Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study

Subjects

Abstract

Post-ingestive nutrient signals to the brain regulate eating behaviour in rodents, and impaired responses to these signals have been associated with pathological feeding behaviour and obesity. To study this in humans, we performed a single-blinded, randomized, controlled, crossover study in 30 humans with a healthy body weight (females N = 12, males N = 18) and 30 humans with obesity (females N = 18, males N = 12). We assessed the effect of intragastric glucose, lipid and water (noncaloric isovolumetric control) infusions on the primary endpoints cerebral neuronal activity and striatal dopamine release, as well as on the secondary endpoints plasma hormones and glucose, hunger scores and caloric intake. To study whether impaired responses in participants with obesity would be partially reversible with diet-induced weight loss, imaging was repeated after 10% diet-induced weight loss. We show that intragastric glucose and lipid infusions induce orosensory-independent and preference-independent, nutrient-specific cerebral neuronal activity and striatal dopamine release in lean participants. In contrast, participants with obesity have severely impaired brain responses to post-ingestive nutrients. Importantly, the impaired neuronal responses are not restored after diet-induced weight loss. Impaired neuronal responses to nutritional signals may contribute to overeating and obesity, and ongoing resistance to post-ingestive nutrient signals after significant weight loss may in part explain the high rate of weight regain after successful weight loss.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of the study design and main study procedures.
Fig. 2: Participant flow diagram.
Fig. 3: Effect of intragastric glucose and lipid infusions on glucose, insulin and gut hormones.
Fig. 4: BOLD signal following intragastric glucose and lipid infusions (controlled for intragastric water infusions) in lean participants and participants with obesity before and after weight loss.
Fig. 5: Dopamine release following intragastric glucose and lipid infusions in lean participants and participants with obesity before and after weight loss.
Fig. 6: Strong GLP-1 release following intragastric lipids is associated with more pronounced changes in the striatal BOLD signal, only in lean participants.

Similar content being viewed by others

Data availability

Free access to individual data is restricted due to ethical/legal concerns. However, upon request, the data may be made available for scientific collaborations after the execution of appropriate data sharing agreements, after review and approval of requests by the medical ethics committee, participants and investigators in line with existing local/national regulations and data sharing agreements. Requests can be sent to the corresponding author. A first response to requests will follow within 4 weeks. Source data are provided with this paper.

Code availability

Computer codes used for data analyses will be published in a repository on GitHub: https://github.com/MJMSerlie/SPIN-Study.

References

  1. Saper, C. B., Chou, T. C. & Elmquist, J. K. The need to feed: homeostatic and hedonic control of eating. Neuron 36, 199–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Rossi, M. A. & Stuber, G. D. Overlapping brain circuits for homeostatic and hedonic feeding. Cell Metab. 27, 42–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. de Araujo, I. E., Schatzker, M. & Small, D. M. Rethinking food reward. Annu. Rev. Psychol. 71, 139–164 (2020).

    Article  PubMed  Google Scholar 

  4. de Araujo, I. E. et al. Food reward in the absence of taste receptor signaling. Neuron 57, 930–941 (2008).

    Article  PubMed  Google Scholar 

  5. Sclafani, A. & Glendinning, J. I. Flavor preferences conditioned in C57BL/6 mice by intragastric carbohydrate self-infusion. Physiol. Behav. 79, 783–788 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Sclafani, A. & Ackroff, K. Flavor preferences conditioned by intragastric glucose but not fructose or galactose in C57BL/6J mice. Physiol. Behav. 106, 457–461 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han, W. et al. A neural circuit for gut-induced reward. Cell 175, 665–678 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berthoud, H. R. The vagus nerve, food intake and obesity. Regul. Pept. 149, 15–25 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fu, Z., Gilbert, E. R. & Liu, D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 9, 25–53 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kreymann, B. et al. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2, 1300–1304 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Rindi, G. et al. Characterisation of gastric ghrelin cells in man and other mammals: studies in adult and fetal tissues. Histochem Cell Biol. 117, 511–519 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Berthoud, H. R. Vagal and hormonal gut–brain communication: from satiation to satisfaction. Neurogastroenterol. Motil. 20, 64–72 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, L. et al. Sugar metabolism regulates flavor preferences and portal glucose sensing. Front Integr. Neurosci. 12, 57 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berland, C. et al. Dietary lipids as regulators of reward processes: multimodal integration matters. Trends Endocrinol. Metab. 32, 693–705 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Ren, X. et al. Nutrient selection in the absence of taste receptor signaling. J. Neurosci. 30, 8012–8023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thanarajah, S. E. et al. Food intake recruits orosensory and post-ingestive dopaminergic circuits to affect eating desire in humans. Cell Metab. 29, 695–706 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Ferreira, J. G. et al. Regulation of fat intake in the absence of flavour signalling. J. Physiol. 590, 953–972 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tellez, L. A. et al. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science 341, 800–802 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Little, T. J. et al. Mapping glucose-mediated gut-to-brain signalling pathways in humans. Neuroimage 96, 1–11 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Lassman, D. J. et al. Defining the role of cholecystokinin in the lipid-induced human brain activation matrix. Gastroenterology 138, 1514–1524 (2010).

    Article  PubMed  Google Scholar 

  21. Jones, R. B. et al. Functional neuroimaging demonstrates that ghrelin inhibits the central nervous system response to ingested lipid. Gut 61, 1543–1551 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. van der Zwaal, E. M. et al. Striatal dopamine D2/3 receptor availability increases after long-term bariatric surgery-induced weight loss. Eur. Neuropsychopharmacol. 26, 1190–1200 (2016).

    Article  PubMed  Google Scholar 

  23. ter Horst, K. W. et al. Insulin resistance in obesity can be reliably identified from fasting plasma insulin. Int J. Obes. 39, 1703–1709 (2015).

    Article  Google Scholar 

  24. Tschop, M. et al. Circulating ghrelin levels are decreased in human obesity. Diabetes 50, 707–709 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Korek, E. et al. Fasting and postprandial levels of ghrelin, leptin and insulin in lean, obese and anorexic subjects. Prz. Gastroenterol. 8, 383–389 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nelson, K. M. et al. Prediction of resting energy expenditure from fat-free mass and fat mass. Am. J. Clin. Nutr. 56, 848–856 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Flint, A. et al. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. Relat. Metab. Disord. 24, 38–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl Acad. Sci. USA 89, 5951–5955 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Booij, J. et al. Assessment of endogenous dopamine release by methylphenidate challenge using iodine-123 iodobenzamide single-photon emission tomography. Eur. J. Nucl. Med. 24, 674–677 (1997).

    CAS  PubMed  Google Scholar 

  31. Berthoud, H. R., Lenard, N. R. & Shin, A. C. Food reward, hyperphagia, and obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R1266–R1277 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rolls, E. T. The functions of the orbitofrontal cortex. Brain Cogn. 55, 11–29 (2004).

    Article  PubMed  Google Scholar 

  33. Frank, S., Kullmann, S. & Veit, R. Food-related processes in the insular cortex. Front. Hum. Neurosci. 7, 499 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Goetze, O. et al. The effect of macronutrients on gastric volume responses and gastric emptying in humans: a magnetic resonance imaging study. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G11–G17 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Goldstein, N. et al. Hypothalamic detection of macronutrients via multiple gut–brain pathways. Cell Metab. 33, 676–687 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krieger, J. P. Intestinal glucagon-like peptide-1 effects on food intake: physiological relevance and emerging mechanisms. Peptides 131, 170342 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Abbott, C. R. et al. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal–brainstem–hypothalamic pathway. Brain Res. 1044, 127–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Kastin, A. J., Akerstrom, V. & Pan, W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood–brain barrier. J. Mol. Neurosci. 18, 7–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Orskov, C. et al. Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I. Diabetes 45, 832–835 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Dickson, S. L. et al. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors. J. Neurosci. 32, 4812–4820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taha, S. A. & Fields, H. L. Encoding of palatability and appetitive behaviors by distinct neuronal populations in the nucleus accumbens. J. Neurosci. 25, 1193–1202 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baldo, B. A. & Kelley, A. E. Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacol. 191, 439–459 (2007).

    Article  CAS  Google Scholar 

  43. Berridge, K. C. et al. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 1350, 43–64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. O’Connor, E. C. et al. Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron 88, 553–564 (2015).

    Article  PubMed  Google Scholar 

  45. Lawrence, N. S. et al. Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. Neuroimage 63, 415–422 (2012).

    Article  PubMed  Google Scholar 

  46. Tiedemann, L. J. et al. Central insulin modulates food valuation via mesolimbic pathways. Nat. Commun. 8, 16052 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Rodriguez, F. R. et al. An anorexic lipid mediator regulated by feeding. Nature 414, 209–212 (2001).

    Article  Google Scholar 

  48. Schwartz, G. J. et al. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab. 8, 281–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beutler, L. R. et al. Obesity causes selective and long-lasting desensitization of AgRP neurons to dietary fat. eLife 9, e55909 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gropp, E. et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat. Neurosci. 8, 1289–1291 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Reichenbach, A. et al. Metabolic sensing in AgRP neurons integrates homeostatic state with dopamine signalling in the striatum. eLife 11, e72668 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hahn, T. M. et al. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci. 1, 271–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Su, Z., Alhadeff, A. L. & Betley, J. N. Nutritive, post-ingestive signals are the primary regulators of AgRP neuron activity. Cell Rep. 21, 2724–2736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Small, D. M. et al. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124, 1720–1733 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Hall, K. D. & Kahan, S. Maintenance of lost weight and long-term management of obesity. Med. Clin. North Am. 102, 183–197 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Grove, J. C. R. et al. Dopamine subsystems that track internal states. Nature 608, 374–380 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Esteban, O. et al. Analysis of task-based functional MRI data preprocessed with fMRIPrep. Nat. Protoc. 15, 2186–2202 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Woolrich, M. W. et al. Temporal autocorrelation in univariate linear modeling of fMRI data. Neuroimage 14, 1370–1386 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Winkler, A. M. et al. Permutation inference for the general linear model. Neuroimage 92, 381–397 (2014).

    Article  PubMed  Google Scholar 

  62. Winkler, A. M. et al. Faster permutation inference in brain imaging. Neuroimage 141, 502–516 (2016).

    Article  PubMed  Google Scholar 

  63. Winkler, A. M. et al. Non-parametric combination and related permutation tests for neuroimaging. Hum. Brain Mapp. 37, 1486–1511 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Frazier, J. A. et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am. J. Psychiatry 162, 1256–1265 (2005).

    Article  PubMed  Google Scholar 

  65. Goldstein, J. M. et al. Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability. Biol. Psychiatry 61, 935–945 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Makris, N. et al. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr. Res. 83, 155–171 (2006).

    Article  PubMed  Google Scholar 

  67. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

    Article  PubMed  Google Scholar 

  68. Cremers, H. R., Wager, T. D. & Yarkoni, T. The relation between statistical power and inference in fMRI. PLoS ONE 12, e0184923 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Adriaanse, S. M. et al. Clinical evaluation of [123I]FP-CIT SPECT scans on the novel brain-dedicated InSPira HD SPECT system: a head-to-head comparison. EJNMMI Res. 8, 85 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wolnerhanssen, B. K. et al. Dissociable behavioral, physiological and neural effects of acute glucose and fructose ingestion: a pilot study. PLoS ONE 10, e0130280 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lean, M. E. & Malkova, D. Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence? Int. J. Obes. 40, 622–632 (2016).

    Article  CAS  Google Scholar 

  72. Thirion, B. et al. Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. Neuroimage 35, 105–120 (2007).

    Article  PubMed  Google Scholar 

  73. Grabner, G. et al. Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Med. Image Comput. Comput. Assist. Interv. 9, 58–66 (2006).

    PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the volunteers who participated in our study, and the magnetic resonance and SPECT technicians and students for their assistance during the study. We also thank J. Hillebrand from the Laboratory of Endocrinology for assistance with the GLP-1 and ghrelin assays. J.B. is supported by NWO ZonMw medium-sized investments grant 16366. G.J.S. is supported by the National Institutes of Health grant P30DK026687. M.J.S. received an unrestricted research grant from Mediq-TEFA bv.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, K.A.G., K.W.H., S.E.F., J.B. and M.J.S.; methodology, K.A.G., A.S., K.W.H., S.E.F., J.B. and M.J.S.; software, K.A.G. and A.S.; investigation and formal analysis, K.A.G. and A.S.; writing—original draft, K.A.G.; writing—review and editing, A.S., K.W.H., S.E.F., J.B., R.T.C., G.J.S., R.J.D. and M.J.S.; visualization, K.A.G., A.S. and K.W.H.; supervision, K.W.H. and M.J.S.; project administration, K.A.G.; funding acquisition, M.J.S.

Corresponding author

Correspondence to Mireille J. Serlie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Alexandra DiFeliceantonio, Kathleen Page and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Ashley Castellanos-Jankiewicz, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Missing data, fMRI preprocessing, Supplementary Tables 1–4 and study protocol.

Reporting Summary

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Galen, K.A., Schrantee, A., ter Horst, K.W. et al. Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat Metab 5, 1059–1072 (2023). https://doi.org/10.1038/s42255-023-00816-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00816-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing