Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Systemic metabolism

Hypometabolism with the speed of ultrasound

How mammals enter hypometabolic states, known as torpor and hibernation, has fascinated researchers for decades, but the central control mechanisms that regulate entry into torpor have surfaced only recently. Yang and colleagues demonstrate that torpor-like hypometabolic states can be induced non-invasively by ultrasound, providing new routes for exploiting the underlying mechanisms and biomedical applications of this process in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ultrasound induces torpor-like hypometabolism and hypothermia.

References

  1. Jastroch, M. et al. J. Neuroendocrinol. https://doi.org/10.1111/jne.12437 (2016).

    Article  PubMed  Google Scholar 

  2. Hrvatin, S. et al. Nature 583, 115–121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, Z. et al. Nat. Commun. 11, 6378 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takahashi, T. M. et al. Nature 583, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Ambler, M., Hitrec, T., Wilson, A., Cerri, M. & Pickering, A. J. Neurosci. 42, 4267–4277 (2022).

    Article  CAS  Google Scholar 

  6. Takahashi, T. M. et al. Cell Rep. Methods 2, 100336 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang, Y. et al. Torpor-like hypothermic and hypometabolic state induced by ultrasound. Nat. Metab. https://doi.org/10.1038/s42255-023-00804-z (2023).

  8. Nordeen, C. A. & Martin, S. L. Physiology 34, 101–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Grigg, G. C., Beard, L. A. & Augee, M. L. Physiol. Biochem. Zool. 77, 982–997 (2004).

    Article  PubMed  Google Scholar 

  10. Ortmann, S., Heldmaier, G., Schmid, J. & Ganzhorn, J. U. Naturwissenschaften 84, 28–32 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Dausmann, K. H., Glos, J., Ganzhorn, J. U. & Heldmaier, G. Nature 429, 825–826 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Tøien, Ø. et al. Science 331, 906–909 (2011).

    Article  PubMed  Google Scholar 

  13. Blackstone, E., Morrison, M. & Roth, M. B. Science 308, 518 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.J. is supported by the Swedish Research Council (2022-03136) and the Novo Nordisk Research Foundation (grant number 0059646).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Jastroch.

Ethics declarations

Competing interests

The authors declare no competing interests

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jastroch, M., van Breukelen, F. Hypometabolism with the speed of ultrasound. Nat Metab 5, 722–723 (2023). https://doi.org/10.1038/s42255-023-00795-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00795-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing