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Human metabolome variation along the 
upper intestinal tract

Jacob Folz1, Rebecca Neal Culver2, Juan Montes Morales1, Jessica Grembi    3, 
George Triadafilopoulos    4, David A. Relman    3,5,6,7, Kerwyn Casey Huang    5,6,8, 
Dari Shalon    9 & Oliver Fiehn    1 

Most processing of the human diet occurs in the small intestine. 
Metabolites in the small intestine originate from host secretions, plus 
the ingested exposome1 and microbial transformations. Here we probe 
the spatiotemporal variation of upper intestinal luminal contents during 
routine daily digestion in 15 healthy male and female participants. For this, 
we use a non-invasive, ingestible sampling device to collect and analyse  
274 intestinal samples and 60 corresponding stool homogenates by 
combining five mass spectrometry assays2,3 and 16S rRNA sequencing.  
We identify 1,909 metabolites, including sulfonolipids and fatty acid esters 
of hydroxy fatty acids (FAHFA) lipids. We observe that stool and intestinal 
metabolomes differ dramatically. Food metabolites display trends in 
dietary biomarkers, unexpected increases in dicarboxylic acids along the 
intestinal tract and a positive association between luminal keto acids and 
fruit intake. Diet-derived and microbially linked metabolites account for 
the largest inter-individual differences. Notably, two individuals who had 
taken antibiotics within 6 months before sampling show large variation 
in levels of bioactive FAHFAs and sulfonolipids and other microbially 
related metabolites. From inter-individual variation, we identify Blautia 
species as a candidate to be involved in FAHFA metabolism. In conclusion, 
non-invasive, in vivo sampling of the human small intestine and ascending 
colon under physiological conditions reveals links between diet, host and 
microbial metabolism.

We aimed to comprehensively study metabolomic differences among 
luminal samples from the upper intestinal tract of 15 healthy individu-
als to better understand the extent of spatial and temporal variation 
and to gauge the prospects of integrating metabolome and microbi-
ome data. In a related companion publication4, we use these devices 
to study variation along the gut in microbiota composition, prophage 
induction, the host proteome and microbial modification of bile acids. 

Volunteers swallowed sets of four sampling devices per sampling time 
point. These ingestible sampling devices consisted of a collapsed collec-
tion bladder capped by a one-way valve in a capsule with a pH-sensitive 
coating. The four types of devices differed only in their enteric coating, 
which dissolved at pH 5.5 (type 1), pH 6 (type 2) and pH 7.5 (types 3  
and 4) (Fig. 1a). The thickness and pH responsiveness of the coating 
enabled sampling at specific locations of the intestinal tract after gastric 
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in the same samples, reporting metabolites never before detected in 
human samples, key biomarkers of diet and comparison of chemical 
profiles across and within participants (Supplementary Tables 1 and 2).

The measured pH of the luminal contents for device types 1 
through 4 was consistent with the expected pH gradient across the 
intestinal tract4,5, covering the duodenum, jejunum, ileum and ascend-
ing colon (Fig. 1a). The pH in type 1 and 2 devices was significantly 
different from type 3 and 4 devices (Extended Data Fig. 1a and Sup-
plementary Table 3; Wilcoxon two-way rank-sum test, P = 2.4 × 10−14), 
whereas pH was not significantly different between type 1 and type 2 
devices or between type 3 and type 4 devices (Extended Data Fig. 1a). 

emptying. The devices did not contain any electronics beyond a pas-
sive radio frequency identification chip for tracking purposes. Once 
the coatings dissolved, an elastic collection bladder expanded and 
collected up to 400 µl of luminal contents through vacuum suction. 
The one-way valve prevented loss of sample and contamination from 
downstream fluids. Stool samples were frozen at −20 °C and all devices 
were recovered from the stool before analysis. Liquid contents were 
retrieved from devices using hypodermic needles. Aliquots of the raw 
sample were used for 16S ribosomal RNA microbiome analyses and the 
supernatants from centrifuged samples were used for metabolomic 
studies. Here, we perform a meticulous analysis of the metabolome 
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Fig. 1 | Comparison of proximal and distal upper intestinal metabolite  
levels reveals significant differences in a wide range of compounds.  
a, Study design for upper intestinal tract investigation. Four types of an intestinal 
sampling device were used to sample the proximal to distal upper intestines. 
Fifteen human participants swallowed at least 16 devices over 2 d after lunch and 
after dinner after an initial test on day 1. Devices were retrieved and analysed by  
targeted and non-targeted LC–MS/MS and GC–MS methods. b, Identified 
metabolites from the five metabolome assays used to analyse samples. 
Chemical class fractions are included based on automated ClassyFire chemical 

classification. c, Significance of differences between upper intestinal tract 
regions was calculated using LMM. Horizontal dashed-dotted line represents 
the significance threshold P < 0.05 (n = 1,182 metabolites). Circles indicate 
non-significance and diamond shapes indicate significance (P < 0.05) after 
FDR correction. Only metabolites detected in >50% of intestinal samples were 
included in this analysis (n = 1,182). Effect size coefficient is the slope estimated 
by LMM, with positive (negative) coefficient indicating higher (lower) levels in 
the distal compared to proximal upper intestine. Vertical dashed-dotted lines are 
±0.2 effect size coefficient.
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We therefore associated type 1/2 and 3/4 devices with proximal (duo-
denum and jejunum) and distal (ileum and ascending colon) regions 
of the upper intestinal tract, respectively.

We used five mass spectrometry assays to analyse the luminal 
contents captured by these capsule devices and the associated stool 
samples. By matching chromatographic retention times, accurate 
precursor masses and mass spectrometric fragmentation (MS/MS) 
to MassBank.us public and NIST20 licensed libraries, we annotated 
1,909 chemicals from gut luminal and stool contents at Metabolomics 
Standards Initiative confidence levels 1–3 (Supplementary Table 1)6, 
including 155 internal standards used for quality control (QC) and quan-
tification purposes. Additionally, >12,000 unknown chromatographic 
features were reliably detected above the level of method blanks (Sup-
plementary Table 2). Using ClassyFire software7, structurally anno-
tated metabolites fell into 61 chemical subclasses (Supplementary  
Table 1). Two untargeted high-resolution liquid chromatography (LC) 
MS/MS assays focusing on hydrophilic and lipophilic metabolites 
yielded most of the annotated compounds, with 1,612 identifications. 
Untargeted gas chromatography (GC)–MS added 119 primary metabo-
lites, supplemented by targeting six short-chain fatty acids (SCFAs) 
and a targeted LC–MS/MS assay for 17 bile acids (Fig. 1b). QC analysis 
of total metabolic variance revealed separation of stool and intestinal 
samples, with strong clustering of pooled quality control samples 
(Extended Data Fig. 1b).

Metabolome results revealed notable differences between stool 
and intestinal samples (Extended Data Fig. 2) and among the intestinal 
tract samples (Extended Data Fig. 3). To uncover spatial differences 
across the intestine, we applied linear mixed-effect models (LMMs) 
that accounted for sampling location (proximal or distal) as well as 
other variables (Supplementary Tables 3 and 4). Specifically, we stud-
ied the 1,182 most prevalent metabolites that were detected in >50% 
of device samples. Of these, 630 (54%) were significantly different 
in the proximal compared to distal upper intestine (false discovery 
rate (FDR) P < 0.05; LMM) (Fig. 1c and Supplementary Table 4), with 
473 metabolites at higher levels in the proximal compared to distal 
upper intestine and 157 compounds at lower levels in the proximal 
compared to distal upper intestine (Fig. 1c). Known microbially gen-
erated chemicals including SCFAs8,9, secondary bile acids10 and some 
microbially conjugated bile acids11,12, increased from the proximal to 
distal upper intestine (Extended Data Table 1 and Fig. 1c). Of the 11 
detected acetylated amino acids, 7 increased from the proximal to 
distal upper intestine (raw P < 0.05; LMM) (Extended Data Table 1 and  
Fig. 1c). We also examined the 12,346 chemically unannotated metabo-
lite signals, restricting our attention to 9,317 signals that were detected 
in >50% of intestinal samples (Supplementary File 1). Overall, 3,594 
(38%) features were significantly different between the proximal and 
distal upper intestine, with 1,937 features at higher levels in the proxi-
mal compared to distal upper intestine and 1,657 features at lower levels 
in the proximal compared to distal upper intestine (FDR P < 0.05; LMM) 
(Extended Data Fig. 4).

To interrogate general metabolic differences between locations, 
we used chemical enrichment statistics. Di- and tripeptides were among 
the most significantly decreased classes from the proximal to distal 
upper intestine (Extended Data Table 1 and Extended Data Fig. 5). Of the 
333 di- and tripeptides measured, 262 significantly decreased in abun-
dance from the proximal to distal upper intestine (raw P < 0.05; LMM) 
(Extended Data Table 1). Sugars, sugar alcohols, nucleosides, carnitines 
and ceramides also exhibited significantly higher levels in proximal 
intestinal tract samples compared to distal samples (Extended Data 
Table 1 and Extended Data Fig. 5). These spatial differences in the intes-
tine reflect classic digestion and absorption13 of di- and tripeptides14 
and acylcarnitines15,16, as well as ceramides that are hydrolyzed to sphin-
gosine and free fatty acids before intestinal uptake17. In contrast, SCFAs 
exhibited increased levels in distal regions (Extended Data Table 1  
and Fig. 1c), likely due to their production by microbes8,9. Acetylated 

amino acids, which have been associated with Crohn’s disease18, were 
also at higher levels in the distal compared to proximal upper intestine 
(Extended Data Table 1 and Fig. 1c), possibly due to slower absorption 
of acetylated compared to non-acetylated amino acids19,20. Bile acids 
are transformed extensively by microbes and levels of secondary bile 
acids increased along the intestine4. These observations support the 
notion that the capsule devices sampled from the intended locations. 
Although average pH levels across devices of a given type also followed 
the expected trends across the upper intestinal tract, the observed 
within-person variation in pH for each device type did not correlate 
with metabolomic changes across distal versus proximal regions.

We measured 28 phenolic metabolites that increased from the 
proximal to distal upper intestine (Supplementary Table 4). These 
trends are likely caused by a combination of factors, including enzy-
matic transformation21,22 such as deglycosylation and delayed break-
down of plant cells and cell-wall components by microbial enzymes23–25. 
For example, the flaxseed-affiliated lignan secoisolariciresinol was 
most significantly enriched in distal compared to proximal samples, 
likely due to both bioavailability26 and deglycosylation27.

Dicarboxylic acids also increased in concentration from the proxi-
mal to distal upper intestine (Extended Data Table 1 and Fig. 1c). In fact, 
three of the top six most significantly increased metabolites between 
the proximal and distal upper intestine were dicarboxylic acids (hexa-
decanedioic acid, tetradecanedioic acid and octadecanedioic acid) 
(Fig. 1c). Dicarboxylic acids are generated during catabolism (omega 
oxidation) of fatty acids, which occurs in human cells28, plants29 and 
microbes30,31. The lead compound, hexadecanedioic acid, was most 
strongly correlated with other dicarboxylic acids, plant metabolites, 
bile acids and known microbially produced compounds (Supplemen-
tary Table 5). Epithelial cells contain omega-hydroxylated lipids essen-
tial to maintain epithelium barrier function32 that can be cleaved by 
lipases to form dicarboxylic acids. We hypothesize that the consistent 
and significant increase of dicarboxylic acids along the upper intestine 
is due to catabolism of human epithelial lipids.

The chemical profiles of intestinal samples differed substantially 
from those of stool (Extended Data Fig. 2). Thirty-one metabolites were 
>100 times more abundant on average in the intestine compared to 
stool. These metabolites consisted of glycinated lipids, sugars, plant 
natural products, carnitines, microbially conjugated bile acids and 
S-succinylcysteine (Supplementary Table 6). Peptides were also gen-
erally at much lower levels in stool samples compared to intestinal 
samples, especially when compared to the proximal intestine (Extended 
Data Fig. 2). We also identified >100 metabolites that were >100 times 
more abundant in stool compared to intestinal samples (Supplementary 
Table 6); these metabolites were mostly polar lipids such as phosphati-
dylethanolamines, phosphatidylinositols and phosphatidylglycerols, 
as well as specific FAHFAs. The high abundance of membrane lipids in 
stool samples is likely due to the high amount of bacterial cell material 
in stool compared to luminal samples from the upper intestine.

Next, we used LMM to test for associations of food intake logs 
recorded by the participants to levels of intestinal tract metabolites. 
We tested for consumption of fruit, alcohol, dessert, animal protein, 
vegetables, grains, coffee/tea and dairy food types ingested 6 h before 
swallowing capsule devices (Supplementary Table 3). After correcting 
for multiple-hypothesis testing, some food types had no significantly 
associated metabolites, unsurprisingly due to the small sample size 
for some food types and strong FDR correction accounting for tests 
of 1,182 metabolites (Table 1, Fig. 2a–d and Supplementary Table 4). 
Despite the small size of this study with 15 participants, we were able 
to validate a range of dietary biomarkers that were previously found 
in blood and correlated with fruit33 and alcohol34 consumption, as well 
as discover other biomarkers not previously identified.

Using effect size differences of ±0.2 and raw P < 0.05, fruit con-
sumption was significantly associated with 20 compounds at increased 
concentration and 17 metabolites at decreased concentration (Fig. 2a). 
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Some metabolites were directly linked to fruit consumption even with 
strict FDR-corrected P < 0.05 (Fig. 2a), including N-methylproline and 
stachydrine, both of which were previously reported as fruit consump-
tion biomarkers for blood plasma in non-controlled dietary studies33. 
Betonicine, a known component of fruit juice35, also increased after fruit 
consumption at raw P < 0.05 (Fig. 2a) but did not achieve the FDR signifi-
cance threshold. Similarly, three keto acids (4-methyl-2-oxovaleric acid, 
ketoisovaleric acid and 3-methyl-2-oxovaleric acid) also significantly 
increased in response to fruit intake at raw P < 0.05 (Fig. 2a). Metabo-
lites are not independent of one another, but rather are linked via food 
compositions and microbial and enzymatic pathways. Therefore, we 
used ChemRICH chemical set enrichment statistics to identify signifi-
cantly altered clusters of metabolites (Fig. 2c). This strategy revealed 
keto acids as the chemical class with the most significant response 
to fruit (Fig. 2a,c), highlighting keto acids as a fruit biomarker in the 
human gut. Keto acids are formed from enzymatic deamination of 
amino acids, carried out in part by gut bacteria36. Notably, Chem-
RICH also revealed that typical fruit ingredients like phenylacetates 
and phenolic natural products were positively associated with fruit  
intake (Fig. 2c).

Alcohol consumption was most significantly associated with ethyl 
sulfate (FDR P < 0.05), a known plasma biomarker of alcohol consump-
tion (Fig. 2b)34. Stachydrine was linked with both fruit and alcohol 
consumption (FDR P < 0.05). Trp-Lys significantly decreased with 
alcohol consumption after FDR correction (Fig. 2b). In total, 40 di- and 
tripeptides decreased with alcohol consumption (raw P < 0.05) with a 
ChemRICH cluster P = 8.8 × 10−18 (Supplementary Table 4 and Supple-
mentary Figs. 1 and 2). The decrease in di- and tripeptides after alcohol 
consumption suggested a decrease in total protease activity, possibly 
due to impaired pancreatic secretion37,38 rather than direct inhibition 
because trypsin and chymotrypsin are active even in 20% ethanol solu-
tion39. ‘Dessert’ was defined as consumption of high-fat/high-sugar 
foods, such as soda, cake and ice cream. Two substituted benzoic acids, 
3-hydroxy-4-methoxybenzoic acid and 3,4-dihydroxybenzoic acid, 
were associated with dessert (raw P < 0.05) (Fig. 2d). These compounds 
are metabolic intermediates in the breakdown of vanillin and isovanil-
lin40. Neochlorogenic acid was also significantly associated with dessert 
(raw P < 0.05). Neochlorogenic acid is present in a variety of fruits and 
berries41, including cherries42 and peaches43. Other food types that were 
included in the mixed-effect model also had significantly associated 
metabolites (Supplementary Table 4 and Supplementary Figs. 1 and 2).

Caffeine was detected in the majority of samples (Supplementary 
Table 1). Of note, caffeine was not significantly associated with coffee 
or tea consumption during the experimental timeframe (FDR P = 0.87) 
(Supplementary Table 4), most likely because caffeine is absorbed 
rapidly within 1 h of oral intake and has a mean half-life of 4.5 h (range 
2.7–9.9 h) in the bloodstream44; however, caffeine metabolic pathways 
were readily discerned through Spearman rank correlation analysis. 
The six metabolites that were most strongly correlated at FDR P < 10−13 
to caffeine were known caffeine catabolites45–47, including theophylline 

and theobromine (Fig. 2e,f). Caffeine is metabolized and excreted 
through several routes, including urine48 and bile49. Bile is the expected 
origin of caffeine measured in this study, as multiple hours passed 
between beverage consumption and device-sampling events. While 
theobromine is known to be present in chocolate, it did not associate 
with dessert consumption, only with caffeine metabolism. Hence, 
upper intestinal tract metabolite correlations may enable reconstruc-
tion of microbial and enzymatic pathways of exposome metabolism. 
Dedicated studies across a diverse population using dietary inter-
ventions would be needed to associate specific food biomarkers. In 
addition, as the devices largely preserve bacterial viability4, cultured 
isolates obtained from the devices could be used to confirm individual 
food metabolome-bacterial interactions.

Dietary metabolites were associated with temporal differences 
during the 2 d and four sampling time points of this study. To inves-
tigate whether sampling time or sampling region had a larger impact 
on upper intestinal metabolites, we used analysis of variance (ANOVA) 
to calculate the number of metabolites that significantly differed 
between the four device types by participant, or between the four 
sampling time points (after each meal) by participant. The large differ-
ences in metabolite levels between the proximal and distal sampling 
regions were often superseded by metabolic differences between time 
points, showing that 12 of 15 participants had more statistically differ-
ent metabolites between meals (time points) than between intestinal 
regions (device types) (Extended Data Fig. 6a,b). A closer inspection 
of the compound classes that contributed to these differences found 
that di- and tripeptides (within the chemical class of carboxylic acids) 
were the largest chemical class that distinguished between device 
types, representing >70% of all significantly different metabolites in 
five participants and >40% for another seven participants (Extended 
Data Fig. 7a). For metabolites that differentiated sampling time points, 
sugars (organooxygen compounds) were enriched in 13 of 15 partici-
pants (Extended Data Fig. 7b). Similarly, more significantly different 
imidazopyrimidines, indoles and isoflavonoids were found to distin-
guish sampling time points than intestinal regions (Extended Data  
Fig. 7). These classes signify dietary metabolites that were different 
due to variation between food types ingested during different meals, 
but were not as useful for differentiating between intestinal regions.

Our dataset exhibited large inter-individual variation (Extended 
Data Fig. 7). As participants were not prescribed specific meals, 
diet-based variation was expected to differentiate participants and 
time points. Using multivariate discriminant analysis (PLS-DA), we 
identified differences in the proportion of metabolites that were most 
important for differentiating between the proximal and distal intestine 
(device types) and among the 15 participants (Extended Data Fig. 6b). 
The large overall variance among samples obscured clear visualization 
of PLS-DA based on participants, devices or time points. Nonetheless, 
the 100 metabolites that contributed most to multivariate discrimi-
nation revealed participant-specific trends that were best explained 
by metabolites of plant and microbial origin (Extended Data Fig. 6b), 
including the pepper compound capsaicin, the flaxseed compound 
secoisolariciresinol and the microbially produced butyric acid and pro-
pionic acid (Supplementary Table 7). Other metabolites that showed 
participant-specific variation, such as N-methylhistamine, phenethyl-
amine, phenylacetaldehyde and succinic acid, may depend on a com-
bination of human, dietary or microbial factors. Notably, hierarchical 
clustering separated stool samples by participant, whereas intesti-
nal samples did not strongly cluster by participant (Supplementary  
Fig. 3), perhaps due to the higher abundance of individual-specific gut 
microbes in the stool relative to the proximal intestine, which was more 
dominated by the variability in dietary components.

Although large overall variation obscured direct visualization of 
inter-individual differences when using all data in PLS-DA projections, 
specific compounds exhibited very large concentration differences 
among individuals (Fig. 3). For example, the human heme-derived bile 

Table 1 | Participant characteristics

Attribute Value

Total number of participants 15

Participants completing the study 15

Age Mean 42, range 22–64

Females 8

Males 7

Antibiotic use within past 6 months 2

Underlying medical conditions 0

Body mass index Mean 23, range 19–31

Detailed exclusion and inclusion criteria are supplied in Supplementary Table 3.
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Fig. 2 | Intestinal metabolite association with food types. a,b,d, Volcano plots 
show significance of each metabolite to food types of fruit (a), alcohol (b) and 
dessert (d) calculated by LMM. Consumption is defined as food eaten within 6 h 
of swallowing sample devices. Significance of P < 0.05 (n = 1,182 metabolites) is 
delimited by the lower dashed-dotted horizontal line. Circles indicate non-
significance after FDR correction and diamonds indicate significance (P < 0.05) 
after FDR correction (n = 1,182). Metabolites detected in >50% of intestinal 
samples were included in this analysis. Effect size coefficient is the slope estimate 
calculated by LMM, with positive (negative) coefficient meaning the metabolite 
was higher (lower) after food consumption. Vertical dashed-dotted lines are 
±0.2 effect size coefficient. c, Chemical enrichment statistics (ChemRICH) 

analysis revealed significant chemical classes after fruit consumption visualized 
by separating classes by chemical lipophilicity (logP) and chemical class 
significance level of −log10(P). Red circles indicate that the chemical class 
increased after fruit consumption and blue circle indicates that the chemical 
class decreased after fruit consumption. Circle size indicates the size of the 
chemical class. e, Theophylline and theobromine levels are strongly associated 
with caffeine levels. Circles represent measured levels in each sample for which 
both metabolites were detected. f, Chemical diagram of caffeine and known 
metabolic pathways with structures of detected metabolites and Spearman rank 
correlation coefficient (rs) for each structure (P < 1.0 × 10−13 for all metabolites; 
n = 1,182 metabolites).
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pigments biliverdin and bilirubin and the microbially produced urobilin 
and stercobilin varied drastically among devices for some participants 
and were also greatly reduced or absent in specific participants, such 
as stercobilin for participants 10 and 15 (Fig. 3). Production of second-
ary bile acids has been proposed to use a similar enzymatic pathway 
as stercobilin production50,51 and the two participants who had low 
stercobilin levels also showed reduced concentration of deoxycholic 
acid, a secondary bile acid (Fig. 3). The same participant-specific pro-
files of bile pigments were also observed in stool samples (Extended 
Data Fig. 8). Notably, these two participants (10 and 15) were the only 
ones who reported use of antibiotics in the 6 months before the study. 
These individuals were characterized by very low levels of stercobilin, 
deoxycholic acid, a subset of FAHFAs and sulfonolipids (Fig. 3), all of 
which have been previously linked to the gut microbiota10,51–53. Oral 
antibiotics can affect the intestinal microbiota for more than a year 
after treatment54. These data support the hypothesis that metabolic 
profiles reflect differences in microbial activity for specific pathways. 
We did not identify significant associations between microbial species 
abundance from 16S rRNA gene quantification and stercobilin levels 
due to limited statistical power, but the presence of FAHFAs and sul-
fonolipids was associated with the differential abundance of specific 
microbial species.

FAHFAs were first identified 10 years ago. They are biologically 
active and regulate physiology55,56. Acyl α-hydroxyl fatty acids (AAH-
FAs) are a specific subset of FAHFAs with an α-lipid linkage that were 
discovered just 2 years ago53. We identified 88 FAHFAs in this study (Sup-
plementary Table 1). Notably, four specific FAHFAs exhibited highly 
consistent differences among participants and all of these FAHFAs 
are linkages of a long-chain hydroxyl fatty acid backbone esterified 
with C3- or C4-short-chain moieties. Three of these bioactive lipids 
are esterified at the α-position (AAHFA 4:0/22:0, AAHFA 3:0/22:0 and 
AAHFA 3:0/24:0) and one is esterified elsewhere on the backbone 
(FAHFA 3:0/23:0). Nine participants frequently exhibited high levels 
of these FAHFAs, whereas six participants produced very little or unde-
tectable amounts (Fig. 3). As undetectable levels cannot be used for 
ANOVA statistics, we did not perform significance testing. The same 
individual-specific trends were observed in stool samples (Extended 
Data Fig. 8). The only other frequently detected FAHFA with a C3 or 
C4 sidechain and a long-chain fatty acid was AAHFA 16:0/4:0, which 
did not follow the same individual-specific trend as the four FAHFAs 
discussed above. Of note, low levels of long-chain fatty acid or SCFA 
substrates, propionic (C3:0) and butyric acid (C4:0), did not explain 

the observed differences in these short-chain FAHFAs in intestinal or 
stool samples (Fig. 3 and Extended Data Fig. 9). We therefore inves-
tigated whether specific bacteria were associated with the presence 
or absence of the four FAHFAs of interest. Two taxa, a species in the 
Blautia genus most closely related phylogenetically to Blautia obeum 
and proteobacteria related to Bilophila wadsworthia, were signifi-
cantly associated with detection of these FAHFAs (Supplementary 
Table 8). B. obeum is a known SCFA producer57, which suggested that 
production of the short-chain fatty acyl constituents might be a driver 
of individual-specific FAHFA production; however, FAHFA 4:0/16:0 
did not show the same individual-specific trend, suggesting that the 
Blautia species may specifically produce FAHFAs with propionic and 
butyric acid esters of hydroxylated very-long-chain fatty acyls (22:0 
and 23:0) and not of hydroxyl-forms of the most abundant fatty acids, 
C16–18. A chemically related group of FAHFAs have been shown to 
improve glucose homeostasis, stimulate insulin sensitivity and have 
anti-inflammatory effects55. Thus, our findings have potential health 
implications in addition to providing a link between intestinal chem-
istry and FAHFA levels in humans.

Here, we report the detection of sulfonolipids in human samples. 
These lipids were only recently added to lipidomic libraries58, leading 
to the discovery that they are microbially produced in mouse intestinal 
tracts and linked with both pro- and anti-inflammatory phenotypes59–61. 
In intestinal device samples, we detected sulfonolipids with strong 
inter-individual trends regardless of sampling time point (meals), 
suggesting that sulfonolipids were microbially produced in some 
individuals, but not in others. The two participants who had previously 
received antibiotics showed much lower levels of sulfonolipids than 
all other individuals (Fig. 3), suggesting that the antibiotic treatment 
may have eliminated the microbial producers. Notably, sulfonolipids 
were also absent in specific samples of other participants, prompting 
us to examine associations of sulfonolipids with bacterial taxa. Ten 
taxa were significantly enriched in sulfonolipid-containing samples, 
including a member of the Desulfovibrionaceae family (Supplementary 
Table 8), a family that has been associated with ulcerative colitis62. Also 
enriched were two members of Bacteroidetes, a phylum with known 
sulfonolipid producers60. Health implications of sulfonolipid levels in 
humans are not well understood. Sulfonolipids were recently shown 
to increase inflammatory responses in macrophages, but decrease 
inflammation in the presence of lipopolysaccharides63. Further inves-
tigations are required to determine the relationship of sulfonolipids 
with human health.
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Fig. 3 | Heat map of metabolites with strong inter-participant differences. 
Metabolites include bile pigments, fatty acid esters of hydroxy fatty acids 
(FAHFAs and AAHFAs), SCFAs, sulfonolipids (SLs) and secondary bile acids. 
Samples are organized by participant and antibiotic consumption is indicated  
for the two participants who consumed antibiotics 1 and 5 months before this 
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This work provides a report of metabolome differences in 
the upper intestinal tract in healthy human participants using a 
non-invasive, ingestible sampling device. Our results open the door for 
future detailed in vivo studies on digestion and intestinal diseases. As 
expected, the metabolome of stool was highly distinct from that of the 
intestine. Thus, stool cannot serve as a surrogate for the gut intestinal 
tract, rather only for colonic contents (at best). Even within the intes-
tinal tract, >50% of annotated metabolites exhibited significantly dif-
ferent levels between proximal and distal locations. An important goal 
for future investigation is to characterize the effect of antibiotics on 
intestinal sulfonolipid-, stercobilin- and long-chain AAHFA-producing 
bacteria and the consequences of such disruptions on health and 
disease. The disruption of these bacteria by antibiotics may be linked 
to the incidence and etiology of inflammation, diabetes and inflamma-
tory bowel disease55,60,63. Consequently, it will be important to uncover 
the dynamics and mechanisms of repopulation of antibiotic-treated 
individuals with these microbes.

In our related companion study4, we used the same device samples 
to broadly study variation in the intestinal environment using several 
omics approaches. Like the findings on metabolomes reported in this 
study, we found more pronounced prophage induction in intestinal 
samples compared to stool and that the host proteome and bile acid 
profiles varied along the intestines and were highly distinct from those 
of stool4. Complementing the large differences in peptides and amino 
acids between proximal and distal intestinal locations reported here, 
in our companion study we show that microbially conjugated bile acid 
concentrations displayed amino-acid-dependent trends that were 
not apparent in stool. Taken together, these studies collectively illus-
trate the utility of sampling directly from the intestines, which should 
improve our understanding of the intimate relationship between 
human hosts and their commensal microbes.

As a pilot study, our study has several limitations. First, a larger 
number of participants will be necessary for making conclusions 
about the range of gut metabolism within and across human popu-
lations and larger studies could also accommodate more detailed 
microbiome-wide associations of specific bacteria or bacterial families 
with metabolic conversions. Second, only two participants reported 
antibiotic use, hence the potential link between antibiotics use and 
disruption of sulfonolipid and FAHFA metabolism needs to be strength-
ened in future studies. Third, analysis of temporal variation was limited 
to two time points per day on two consecutive days, hence changes in 
metabolic or microbial composition over time were not fully assessed. 
Fourth, links between upper intestinal microbiota composition and 
variability to disease conditions, such as small intestinal bacterial 
overgrowth, will need specific, separate investigations. Despite these 
limitations, our findings demonstrate that the use of non-invasive sam-
pling devices, in combination with metabolomics and genomics, has 
substantial potential to enable more precise intervention and preven-
tion strategies for addressing nutritional studies and human disease.

Methods
Ingestible sampling device
In a related companion publication4, we used the same text to describe 
the capsule sampling device (CapScan, Envivo Bio). A CapScan consists 
of hollow elastic collection bladder capped by a one-way valve4. To 
prepare the device for packaging, the collection bladder is evacuated, 
folded in half and packaged inside a dissolvable capsule measuring 
6.5 mm in diameter and 23 mm in length, onto which an enteric coating 
is applied. The capsule and the enteric coating are designed to prevent 
contamination of the collection bladder from oral-pharyngeal and 
gastric microbes during ingestion. The enteric coating and capsule 
disintegrate when the device reaches the target pH, which is pH 5.5 for 
type 1, pH 6 for type 2 and pH 7.5 for types 3 and type 4, with type 4 also 
having a time-delay coating to bias collection toward the ascending 
colon. After disintegration of the enteric coating, the collection bladder 

unfolds and expands into a tube 6 mm in diameter and 33 mm in length, 
thereby drawing in up to 400 µl of gut luminal contents through the 
one-way valve. The integrity of the sample collected inside the collec-
tion bladder is maintained by the one-way valve as the device moves 
through the colon and is exposed to stool.

In a related companion publication4, we used the same text to 
describe the study design. Each participant concurrently ingested sets 
of four devices, each with distinct coatings to target the proximal to 
medial regions of the small intestine (coating types 1 and 2) and more 
distal regions (coating types 3 and 4). After sampling, the devices were 
passed in the stool into specimen-collection containers and immedi-
ately frozen. After collection, the stool was thawed and devices were 
retrieved by study staff. For sample removal, the elastic collection 
bladders were rinsed in 70% isopropyl alcohol and punctured with a 
sterile hypodermic needle attached to a 1-ml syringe. Samples were 
transferred into microcentrifuge tubes and pH was measured with an 
InLab Ultra Micro ISM pH probe (Mettler Toledo). For metabolomics 
analysis, a 40-µl aliquot was spun down for 3 min at 10,000g to collect 
the supernatant. The rest of the sample was frozen until being thawed 
for DNA extraction.

Study design
In a related companion publication4, we used the same text to describe 
the study design. The study was approved by the WIRB-Copernicus 
Group Institutional Review Board (study no. 1186513) and informed 
consent was obtained from each participant. Healthy volunteers were 
selected to exclude participants suffering from clinically detectable 
gastrointestinal conditions or diseases that would potentially interfere 
with data acquisition and interpretation.

Participants met all of the following criteria for study inclusion: (1) 
individuals between the ages of 18 and 70 years; (2) American Society 
of Anesthesiologists physical status class risk of 1 or 2; (3) for women 
of childbearing potential, a negative urine pregnancy test within 7 d of 
screening visit and willingness to use contraception during the entire 
study period; and (4) fluency in English, understanding the study proto-
col and able to supply informed written consent, along with complying 
with study requirements.

Participants with any of the following conditions or characteristics 
were excluded from the study: (1) history of any of the following: previ-
ous gastric or esophageal surgery, including lap banding or bariatric 
surgery, bowel obstruction, gastric outlet obstruction, diverticulitis, 
inflammatory bowel disease, ileostomy or colostomy, gastric or esoph-
ageal cancer, achalasia, esophageal diverticulum, active dysphagia or 
odynophagia or active medication use for any gastrointestinal condi-
tions; (2) pregnancy or planned pregnancy within 30 d from screen-
ing visit or breast-feeding; (3) any form of active substance abuse or 
dependence (including drug or alcohol abuse), any unstable medical or 
psychiatric disorder or any chronic condition that might, in the opinion 
of the investigator, interfere with conduct of the study; or (4) a clinical 
condition that, in the judgment of the investigator, could potentially 
pose a health risk to the individual while involved in the study.

Fifteen healthy individuals were enrolled in this study and each 
swallowed at least 17 devices over the course of 3 d. Sample size was 
chosen to assess general variation across human intestinal tracts. Daily 
instructions included the following guidelines: record all foods and 
time they were consumed throughout the day; if you work out, do so 
in the morning; eat breakfast and lunch as usual; swallow a set of four 
devices 3 h after lunch with up to two-thirds cup of water; do not eat or 
drink anything for at least 2 h after swallowing devices; if hungry after 
2 h, snack lightly (up to 200 calories); do not drink any caffeinated 
beverages after lunch until the next morning; collect all stool starting 
6 h after swallowing this set of devices until 48 h after swallowing the 
next set of devices; eat dinner as usual at least 6 h after lunch; swal-
low a set of four CapScan devices 3 h after dinner with two-thirds cup 
of water; and after swallowing this set, do not eat or drink anything 
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until the morning. Alcohol consumption and diet contents were not 
restricted. All ingested devices were recovered and no adverse events 
were reported during the study. In total, 274 capsule devices provided 
sufficient material for metabolomics analysis and 225 provided suf-
ficient volume or number of sequencing reads (>2,500) for genomic 
analysis. Every bowel movement during the study was immediately 
frozen by the participant at −20 °C. Participant 1 provided additional 
samples for assessment of replicability. A total of 333 intestinal and 
stool samples were analysed with metabolomics methods.

Untargeted metabolomics sample preparation
Sample preparation was performed using a biphasic extraction64 with 
water, methanol and methyl tert-butyl ether (MTBE) to separate polar 
and non-polar metabolites. Capsule device supernatant and stool 
samples were prepared separately because device samples were liquid 
and stool samples were solid. For each supernatant sample, 10 µl was 
aliquoted into one well of a deep sample preparation 96-well plate in a 
pre-determined randomized order. Samples were extracted one 96-well 
plate at a time and all steps were carried out at 4 °C unless otherwise 
specified. Between every ten experimental samples, a method blank 
and external QC sample were prepared. Blanks used 10 µl LC–MS-grade 
water instead of sample and QC samples used 10 µl pooled sample of 
human gastrointestinal tract contents from unrelated studies. Then, 
170 µl methanol containing SPLASH LIPIDOMIX Mass Spec Standard 
(Avanti) were added to each well and the plate was heat-sealed with 
foil, shaken vigorously for 30 s at room temperature, unsealed and 
490 µl MTBE was added. The plate was then heat-sealed again, vor-
texed vigorously for 30 s at room temperature and shaken for 5 min on 
an orbital shaker. The foil seal was removed and 150 µl LC–MS-grade 
water was added to each well. The plate was vortexed for 30 s at room 
temperature and centrifuged at 708g for 12 min. The foil was removed 
from the deep-well plate and two 180-µl aliquots of the top phase 
were transferred to two 96-well Vanquish LC plates using a 12-channel 
pipette. Two 50-µl aliquots of the aqueous phase were then transferred 
to two other 96-well Vanquish LC plates. All 96-well plates were dried 
completely under vacuum at room temperature, heat-sealed with foil 
and stored at −80 °C until further analysis. Each stool sample was pre-
pared by mixing with a spatula and 5 ± 1 mg was transferred to a 2-ml 
microcentrifuge tube. Then, 225 µl methanol containing SPLASH LIPI-
DOMIX Mass Spec Standard (Avanti) was added to all microcentrifuge 
tubes and the tubes were vortexed for 10 s at room temperature. Two 
3-mm stainless steel balls and 750 µl MTBE were added to each tube and 
samples were homogenized in a Geno/Grinder (SPEX) at 1,500 Hz for 
1 min. Following that, 188 µl water was added to each tube and each tube 
was vortexed for 30 s at room temperature. Tubes were centrifuged at 
14,000g for 2 min at room temperature. Two aliquots of 180 µl of the 
organic phase were transferred to two 96-well plates. Two 50-µl aliquots 
of the aqueous phase were transferred to two 96-well plates. All plates 
were dried completely in a rotary vacuum evaporator, heat-sealed with 
foil and stored at −80 °C until further analysis.

HILIC LC–MS/MS analysis
Samples from the aqueous phase aliquots of sample preparation were 
removed from −80 °C and 35 µl 8:2 acetonitrile:water containing 29 
isotopically labeled and synthetic internal standards, including CUDA65 
was added to each well. The 96-well plates were then sealed with foil, 
vortexed vigorously for 30 s at room temperature, sonicated in a water 
bath for 5 min at room temperature and centrifuged for 15 min at 708g. 
Plates were stored in an autosampler at 4 °C until analysis (maximum 
storage time in autosampler was 48 h). LC–MS/MS was performed with 
a Vanquish LC (Thermo Scientific) coupled to a QExactive HF+ orbital 
ion trap mass spectrometer (Thermo Scientific). Chromatographic 
separation was performed with a Waters Acquity UPLC BEH Amide col-
umn (150 mm length × 2.1 mm inner diameter (i.d.); 1.7-µm particle size) 
with a 5-mm pre-column (5 mm length × 2.1 mm i.d.; 1.7-µm particle 

size). Mobile phase A was 100% water and B was 95:5 acetonitrile:water. 
Both mobile phases were modified with 10 mM ammonium formate and 
0.125% formic acid. Flow rate was 400 µl min−1, column temperature was 
45 °C and injection volume was 3 µl. The LC gradient was 100% mobile 
phase B from 0 to 2 min, 70% B by 7.7 min, 40% B by 9.5 min, 30% by 
10.25 min and returned to 100% B by 12.75 min to re-equilibrate until 
17 min. All mobile phase gradient shifts were linear. Acetonitrile:water 
1:1 was used as a needle wash solvent before and after sample injec-
tion. Heated electrospray ionization (HESI) source conditions were 
as follows: sheath gas flow 50, auxiliary gas flow 13, sweep gas flow 3, 
capillary temperature 263 °C, S-lens RF level 50, auxiliary gas heater 
temperature 425 °C and needle voltage 3,500 V and −3,500 V for posi-
tive and negative ionization mode, respectively. Spectra were collected 
with data-dependent MS/MS acquisition (DDA) for the top four ions. 
MS scans were collected with 60-k resolving power from 60–900 m/z, 
AGC target of 106 ions and maximum accumulation time of 100 ms. MS/
MS spectra were collected with 15-k resolving power, 1-Da isolation 
window, 50-ms maximum accumulation time, a 3-s dynamic exclusion 
window, stepped (N)CE of 20, 30 and 60 for fragmentation and 8 × 103 
AGC target. All spectra were stored in centroid mode. Three rounds of 
iterative exclusion MS/MS were acquired for each pooled QC sample. 
Immediately after analysis, plates were dried under vacuum, sealed 
with foil and stored at −80 °C.

Lipidomics LC–MS/MS analysis
Sample plates from the organic phase aliquots were removed from 
−80 °C and 50 µl 9:1 acetonitrile/toluene was added to each well. The 
plates were then sealed with foil, vortexed vigorously for 30 s at room 
temperature, sonicated in a water bath for 5 min at room temperature, 
centrifuged for 15 min at 708g and transferred to an autosampler kept 
at 4 °C until analysis (maximum storage time in autosampler before 
analysis was 48 h). Lipidomics LC–MS/MS analysis used a Thermo Scien-
tific Vanquish LC system coupled to a Thermo Scientific QExactive HF+ 
orbital ion trap mass spectrometer. Chromatographic separation used 
a Waters Acquity UPLC CSH C18 column (100 mm in length × 2.1 mm i.d.; 
1.7-µm particle size) with a pre-column (5 mm in length × 2.1 mm i.d.; 
1.7-µm particle size). Mobile phase A was 9:1 acetonitrile:water and B 
was 8:2 IPA:acetonitrile. For positive-mode electron spray ionization 
(ESI), the mobile phases were modified with 10 mM ammonium formate 
and 0.1% formic acid. For negative-mode ESI, mobile phases were modi-
fied with 10 mM ammonium acetate. Flow rate was 600 µl min−1, column 
temperature was 65 °C and injection volume was 5 µl. The mobile phase 
gradient was 15% B from 0 to 0.6 min, 30% B by 2 min, 48% B by 2.5 min, 
82% B by 11 min, 99% B from 11.5 to 12 min and 15% B from 12.1 to 14.2 min. 
HESI source conditions were as follows: sheath gas flow 55, auxiliary gas 
flow 15, sweep gas flow 3, capillary temperature 275 °C, S-lens RF level 
50, auxiliary gas heater temperature 450 °C and needle voltage 3,500 V 
and −3,500 V for positive and negative ionization mode, respectively. 
DDA MS/MS spectra were acquired for the top four ions. MS scans were 
collected with 60-k resolving power from 120–1,700 m/z, AGC target 
of 106 ions and maximum accumulation time of 100 ms. MS/MS spec-
tra were collected with 15-k resolving power, 1-Da isolation window, 
normalized collision energy of 20, 30 and 60, 2-s dynamic exclusion 
window, 8 × 103 AGC target and 50-ms maximum accumulation time. 
Spectra were stored in centroid mode. Three rounds of iterative exclu-
sion MS/MS were acquired for each pooled QC sample. Immediately 
after all samples were analysed, the plates were dried under vacuum, 
sealed with foil and stored at −80 °C.

Untargeted GC–MS analysis
Dried aqueous-phase samples as described above were removed from 
−80 °C and 10 µl 40 mg ml−1 methoxyamine hydrocholoride in pyridine 
was added to each well. The plates were sealed and shaken at 30 °C 
for 90 min. Foil was removed and 90 µl N-methyl-N-trimethylsilyl 
trifluoroacetamide (containing internal standards of C8-C30 fatty 

http://www.nature.com/natmetab


Nature Metabolism | Volume 5 | May 2023 | 777–788 785

Letter https://doi.org/10.1038/s42255-023-00777-z

acid methyl esters) was added to each well and plates were shaken for 
30 min at 37 °C. The plate was then centrifuged at 2,400g for 15 min 
at room temperature. Foil was removed and 90 µl supernatant was 
transferred to glass crimp-top vials with glass insert and crimped 
shut. Samples were analysed within 48 h of derivatization. GC–MS 
analysis was carried out as previously described66. Briefly, 0.5 µl was 
analysed in splitless mode through an Agilent 6890 GC equipped with a 
RTx-5Sil MS column (30 m × 0.25 mm i.d., 0.25 µm 95:5 dimethyl diphe-
nyl polysiloxane film). Chromatography used helium at 1 ml min−1 and 
temperature gradient of 50 °C to 275 °C. MS analysis was performed 
using a Leco Pegasus III TOF mass spectrometer. Spectra were collected 
at 17 spectra per second with 70 eV EI. Data files were pre-processed in 
Leco ChromaTOF software and further analysed using the automated 
GC–MS data-processing pipeline BinBase67 with FiehnLib for spectra 
and retention time-matching.

Bile acid quantification
Bile acids were targeted and quantified as previously reported4. Briefly, 
dried aqueous-phase sample plates from hydrophilic interaction chro-
matography (HILIC) ESI+ analysis were removed from a −80 °C freezer 
and dissolved in 60 µl bile acid run solvent (1:1 ACN methanol contain-
ing 100 ng ml−1 of five isotopically labeled bile acid internal standards). 
Plates were vortexed for 30 s and sonicated in a water bath for 5 min. 
All samples were diluted 30-fold in bile acid run solvent. All plates 
were centrifuged at 708g for 15 min at 4 °C and stored in a Vanquish 
autosampler at 4 °C until analysis. A nine-point standard curve was 
prepared between 0 to 1,500 ng ml−1 and analysed with samples. A 
Vanquish UPLC and Altis QqQ mass spectrometer (Thermo Fisher 
Scientific) were used for targeted LC–MS/MS analysis. An Acquity 
BEH C18 column (100 mm × 2.1 mm i.d., 1.7-µm particle size; Waters) 
was used with mobile phase A of water and B of acetonitrile, both with 
0.1% formic acid. Skyline software and custom R scripts were used to 
process and quantify bile acid analytes.

Short-chain fatty acid quantification
SCFA quantification was performed through derivatization with 
N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) 
based on a previously reported protocol68. Briefly, 10 µl intestinal 
supernatant was transferred to a 1.5-ml microcentrifuge tube on ice 
pre-filled with 50 µl LC–MS-grade water containing deuterium-labeled 
SCFA internal standards and 10 µl 37% hydrochloric acid. Then, 100 µl 
MTBE also containing deuterium-labeled SCFA internal standards was 
added to each tube and the tubes were shaken on rotary shaker plate 
for 30 min at room temperature. Tubes were centrifuged at 14,000g 
for 2 min and 20 µl MTBE (top layer) was transferred to a crimp-top 
GC–MS vial fitted with low recovery insert. Then, 5 µl MTBSTFA was 
added to each vial, which was then sealed. Vials were shaken on an 
orbital shaker plate for 30 min at 80 °C, cooled to room tempera-
ture and analysed by GC–MS. An Agilent 6890 GC coupled to a Leco 
Pegasus IV TOF mass spectrometer was used with a DB5 DuraGuard 
(30 m × 0.25 mm × 0.25 µm) capillary column. Following that, 1 µl was 
injected with 1:10 split mode enabled, helium flow rate of 1.2 ml min−1, 
temperature ramped from 50 °C to 290 °C over 20.8 min and scan rate 
of 17 spectra per min from 50–550 m/z. A six-point standard curve 
between 1 and 100 µg ml−1 was analysed for every 80 samples and 
blank samples were analysed between every ten experimental samples. 
Samples and standard curve mixes were prepared within 24 h of GC–MS 
analysis. Data were converted to Agilent (.d) format and processed 
using Agilent MassHunter Quant v.B.09.00. Linear six-point standard 
curves using ratio of analyte to internal standard were used to quantify 
SCFAs in experimental samples.

Untargeted LC–MS/MS data processing
MS-DIAL v.4.80 (ref. 58) was used to process untargeted LC–MS/MS 
data. HILIC LC–MS/MS (ESI+ and ESI−) and lipidomics (ESI+ and ESI−) 

datasets were processed with manually optimized parameters (Supple-
mentary Table 9). Peak height was reported for all untargeted analyses. 
Experimental MS/MS spectra were matched to MassBank of North 
America as well as NIST20 spectral libraries for HILIC analyses and all 
lipid reference MS/MS spectra from MS-DIAL were used for lipidom-
ics analyses. Retention time information for HILIC and lipidomics 
from authentic standards run under identical chromatography condi-
tions was used as another line of evidence for metabolite annotation. 
Metabolite annotations were based on accurate mass matching with 
retention time and/or an MS/MS match to a library spectrum. Blank 
subtraction was performed by retaining LC–MS features for which 
the maximum intensity from an experimental sample was at least ten 
times as high as the average of the method blanks, along with further 
data reduction as described in Supplementary Table 2. The final step 
of data processing was manual investigation of annotated features 
for MS/MS match quality, peak quality, peak alignment and removal 
of in-source fragments using correlation between features with close 
retention time for in-source fragment identification. When multiple 
metabolites from spectral libraries matched one experimental MS/MS, 
the match was recorded as a non-unique MS/MS match (Supplementary  
Table 1). Predicted retention times calculated using Retip69 were used 
as an additional line of evidence to flag low-quality annotations.

DNA extraction and 16S rRNA gene sequence analysis
DNA was extracted using a Microbial DNA extraction kit (QIAGEN)70 
and 50 µl from a capsule device or 100 mg stool. The 16S rRNA ampli-
cons were generated using Earth Microbiome Project-recommended 
515F/806R primer pairs and 5PRIME HotMasterMix (Quantabio, 
2200410) with the following program in a thermocycler: 94 °C for 
3 min, 35 cycles of 94 °C for 45 s, 50 °C for 60 s and 72 °C for 90 s, fol-
lowed by 72 °C for 10 min. PCR products were cleaned, quantified and 
pooled using the UltraClean 96 PCR Cleanup kit (QIAGEN, 12596-4) 
and Quant-iT dsDNA High Sensitivity Assay kit (Invitrogen, Q33120). 
Samples were sequenced with 300-bp reads on a MiSeq (Illumina). 
Sequence data were de-multiplexed using the Illumina bcl2fastq algo-
rithm at the Chan Zuckerberg BioHub Sequencing facility. Subsequent 
processing was performed using the R statistical computing envi-
ronment v.4.0.3 (ref. 71) and DADA2 as previously described using 
pseudo-pooling72. truncLenF and truncLenR parameters were set to 
250 and 180, respectively. Taxonomy was assigned using the Silva 
rRNA database v.132 (ref. 73). Samples with >2,500 reads were retained  
for analyses.

Statistics and data analysis
Statistical tests were performed using R71. LMMs were performed using 
the lmerTest and lme4 R packages. To examine spatial differences 
across the intestine, we applied LMMs that accounted for sampling 
location (proximal (device types 1 and 2) or distal (device types 3 and 4)),  
eight food types classified from food logs (vegetable and animal pro-
tein (meat, egg and fish), grain (rice, pasta, bread and other grain), 
coffee or tea, dessert or alcohol (beer, wine or alcoholic seltzer), dairy 
and fruit) and antibiotic consumption within 6 months as fixed effect 
variables and inter-individual variation as a random effect variable 
(Supplementary Tables 3 and 4). Food types were manually assigned 
from participants’ written food logs using customized assessment 
forms. Metabolite abundances were log10-transformed and miss-
ing values were treated as zeros, followed by scaling from −1 and 1 
before LMM analysis. A Benjamini–Hochberg74 correction was used 
to account for multiple-hypothesis testing. Correlations between 
the microbiota (log2-scaled amplicon sequence variant abundance) 
and metabolites (log10-scaled metabolite abundance) were calcu-
lated at the amplicon sequence variant-level using Pearson’s correla-
tions. Differential abundance analysis using Limma-Voom differential 
abundance was utilized for FAHFAs and sulfonolipids in a presence/
absence analysis. Only taxa with an absolute differential abundance 
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>0.75 and Benjamini–Hochberg-corrected P < 0.1 were considered. 
ChemRICH75 was used to calculate enrichment statistics. Clustering 
was performed using the hclust function with the metabolite Spear-
man rank correlation matrix calculated using the cor function in R and 
Euclidean distance calculated with the as.dist function in R. PLS-DA and 
principal-component analysis (PCA) were performed with the ropls 
package in R76. PLS-DA models to distinguish participant and device 
type were assessed by sevenfold cross validation. Using 20–1,000 ran-
dom permutations of class labels performed by the ropls R package to 
test for overfitting, models maintained Q2Y > 0.15 and P < 0.05 (ref. 77).  
Untargeted LC–MS/MS (HILIC and RP ESI+/−) features were normalized 
to the sum of internal standards for each platform, which has been 
shown to be more robust than normalizations to single compounds78. 
This normalization was performed by dividing each LC–MS feature by 
the sum of internal standard peak heights for that sample78,79. GC–MS 
data were normalized to the summed intensity of all annotated metabo-
lites as extensively discussed in published protocols80. This method 
addresses differences specific to GC methods, recently called normali-
zation to the total useful peak area81. Pooled QC data were found in a 
dense cluster when compared to CapScan and stool samples (Extended 
Data Fig. 1). During merging of datasets, metabolites detected by mul-
tiple assays were simplified to keep only data from one instrument, 
with preference for retaining data from the assay with lower technical 
variance (% coefficient of variance of pooled QC). Metabolites that were 
detected only in a single assay remained in the dataset, independent 
of the % coefficient of variance of pooled QC (Supplementary Table 1).  
Log10 transformation and zero-value imputation using one-tenth of 
the minimum reported peak height for non-detected features was 
performed for each metabolite before PCA and PLS-DA.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw mass spectrometry data are available on the Metabolomics Work-
bench (https://www.metabolomicsworkbench.org/) under studies 
ST002073, ST002075, ST002407, ST002409 and ST002411. The 16S and 
metagenomics sequencing reads are available on NCBI under BioPro-
ject PRJNA822660. Taxonomy was assigned using the Silva rRNA data-
base v.132 (https://www.arb-silva.de/). Mass spectra were annotated 
using MassBank of North America public libraries (https://massbank.
us/) and NIST20 libraries licensed from NIST. Scripts are archived at 
Zenodo (https://zenodo.org/record/7659119#.ZBGhMh_P23A).
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Extended Data Fig. 1 | Summary visualizations. a, Sample pH for intestinal 
sampling device types. Boxes represent ±1 interquartile range, and the line 
extends to the sample furthest from the median sample with a maximum 
extension of 1.5 interquartile ranges away from the median. All samples are 
plotted as individual points. (n = 274 total devices, Device type 1 = 75, Device 

type 2 = 70, Device type 3 = 69, Device type 4 = 60) ****: p < 0.0001 (Wilcoxon 
signed-rank). b, Principal Component Analysis (PCA) of normalized peak heights 
from the metabolomics dataset. QC samples are pooled intestinal contents from 
human intestinal tract samples.

http://www.nature.com/natmetab
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Extended Data Fig. 2 | The 80 metabolites most important for distinguishing 
intestinal device samples from stool samples as determined by partial least 
square discriminant analysis (PLS-DA). Samples and metabolites are organized 
on the x-axis and y-axis, respectively, by hierarchical clustering. Each sample 

is labeled by subject number and sample type (device type or stool). Color 
represents metabolite abundance, and the minimum and maximum values are 
set individually for each metabolite (row).

http://www.nature.com/natmetab
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Extended Data Fig. 3 | The top 80 metabolites most important for 
distinguishing device samples by type as determined by partial least square 
discriminant analysis (PLS-DA). Samples are organized on the x-axis by device 

type, and metabolites are organized on the y-axis according to hierarchical 
clustering. Color represents metabolite abundance, and the minimum and 
maximum values for color scale are set individually for each metabolite (row).

http://www.nature.com/natmetab
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Extended Data Fig. 4 | Comparison of levels of unannotated features in 
the proximal and distal upper intestines. Data from devices 1 + 2 (proximal) 
compared to data from devices 3+4 (distal). Significance was calculated using 
a linear mixed effect model (LMM). The horizontal dashed line represents the 
significance threshold of p < 0.05 (For exact p values see Supplementary Table 4). 
Circles indicate metabolites with non-significant differences after false discovery 
rate (FDR) correction or an effect size coefficient < ± 0.2. Diamonds indicate 

metabolites with significant (p<0.05) differences after FDR correction (n = 9,317) 
and effect size coefficient > ± 0.2. Only features detected in >50% of intestinal 
samples were included in this analysis (n = 9,317 features). Effect size coefficient is 
the slope estimated by the LMM, with positive (negative) coefficient representing 
a metabolite that is higher (lower) in the distal compared to proximal upper 
intestine. Vertical dashed lines are ±0.20 times the effect size coefficient.

http://www.nature.com/natmetab
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Extended Data Fig. 5 | Chemical classes that differed significantly between 
the proximal and distal upper intestine. Chemical enrichment statistics 
were performed by ChemRICH. Metabolites detected in >50% of intestinal 
samples were included in this analysis (n = 1182 metabolites). These results were 
visualized by separating classes by chemical lipophilicity (logP) and chemical 
class significance level of -log10(p-value). Red circles indicate that the chemical 

class was higher in the distal compared to proximal upper intestine, and blue 
indicates that the chemical class was lower in the distal compared to the proximal 
upper intestine. Purple indicates the chemical cluster has metabolites that are 
significantly higher as well as metabolites that are significantly lower in the distal 
compared to proximal upper intestine. Circle size represents the size of the 
chemical class.

http://www.nature.com/natmetab
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Extended Data Fig. 6 | Comparison of temporal and personal variation to 
spatial variation in the intestinal metabolome. a, The number of metabolites 
that differed significantly different between intestinal regions (device types) 
or between meals (sampling time points of four capsule devices) calculated 
for each subject by analysis of variance (Kruskal-Wallis). Only metabolites 
detected in >50% of samples for each subject were used for this analysis (n = 1182 
metabolites). Non-FDR-corrected p < 0.05 was used as a significance threshold. 

b, Multivariate discriminant analysis (PLS-DA) was performed to identify 
metabolites that were most important for distinguishing between subjects, or 
between regions. The 100 metabolites most important for distinguishing these 
groups were ranked by variable importance in projection score (VIP) and are 
categorized by chemical subclass. Chemical subclasses with <3 metabolites are 
reported as ‘Other’.

http://www.nature.com/natmetab
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Metabolites significantly different among device sets (sampling time points)A B

Extended Data Fig. 7 | The number of metabolites that were significantly 
different between intestinal regions (device types) or between meals 
(sampling time points of sets of 4 devices) were calculated for each subject 
by analysis of variance (Kruskal-Wallis). Only metabolites detected in >50% 
of samples for each subject were used for this analysis (n = 1182 metabolites). 
Non-FDR-corrected p < 0.05 was used as a significance value cutoff.  

a, Metabolites with significantly different abundance between intestinal 
regions for each subject, grouped by chemical class and the proportion of each 
chemical class. b, Metabolites with significantly different abundance between 
sampling time points, grouped by chemical class and the proportion of each 
chemical class.
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Extended Data Fig. 8 | Metabolites with strong inter-subject differences. 
Metabolites include bile pigments, fatty acid esters of hydroxy fatty acids 
(FAHFAs and AAHFAs), short chain fatty acids, sulfonolipids (SLs), and secondary 
bile acids. Data from all stool samples are shown, and samples are organized by 

subject. The two subjects that consumed antibiotics 1 and 5 months prior to this 
study are highlighted. Color bar represents metabolite abundance (peak height) 
or concentration (ng/mL) for bile acids. Minimum and maximum values were 
used to set the color scale for each metabolite (each row).

http://www.nature.com/natmetab


Nature Metabolism

Letter https://doi.org/10.1038/s42255-023-00777-z

Extended Data Fig. 9 | FAHFAs, AAHFAs, and fatty acids with strong inter-
subject abundance differences. Metabolites are fatty acid esters of hydroxy 
fatty acids (FAHFAs and AAHFAs) and fatty acids detected >50% of all device 
samples. All device samples are shown, and are organized by subject. Within the 

top (FAHFA) and lower (fatty acid) sections, the metabolites are ordered based 
on hierarchical clustering. Color bar represents metabolite abundance (peak 
height) or concentration (ng/mL) for bile acids. Minimum and maximum values 
were used to set the color scale for each metabolite (each row).

http://www.nature.com/natmetab
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Extended Data Table 1 | The 20 chemical classes that exhibited the most significant differences between the proximal and 
distal upper intestine

Significance was calculated by ChemRICH chemical enrichment statistics using univariate statistical results from an LMM as input (n = 1182 metabolites). Cluster size is the total number of 
metabolites within that chemical class.

http://www.nature.com/natmetab
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