine, NMN and FAD,
andthe TCA cycle, also associated with FAD. The remaining top-ranked
pathways were exclusively non-metabolic ones. Three metabolitesin
particular, quinolinate, NMN and NAD", showed broad enrichment for
immune-related cellular processes, including chemokine signalling,
as well as B cell and T cell antigen receptor signalling pathways. This
indicates that these metabolites are correlated with the expression of
awide array of genes associated with the immune response.

NAD"-related metabolites associate withimmune cell
infiltration

Human tumour tissues are heterogeneous compositions of various
cell populations, including tumour cells, immune cells and stromal
cells. Bulk and single-cell profiling technologies have established that
alarge subset of genes are exclusively expressed in immune cells or
non-immune cell subpopulations (for example, tumour cells)***, We
reasoned that the correlation between NAD*-related metabolites and
immune-related genes (Fig. 4c) could therefore arise if NAD*-related
metabolites were at a characteristically higher or lower abundance
inimmune cells relative to non-immune cells. One implication of this
hypothesis is that, while each cancer type might demonstrate its own
unique metabolomic changes associated with immune infiltration,
NAD*-related metabolites should be expected to demonstrate consist-
ent effects across many different cancer types.

To determine if NAD"-related metabolites were associated with
immune infiltration across tumours, we used single-sample gene-set
enrichment analysis (ssGSEA)*° to compute a previously validated
141-gene RNA signature of overallimmune cell infiltration (ImmuneS-
core) directly from bulk RNA-seq data*’, and identified the individual
metabolites correlated with this immune phenotype. Concordance
between metabolite levels and the ImmuneScore signature was

assessed across all samplesin each CAMP dataset (Fig. 5a). In general,
covariation between specific metabolite pools and ImmuneScore
expression was cancer-type specific. For example, of the metabolites
significantly associated with ImmuneScore in intrahepatic cholan-
giocarcinoma (ICC) and hepatocellular carcinoma (HCC; represent-
ing the top two cancer types with the highest number of metabolites
significantly associated with ImmuneScore), only 3 metabolites were
consistently associated withImmuneScoreinboth datasets (Fig. 5b and
Supplementary Table 5). We did not observe a significant correlation
(Spearman’s rank correlation Pvalue = 0.69) between the percentage
of metabolites significantly associated with ImmuneScore and expres-
sion of the ImmuneScore signature itself (Fig. 5a), suggesting that the
extent of immune infiltration did not confound our analyses.

While metabolite concordance with ImmuneScore was gener-
ally heterogeneous across CAMP datasets, we observed that several
NAD"-related metabolites, including quinolinate and NMN, were recur-
rently associated with high or low levels of immune infiltration in
numerous disease contexts (Fig. 5a). To systematically identify such
lineage-agnostic metabolomic correlates of immune infiltration, we
again applied concordance meta-analysis, identifying 14 metabolites
significantly associated with ImmuneScore across datasets (adjusted
Pvalue < 0.05; Fig. 5¢), with quinolinate and NMN being the strongest
hits (Fig. 5d). Interestingly, 4/14 significantly associated metabolites
(quinolinate, NAD*, NMN and kynurenine) were members of the NAD*
biosynthesis pathway. Consistent with this, we identified NAD" metabo-
lismas the sole pathway whose metabolites demonstrated significantly
stronger association withimmune infiltration than all other pathways
(adjusted Pvalue = 0.04; Fig. 5e).

The above analysis suggested that NAD*-related metabolites were
at differential abundance in immune cells relative to non-immune
cells, and that this effect produced a consequent accumulation of
NAD"-related metabolites inimmune-infiltrated tumours. Some sup-
port for this hypothesis can be found in previously published immu-
nohistochemical data indicating that the abundance of quinolinate
increases dramatically in diverseimmune cell populationsin response
to Toll-like receptor 4 ligands such as lipopolysaccharide*®. To provide
more evidence for this hypothesis, we compared our findings to a
recently published study of metabolomic profiles of purified CD45~
tumour cells and CD45" (CD8" and CD4") T cells from ovarian cancer
tumours*®, In our data, NAD* was negatively correlated with Immune-
Score in ovarian cancer, suggesting that it was at lower abundance in
immune cells relative to non-immune cells (Fig. 5f). Consistent with
this, NAD" was at significantly lower abundance in CD45" T cells than
CD45™ tumour cells in the dataset of purified cell populations (NAD*
log, fold change = -1.22, Pvalue = 1.7 x 107*; Fig. 5f). Together, these
analyses suggest that the pool sizes of NAD*-related metabolites are
at characteristically different abundance in immune cells relative to
other cell types, and that this effect ultimately drives the association of
quinolinate and other NAD"-related metabolites withimmune infiltra-
tionin bulk tumour data.

Kynurenine and histamine levels correlate to specific cell
populations

Whereas in the previous analysis we investigated the association of
metabolite levels with overall immune infiltration, we next turned to
investigating the association of metabolite levels and specificimmune

Fig. 3| Tumour versus normal changes in metabolite and transcript
abundance are predominantly asynchronous. a, Heat map of metabolite and
transcript DA scores across datasets and pathways, capturing the tendency for
metabolites and genes to accumulate or deplete in tumours relative to normal
tissues. The size of the dots indicates the number of molecules measured in that
pathway, while the colour represents the DA score. b, Spearman correlation
coefficients of the metabolite and transcript DF scores in KEGG pathways. Red
dots indicate nominal significance (P value < 0.05). A minority of pathways

showed significant association between metabolomic and transcriptomic
disruption across CAMP datasets. P values were estimated from Spearman’s rank
correlation testand were corrected for multiple testing using the Benjamini-
Hochberg method. ¢, Example of Spearman correlation calculation: Distribution
of the metabolite (x axis) and transcript (y axis) DF scores across datasets for the
citrate cycle (tricarboxylic acid (TCA) cycle) pathway. Pvalues were estimated
from Spearman’s rank correlation test.
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cell populations (for example, T cells, macrophages and numerous
other cell types), each with unique transcriptional phenotypes and
immunological functions*~". Toinvestigate how these diverse immune
cell populations contributed to the observed GMIs, we estimated
the abundance of 23 immune cell types from bulk transcriptomics

profiles® using ssGSEA as shown previously*®, and computed their
association with metabolite levels across cancers. We again focused
on lineage-agnostic relationships by performing a concordance
meta-analysis to calculate associations between metabolite levels and
immune cell signatures across tumours fromall cancer types. Intotal,
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Fig. 5| The abundance of NAD"-related metabolites is shaped by immune
infiltration in the tumour microenvironment. a, Left, association of
metabolite abundance withimmune infiltration varied significantly across
cancer types. The bar plot indicates the fraction of metabolites significantly
associated with the ImmuneScore signature in each dataset. Bar colours code
for the sample size of the dataset. Sample size is the number of tumour samples
ofthe dataset in Fig. 1a. Middle, box plots indicate the expression range of the
ImmuneScore signature within each dataset. Right, plot of scaled concordance
calculated between metabolites and ImmuneScore. Red dots indicate
metabolites with a positive association with ImmuneScore, blue dots indicate
metabolites with negative associations, and grey dots indicate metabolites that
were not statistically significant. b, Heat maps of five metabolites—three that
were highly correlated with ImmuneScore in the ICC dataset and two that were
highly correlated with ImmuneScore in the HCC dataset. Samples were sorted
by increasing ImmuneScore. UDP-G, UDP-glucuronate; GPC-16:1, 1-palmitoleoyl-
GPC (16:1); GPC-18:2, 1-linoleoyl-GPC (18:2). ¢, Bar plot indicating the strength of

association between metabolites and ImmuneScore from concordance meta-
analysis. Two-tailed Pvalues were estimated from the unscaled concordance
value’s z-score (Methods) and were corrected for multiple testing using the
Benjamini-Hochberg method. Bar length represents the —log,, adjusted P value.
Metabolites related to NAD* metabolism are shown in black. d, Scatterplots of
the abundance of two NAD*-related metabolites, quinolinate and NMN, versus
ImmuneScore expression across all datasets. Metabolite abundances were scaled
within each dataset. e, Bar plot comparing the absolute concordance values of
metabolites to ImmuneScore in a pathway compared to all other pathways (one-
sided Pvalues were estimated from Wilcoxon rank-sum test and were corrected
for multiple testing using the Benjamini-Hochberg method). f, Metabolomic
measurements of purified populations of CD45” tumour cells and CD45" T cells
isolated from ovarian cancer tumours. NAD" was negatively correlated with the
ImmuneScore signature in the ovarian cancer dataset (n = 45). NAD* was similarly
lower in abundance in CD4'/CD8 cells than CD45™ (non-immune) cellsin the
dataset of purified cell populations (n =24 in CD4'/CD8*; n=18in CD45").
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Fig. 6| A subset of metabolites associates with specificimmune cell lineages.
a, Volcano plot of cell-type signature-metabolite interactions. The rug plot at
the bottom highlights the numerous associations with quinolinate. b, Manhattan
plot of adjusted concordance P values between metabolites and cell types.

¢, Histamine associates with the abundance of mast cells across most datasets of
the CAMP. d, Bar plot of adjusted concordance Pvalues of metabolites correlated
with the mast cell gene signature. The red dashed line indicates the significance

cut-off of 0.05. Metabolites labelled in red are associated with histamine
metabolism. e, HDC expression strongly associates with mast cell abundance
across the CAMP. f, Kynurenine abundance associates with an aDC signature
across the CAMP. In a-f, two-tailed Pvalues were estimated from the z-scores
of the unscaled concordance values (Methods) and were corrected for multiple
testing using the Benjamini-Hochberg method.

7.3% of allmetabolite-signature pairs (466 of 6,348 pairs) demonstrated
statistically significant associations (adjusted Pvalue < 0.05; Fig. 6a).
Among these, quinolinate was positively associated with almost all
immune cell populations (17/23), consistent with priorimmunohisto-
chemical data and suggesting that it accumulatesinavariety ofimmune
cell types in a cancer-type-agnostic manner™.

Aside from quinolinate, the two strongest associations between
immune cell-type signatures and metabolite levels were two com-
paratively rare cell populations, namely mast cells and histamine and
activated dendritic cells (aDCs) and kynurenine (Fig. 6b). Mast cells are
amyeloid cell population that, when stimulated, mediate the inflam-
matory process by synthesizing histamine from histidine using the
enzyme HDC. We found both histamine and its related metabolite
1-methylhistamine were the two metabolites most significantly asso-
ciated with the presence of mast cells (Fig. 6¢,d), and that the asso-
ciation between histamine and mast cell abundance was driven by
diverse cancer types in the CAMP (Extended Data Fig. 7a). Histamine
levels themselves were strongly associated with the expression of HDC
across the CAMP (Fig. 6e). Importantly, the mast cell signature con-
tains HDC, but when the signature was recalculated without HDC the
significant positive concordance was preserved (concordance = 0.28,
Pvalue =3.4 x1077; Extended DataFig. 7b). Moreover, single-cell data

also indicate that HDC expression is strongly elevated in mast cells
relative to other cell types (Extended Data Fig. 7c). Interestingly, the
medianvariation of histamine across the tumour datasetsin the CAMP
was ~740-fold, implying that fluctuations in the abundance of an other-
wise rare cell population were sufficient to produce large-magnitude
changes in histamine abundance in the bulk tumour.

In contrast to mast cells and their physiological role in produc-
ing histamine, DCs are not known to be dedicated sources of kynure-
nine in the microenvironment, although single-cell dataindicate that
IDO1 expressionis strongly elevated in DCs relative to other cell types
(Extended Data Fig. 8a). While the aDC signature contains /DOI (and
IDOI participatesin astrong GMIwith kynurenine; Fig. 2), an aDC signa-
ture without /DOI preserved strong positive concordance with kynure-
nine (concordance = 0.16, Pvalue = 3.3 x 10~; Extended Data Fig. 8b),
confirming that this association was not solely dependent on/DOI itself
(Fig. 6f).IDO1and kynurenine corresponded to the strongest GMIin the
CAMP, raising two opposing hypotheses onthe mechanismunderlying
the primary source of kynurenine in the tumour microenvironment:
either bulk tumour expression of /DOI is primarily determined by
high DC-specific expression or, alternatively, itis driven by acompara-
tively low expression in far more abundant non-DC-cell populations.
Resolving this ambiguity would require single-cell measurements
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of metabolite levels, which have recently become technically feasi-
ble®. Together, these data suggest that the presence of individual
and comparatively rare cell populations is associated with shifts in
the abundance of immunomodulatory metabolites in the tumour
microenvironment.

Discussion

Metabolismisjointly controlled by genetically encoded enzymes and
small-molecule metabolites. To study the interactions between genes
and metabolites at scale, we assembled and harmonized a database of
metabolomic and transcriptomic datafrom-~1,000 tumour and normal
samples, which we refer to as the CAMP. Although large-scale multi-
modal measurements of metabolism have previously been produced
in bacteria® and yeast®, a comparable resource for human cancers
was missing. The CAMP is thus aresource and represents a significant
public database for studying the metabolism of complex human tissues
and cancers, and for the interrogation of gene-metabolite covariation
across different tissue and disease contexts. Our analysis of the CAMP
demonstrates that large-scale studies of multimodal metabolic data
canreveal fundamental principles of metabolic regulation at the scale
of both individual metabolic reactions (Fig. 2) and complex human
tissues (Figs. 5and 6).

Our detailed statistical analysis of the CAMP revealed amultitude
of gene-metabolite associations that transcended the tissue of origin.
We focused on two specific types of gene-metabolite covariation. The
first, induced by functional proximity, identified metabolic genes
whose activation or inhibition is likely to have a significant effect on
thedirectsubstrate or product of therespective reaction (Fig. 2). While
metabolite pools are likely controlled by a large number of genes and
other factors, our data-driven analysis identified a small subset of
metabolites whose pool size was strongly associated with a single,
proximal gene across tissue lineages. The GMIs identified in Fig. 2b
offer a data-informed, rational approach for modulating the pool
sizes of their metabolite constituents. While each of the highlighted
metabolites in Fig. 2b may participate in numerous metabolic reac-
tions, data from the CAMP specifically nominates single genes (for
example, GGTI for GSSG, and /DOI for tryptophan and kynurenine)
as those targets whose perturbation is most likely to disrupt the cor-
responding pool size.

The second broad form of gene-metabolite covariation, likely
induced by cell-type-specific physiology, corresponded to metabolites
whose abundance was associated with the presence of specificimmune
cellsinthe microenvironment. Thus, asizeable fraction of non-proximal
GMIswas associated with asmall number of metabolites (enriched for
NAD"-related molecules) that were significantly correlated with alarge
number of genes, and in particularimmune-related genes. Thisappar-
ent association between the abundance of specific immune cells in a
tissue specimen and the levels of numerous NAD*-associated metabo-
lites suggests thatimmune cells have evolved mechanisms to maintain
the concentrations of these metabolites at characteristically different
levels relative to other cell types. Because NAD" is both the central
mediator of redox poise in the celland a cofactor for numerous meta-
bolicand non-metabolic reactions, understanding the mechanisms by
which immune cells achieve differential abundance of NAD"-related
metabolites, and the selective pressure to do so, can provide insights
into the metabolic phenotypes underlyingboth cancer and other dis-
eases involving dysfunctional immune responses®. Emerging spatial
metabolomics (for example, high-resolution MALDI) and single-cell
metabolomics (for example, rapid purification with paramagnetic
beads, followed by mass spectrometry) technologies hold the promise
of revealing the full extent of cell-type-specific metabolomic adapta-
tions. Such approaches can be used alone or in tandem to measure
the metabolomic profiles of individual cells in heterogeneous tissue
slices’*°, rendering the full extent of cell-type-specific metabolomic
alterations within experimental reach.

Our findings here nominate a new paradigm for understanding
tumour-associated changesinthe metabolome and howitrelates tothe
cellular composition of the tissue microenvironment. Our discovery
thatthe abundances of NAD"-related metabolites change consistently
across tissues as afunction ofimmune cellabundance adds toalimited
but pre-existing understanding of how cell-type-specific metabolism
enables function (for example, in the accumulation of lipids in adipo-
cytes and clear-cell tumour cells). More importantly, the discovery
that the tumour metabolome changes significantly based onimmune
cell composition has significantimplications for the interpretation of
metabolomic data in the context of cancer. Prior studies (including
those fromour own group) have often used adjacent normal tissue asa
reference to understand tumour-specific changes in metabolite levels.
What the discoveries herereinforceis that changes in the bulk tumour
metabolome may not be caused by tumour-cell-intrinsic changes
in metabolism, and instead may in some or many cases arise from
non-malignant cell populations.

Discoveries about the function of cancer genes have emerged
fromacombination of untargeted, population-scale genomic surveys®
and mechanistic experiments in specific disease and genetic back-
grounds®. Combining these approaches has proven transformative
for the discovery of recurrent and large-effect-size alterations and
prompted their characterizationin model systems of human disease.
In contrast, the field of cancer metabolism has primarily been driven
by bottom-up experiments with modest support from large-scale
(largely genetic or transcriptomic) datasets®**>. The CAMP is a counter-
pointtothese efforts. By assembling and harmonizing in one database
metabolomic and transcriptomic datafrom diverse diseases, the CAMP
represents a unique opportunity for de novo discovery of translation-
ally relevant metabolic phenotypes in cancer. Expanding the scope
of the CAMP to include both additional multimodal metabolic data
asitis published (enabled by open-source code; Data availability and
Code availability) and other forms of data, including but not limited
togenomic sequencing, epigenetic profiling and proteomic measure-
ments, holds the potential to reveal entirely new and highly recurrent
metabolic phenomenain cancer.

Methods

Collection of Cancer Atlas of Metabolic Profiles

We combined 12 published datasets with 3 additional in-house datasets
that profiled metabolite and gene expression from the same samplesto
createacomprehensive collection of 988 samples (764 tumour samples
and 224 adjacent normal samples) across 11 different cancer types,
covering15datasets, which we called the CAMP. Details and references
associated with these studies are provided in Table 1 and Fig. 1a. Data
are available for download at https://doi.org/10.5281/zenodo0.7150252.

Gene expression data processing pipeline

Six of the CAMP datasets included gene expression data captured by
the Affymetrix platform (GSE28735, GSE37751, GSE26193, GSE62452,
GSE76297 and Cornell PROSTATE). For these datasets, CEL files were
downloaded from the Gene Expression Omnibus or from their source
within our respective institutions. Then, we applied the robust multi-
chip average (RMA) algorithm for background subtraction, quantile
normalization and summarization (via median-polish) by using the
‘rma’ function implemented in the R oligo package (version 1.40.2)
(ref. 66). Each dataset’s rma-normalized expression matrix was then
used for downstream analysis. In the COAD dataset, gene expression
data were captured by an Agilent custom array, and we downloaded
the gene expression matrix deposited at the Gene Expression Omnibus
repository (GSE89076) for further downstream analysis.

For CAMP datasets with RNA-seq data, RNA-seq reads were aligned
against human genome assembly hgl9 by STAR 2-pass alignment®’
(version 2.5.3a). QC metrics, such as general sequencing statistics,
gene feature and body coverage, were then calculated based on the
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alignment result through RSeQC*® (version 2.6.4). RNA-seq gene-level
count values were computed by using the R package GenomicAlign-
ments® (version1.14.2) over aligned reads with UCSC KnownGene”*”!
with hgl9 as the base gene model. The Union counting mode was used,
and only mapped paired reads after alignment quality filtering were
considered. Finally, gene-level TPM (transcripts per million) and raw
read count values were computed by the R package DESeq2 (version
1.18.1) (ref. 72). All concordance analysis described herein with RNA-seq
dataused TPM values for RNA-seq data.

Across the 15 CAMP datasets, 16,082 of ~40,000 distinct tran-
scripts were profiled in all cohorts and used for analysis (Extended
DataFig. 9a).

Metabolomics data preprocessing

Metabolomics data for 3/15 datasets (GBM, LiCal and LiCa2) were
provided preprocessed and were therefore used in their original form.
Ovarian cancer datawere already normalized and were only log, trans-
formed before analysis. For the other 11 metabolomics datasets inour
study, we obtained the raw metabolomics data from the data owners.
Inthis case, the processing pipeline was standardized across datasets
and included batch correction via median scaling if multiple batches
of datawere present (only necessary for PRAD dataset as it was the only
dataset produced in distinct batches) and probabilistic quotient nor-
malization” using either only normal samplesifavailable, or all tumour
samplesif nonormal sample was included, and only metabolites with
less than 20% values missing to create the reference sample. Impor-
tantly, nearly allmetabolites with alarge number of GMIs were imputed
intwo or fewer studies (Extended Data Fig. 10a). After normalization,
metabolite abundances were log, transformed. For each cohort and
tissue type (that is, tumour and normal), metabolites with more than
80% values missing were excluded from the analysis. For the remaining
metabolites, missing values were imputed using the minimum value
recorded. Data preprocessing was performed using the R package
maplet. Metabolite names and annotations were manually harmonized
for consistency. First, weidentified potentially matching compounds
by systematically investigating the HMDB”, KEGG” and Metabolon
platform-specific peak IDs across datasets. The resulting candidates
foreach query werethen manually investigated to make sure they cor-
responded to the same molecule. Incorrectly aggregated metabolites
were discarded, and a single metabolite name was chosen to repre-
sent all validated matching compounds. The overlap of metabolites
across datasets was heterogeneous (Extended Data Fig. 9b): of 2,411
unique molecules quantified inat least 1 dataset, fewer than 500 were
measured in more than 5datasets, and only 3 metabolites (gluconate,
glucose and glucose-3-phosphate) were quantified inall 15 datasetsin
tumour samples. This high variability can be attributed to a variety of
technical and biological factors, including metabolite ionizability on
the mass spectrometer and potential specificity of certain metabolites
todistinct tissues. A detailed, step-by-step tutorial describing how to
harmonize additional future metabolomics datasets can be found
in the Zenodo repository (https://doi.org/10.5281/zenodo0.7150252,
supplementary_dataset_v0.3.4.zip).

Concordance meta-analysis

To identify gene-metabolite pairs that were consistently associated
across tumour types and cohorts, we used a stratified, weighted
concordance model. Concordance is a non-parametric measure of
correlation, similar to Kendall’s tau, that relies on the concept of
concordant pairs®.

Briefly, consider sample andsample jinadatasetwhereboth m
(metabolite) and g (gene) have been measured. The pair of sample i
and samplejis defined to be concordant if sign(m; — m;) = sign(g; — g)),
thatis, if they have the same order in both samples, and discordant if
they have opposite signs. Once pairwise concordance has been esti-
mated for all pairs, the overall concordance cis calculated as

e #concordant pairs + #tied pairs
" #concordant pairs + #discordant pairs + #tied pairs

To account for the multiple cohorts in our study, we performed a
stratified concordance analysis, where pairwise comparisons are only
calculated within datasets, but not across. A global concordance value
isthen estimated by counting the overall number of concordant pairs
accordingtotheformulaabove. Moreover, given the vast heterogeneity
in sample sizes across studies, we downweighed each observation
by the number of samples in the corresponding study (that is,
1/samples(dataset;)), so that each dataset would contribute equally to
the overall concordance. The concordance calculation was performed
using the concordance function from the survival R package
(v3.2-3) (ref. 76).

To make this quantity more intuitive, we further scaled the con-
cordance rangeto values between-1and1through ¢, = 2c - 1, which
is analogous to Somers’ D”’. Furthermore, in the absence of ties, this
value is also identical to Kendall’s rank correlation coefficient tau”.
In the figures presented in this paper, a scaled concordance of O indi-
cates absence of association, a value greater than O indicates positive
association, while a value less than 0 indicates negative association.
As with Somers’ D and Kendall’s tau, the magnitude of c,,.q cCaptures
the strength of the effect, with values near -1and 1 corresponding to
strong discordance and concordance, respectively.

A z-score was computed as unscaled concordance (that s, in
the range of 0-1) minus 0.5 and divided by the square root of the
variance, and the resulting value was used to derive a two-tailed P
value’”’, Pvalues were corrected for multiple testing using the Ben-
jamini-Hochberg method to control the FDR*. Code to reproduce
this analysis is available in the associated GitHub repository in the
5_Concordance.R script.

For all GMI analysis (for example, relating to Fig. 2) and concord-
ance analysis relating metabolite levels to gene expression signatures
(forexample, in Figs. 5and 6), only tumour samples were used.

Generation of IDO1knockout HCT116 cell line

sgRNAs (oligonucleotide sequences are indicated in Supplementary
Table 6) targeting /DO1 as well as non-targeting control were cloned into
lentiCRISPRv2 puro plasmid (Addgene, 98290). Lentiviral packaging
vectors psPAX2 (Addgene, 12260), pMD2.G (Addgene, 12259), along
with sgRNA expressing vector were transfected into HEK293T cells
using polyethylenimine transfection reagent. Around 72 h after trans-
fection, supernatant containing lentivirus was harvested and filtered
throughaWhatman filter (Fisher Scientific) with a pore size of 0.45 pm
to remove cell debris. Target cells (HCT116, human colon cancer cell
line, American Type Culture Collection, CCL-247) were transduced with
lentivirus using 8 pg ml™ polybrene (Sigma). Around 72 h after lentivi-
rus transduction, 3 pg ml™ puromycin (Thermo Fisher) was added to
cell culture medium to select for virus-infected cells. Two weeks after
puromycin selection, target gene knockout was confirmed by western
blot. For induction of IDOI gene expression, cells were treated with
100 ng ml™interferon-y for 48 h.

Metabolomics profiling on the IDO1 knockout HCT116 cell line

Cells were plated in six-well tissue culture plates at a density of
100,000 cells per well. Around 72 h after cell seeding, metabolites
were extracted and analysed by liquid chromatography-mass spec-
trometry (LC-MS). For metabolite extraction, culture medium was
aspirated, and cells were washed once with ice-cold PBS. After PBS
washing, 1 ml of ice-cold extraction solvent (methanol:water ration
of 80:20) was added. After overnight incubation at =80 °C, cells and
extraction solvent were collected into 1.5-ml microcentrifuge tubes
usingacell scraper. Samples were centrifuged at 20,000g for 20 min
at 4 °C. Supernatant (900 pl) was collected and dried in a vacuum
evaporator (Genevac EZ-2 Elite).
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For LC-MS, dried extracts were resuspended in 30 pl of a 97:3 ratio
of water:methanol containing 10 mM tributylamine and 15 mM acetic
acid.Samples were vortexed, incubated onice for 20 min, and clarified by
centrifugationat20,000gfor 20 minat4 °C.LC-MSanalysis used aZorbax
RRHD Extend-C18 column (150 mm x 2.1 mm, 1.8-pm particle size, Agilent
Technologies). Solvent Awas 10 mM tributylamine, 15 mMaceticacidina
97:3ratio of water:methanol, and solvent Bwas 10 mM tributylamine and
15mMaceticacidina3:97 ratio of water:methanol, prepared according to
the manufacturer’sinstructions (MassHunter Metabolomics dA(MRM Data-
base and Method, Agilent Technologies). LC separation was coupledtoa
6470 triple-quadrupole mass spectrometer (Agilent Technologies), which
was operated in dynamic MRM scan type and negative ionization mode.

Tumour versus normal pathway analysis

There were seven CAMP datasets that had both tumour and normal
samples available (BRCA1, COAD, GBM, PRAD, PDAC, ccRCC3 and
ccRCC4). We applied differential gene expression tests between tumour
and normal samples in each dataset using limma-voom (limma pack-
age, version 3.5.2). Genes with an FDR-adjusted P value < 0.1 were
considered significantly differentially expressed. Similarly, we also
conducted differential metabolite abundance testing between tumour
and normal samples using Wilcoxon rank-sum tests. Metabolites with
an FDR-adjusted P value < 0.1 were considered significantly differen-
tially abundant.

For each KEGG pathway, we calculated the DF score and the DA
score for genes and metabolites separately:

DF score = (number of significantly up-regulated constitu-
ents + number of significantly down-regulated constituents) / number
of measured constituents in a pathway

DA score = (number of significantly up-regulated constitu-
ents — number of significantly down-regulated constituents) / number
of measured constituents in a pathway

Constituentsare either genes or metabolites in the above formula.

Conceptually, the DF score captures the overall disruption of the
constituents of apathway, whereas the DA score captures the tendency
for pathway constituents toincrease or decrease in abundancerelative
to areference (in this case, normal tissue) state.

Gene-metabolite distance

To defineadistance between genes and metabolites, we considered the
highly manually curated genome-scale human metabolic model from
Robinson et al.*, referred to as the ‘Human-1" model, which describes
the metabolic reaction network of transporters, enzymes and metabo-
lites. We systematically computed the distance between a gene and a
metabolite according to how many reaction steps separate the two mol-
ecules.Ifagene and ametabolite participate inthe same reaction, they
will be assigned a distance of one; if they take partin subsequent reac-
tions, they will be assigned a a distance of two, and so on. We defined
aninteractionas ‘proximal’if the corresponding gene-metabolite pair
had adistance of one or two (Extended Data Fig. 10b).

Overall, we could compute a distance for 473,206/4,438,632
(-10.66%) gene-metabolite pairs in our analysis, and 78,672/473,206
(-16.62%) of these were classified as proximal (that is, adistance of one
or two). Of all significant gene-metabolite pairs in our concordance
meta-analysis, 3,304/22,619 pairs had a defined distance (-14.61%), but
only 565/22,619 (-2.50%) of these were proximal.

Gene-set enrichment analysis

For the analysisinFig. 4, werana pathway enrichment analysisamong
all significant genes for each metabolite with at least one significant
gene association. This set of genes was mapped to atotal of 146 KEGG
pathways, and the enrichment test was performed using classical
hypergeometric testing®. Pvalues were adjusted using the Benjamini-
Hochberg method for controlling the FDR®*’. Adjusted Pvalues < 0.01
were considered significant.

Results were then aggregated into ametabolite x pathway matrix
and visualized as a heat map, where metabolites and pathways were
clustered based onthe -log,,(Pvalue). Clustering was performed using
the pheatmap function® (pheatmap package, v1.0.12) with Ward link-
age and Euclidean distance.

Bulk gene expression deconvolution analysis

Todissect the role of the immune compartment in the tumour micro-
environment, we calculated the ImmuneScore through the estimate
R package®. To calculate cell-type-specificinfiltration patterns in Fig.
6, we used ssGSEA* for bulk gene expression deconvolution analysis.
Signature gene lists of immune cell types and immune features were
obtained from Bindea et al.”. Briefly, ssGSEA takes the sample TPM
expression values as the input and computes an enrichment score
for a given gene list as compared to all the other genes in the sample
transcriptome.

Statistics and reproducibility

No statistical method was used to predetermine sample size. No data
points were excluded from the analyses. The statistical tests used for
theindividual analyses are indicated in the figure legends. The experi-
ments were not randomized. The investigators were not blinded to
allocation during experiments and outcome assessment.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data needed to evaluate the conclusions in the paper are present
in the paper and/or the Supplementary Information. Processed
metabolomics and RNA-seq data are publicly available at https://doi.
org/10.5281/zenodo.7150252. A data portal is available as an online
Shiny app (https://rezniklab.shinyapps.io/CAMP-shiny-app/). Source
data are provided with this paper.

Code availability

R code with instructions to generate relevant analysis and fig-
ures is available from GitHub (https://github.com/reznik-lab/
pancancer-metabolomics/; https://github.com/reznik-lab/
CAMP-shiny-app/) and under Zenodo (https://doi.org/10.5281/
zenodo.7150252). Users can introduce new datasets by follow-
ing the steps in the Zenodo repository (https://doi.org/10.5281/
zenodo.7150252, supplementary_dataset_v0.3.4.zip).
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