Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteogenomic links to human metabolic diseases

An Author Correction to this article was published on 19 March 2023

This article has been updated

Abstract

Studying the plasma proteome as the intermediate layer between the genome and the phenome has the potential to identify new disease processes. Here, we conducted a cis-focused proteogenomic analysis of 2,923 plasma proteins measured in 1,180 individuals using antibody-based assays. We (1) identify 256 unreported protein quantitative trait loci (pQTL); (2) demonstrate shared genetic regulation of 224 cis-pQTLs with 575 specific health outcomes, revealing examples for notable metabolic diseases (such as gastrin-releasing peptide as a potential therapeutic target for type 2 diabetes); (3) improve causal gene assignment at 40% (n = 192) of overlapping risk loci; and (4) observe convergence of phenotypic consequences of cis-pQTLs and rare loss-of-function gene burden for 12 proteins, such as TIMD4 for lipoprotein metabolism. Our findings demonstrate the value of integrating complementary proteomic technologies with genomics even at moderate scale to identify new mediators of metabolic diseases with the potential for therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic associations of 2,923 proteins measured by the Olink Explore 1536 and Olink Explore Expansion platforms in 1,180 individuals.
Fig. 2: Protein–disease network.
Fig. 3: Stacked regional association plots for the multi-trait colocalization.
Fig. 4: Candidate causal gene assignment at reported GWAS loci using pQTLs.
Fig. 5: Allelic heterogeneity at protein-coding loci translates into distinct phenotypic consequences at IDUA.
Fig. 6: Phenotypic convergence of rare variant burden and common cis-pQTLs for protein-coding genes and TIMD4 as an example.

Similar content being viewed by others

Data availability

The EPIC-Norfolk data can be requested by bona fide researchers for specified scientific purposes via the study website (https://www.mrc-epid.cam.ac.uk/research/studies/epic-norfolk/). Data will either be shared through an institutional data sharing agreement or arrangements will be made for analyses to be conducted remotely without the need for data transfer.

Fine-mapped summary statistics for protein-coding regions can be found at https://doi.org/10.5281/zenodo.7576293. The genome-wide summary statistics resulting from the meta-analysis between discovery and replication samples (n = 2,887) can be downloaded for all protein targets included in this study from https://omicscience.org/.

GWAS for anthropometric phenotypes have been conducted using the UK Biobank resource (application no. 44448). Access to the UK Biobank genotype and phenotype data is open to all approved health researchers (http://www.ukbiobank.ac.uk/).

GWAS catalog summary statistics (v.1.0.2) were downloaded (March 2022) from https://www.ebi.ac.uk/gwas/api/search/downloads/studies_alternative. GTEx variant-gene cis-eQTL associations from each tissue were downloaded (January 2020) from https://console.cloud.google.com/storage/browser/gtex-resources. Open GWAS summary statistics were accessed via ieugwasr package in R v.3.6.0.

Code availability

Associated code and scripts for the analysis are available on GitHub (https://github.com/MRC-Epid/pGWAS_Olink_EPIC).

Change history

References

  1. Buniello, A. et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Barbeira, A. N. et al. Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. Genome Biol. 22, 49 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Moore, J. E. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Abell, N. S. et al. Multiple causal variants underlie genetic associations in humans. Science 375, 1247–1254 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suhre, K. et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat. Commun. 8, 14357 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Folkersen, L. et al. Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. PLoS Genet. 13, e1006706 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yao, C. et al. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat. Commun. 9, 3268 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gilly, A. et al. Whole-genome sequencing analysis of the cardiometabolic proteome. Nat. Commun. 11, 6336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Gudjonsson, A. et al. A genome-wide association study of serum proteins reveals shared loci with common diseases. Nat. Commun. 13, 480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Katz, D. H. et al. Whole genome sequence analysis of the plasma proteome in black adults provides novel insights into cardiovascular disease. Circulation 145, 357–370 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Png, G. et al. Mapping the serum proteome to neurological diseases using whole genome sequencing. Nat. Commun. 12, 7042 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pietzner, M. et al. Synergistic insights into human health from aptamer- and antibody-based proteomic profiling. Nat. Commun. 12, 6822 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pietzner, M. et al. Mapping the proteo-genomic convergence of human diseases. Science 374, eabj1541 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang, J. et al. Plasma proteome analyses in individuals of European and African ancestry identify cis-pQTLs and models for proteome-wide association studies. Nat. Genet. 54, 593–602 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun, B. B. et al. Genetic regulation of the human plasma proteome in 54,306 UK Biobank participants. Preprint at bioRxiv https://doi.org/10.1101/2022.06.17.496443 (2022).

  18. Folkersen, L. et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat. Metab. 2, 1135–1148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dhindsa, R. S. et al. Influences of rare protein-coding genetic variants on the human plasma proteome in 50,829 UK Biobank participants. Preprint at bioRxiv https://doi.org/10.1101/2022.10.09.511476 (2022).

  20. Enroth, S., Johansson, A., Enroth, S. B. & Gyllensten, U. Strong effects of genetic and lifestyle factors on biomarker variation and use of personalized cutoffs. Nat. Commun. 5, 4684 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Day, N. et al. EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br. J. Cancer 80, 95–103 (1999).

    PubMed  Google Scholar 

  22. Vujkovic, M. et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat. Genet. 52, 680–691 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spracklen, C. N. et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 582, 240–245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat. Genet. 54, 560–572 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    Article  PubMed  Google Scholar 

  26. McDonald, T. J. et al. A gastrin-releasing peptide from the porcine nonantral gastric tissue. Gut 19, 767–774 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McDonald, T. J. et al. Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem. Biophys. Res. Commun. 90, 227–233 (1979).

    Article  CAS  PubMed  Google Scholar 

  28. Ladenheim, E. E., Taylor, J. E., Coy, D. H., Moore, K. A. & Moran, T. H. Hindbrain GRP receptor blockade antagonizes feeding suppression by peripherally administered GRP. Am. J. Physiol. 271, R180–R184 (1996).

    CAS  PubMed  Google Scholar 

  29. Ladenheim, E. E. et al. Disruptions in feeding and body weight control in gastrin-releasing peptide receptor deficient mice. J. Endocrinol. 174, 273–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Persson, K. et al. Reduced GLP-1 and insulin responses and glucose intolerance after gastric glucose in GRP receptor-deleted mice. Am. J. Physiol. Endocrinol. Metab. 279, E956–E962 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Gutzwiller, J. P. et al. Effect of intravenous human gastrin-releasing peptide on food intake in humans. Gastroenterology 106, 1168–1173 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Mhalhal, T. R., Washington, M. C., Newman, K. D., Heath, J. C. & Sayegh, A. I. Combined gastrin releasing peptide-29 and glucagon like peptide-1 reduce body weight more than each individual peptide in diet-induced obese male rats. Neuropeptides 67, 71–78 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Frullanti, E. et al. Meta and pooled analyses of FGFR4 Gly388Arg polymorphism as a cancer prognostic factor. Eur. J. Cancer Prev. 20, 340–347 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Chou, C. H. et al. Functional FGFR4 Gly388Arg polymorphism contributes to oral squamous cell carcinoma susceptibility. Oncotarget 8, 96225–96238 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xiong, S. W. et al. Functional FGFR4 Gly388Arg polymorphism contributes to cancer susceptibility: evidence from meta-analysis. Oncotarget 8, 25300–25309 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ulaganathan, V. K., Sperl, B., Rapp, U. R. & Ullrich, A. Germline variant FGFR4 p.G388R exposes a membrane-proximal STAT3 binding site. Nature 528, 570–574 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Shin, D. J. & Osborne, T. F. FGF15/FGFR4 integrates growth factor signaling with hepatic bile acid metabolism and insulin action. J. Biol. Chem. 284, 11110–11120 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ge, H. et al. Fibroblast growth factor receptor 4 (FGFR4) deficiency improves insulin resistance and glucose metabolism under diet-induced obesity conditions. J. Biol. Chem. 289, 30470–30480 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, X. et al. Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice. Proc. Natl Acad. Sci. USA 106, 14379–14384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang, X. et al. FGFR4 prevents hyperlipidemia and insulin resistance but underlies high-fat diet-induced fatty liver. Diabetes 56, 2501–2510 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Lutz, S. Z. et al. The Gly385(388)Arg polymorphism of the FGFR4 receptor regulates hepatic lipogenesis under healthy diet. J. Clin. Endocrinol. Metab. 104, 2041–2053 (2019).

    Article  PubMed  Google Scholar 

  42. Micha, R. et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ 348, g2272 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lappalainen, T. & MacArthur, D. G. From variant to function in human disease genetics. Science 373, 1464–1468 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Cencioni, M. T., Mattoscio, M., Magliozzi, R., Bar-Or, A. & Muraro, P. A. B cells in multiple sclerosis - from targeted depletion to immune reconstitution therapies. Nat. Rev. Neurol. 17, 399–414 (2021).

    Article  PubMed  Google Scholar 

  45. Granqvist, M. et al. Comparative effectiveness of rituximab and other initial treatment choices for multiple sclerosis. JAMA Neurol. 75, 320–327 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Morris, J. A. et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat. Genet. 51, 258–266 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Medina-Gomez, C. et al. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am. J. Hum. Genet. 102, 88–102 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lotta, L. A. et al. Association of genetic variants related to gluteofemoral vs abdominal fat distribution with type 2 diabetes, coronary disease, and cardiovascular risk factors. JAMA 320, 2553–2563 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Acosta-Herrera, M. et al. Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases. Ann. Rheum. Dis. 78, 311–319 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Robertson, C. C. et al. Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes. Nat. Genet. 53, 962–971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Clarke, L. A. et al. Genotype-phenotype relationships in mucopolysaccharidosis type I (MPS I): insights from the International MPS I Registry. Clin. Genet. 96, 281–289 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuehn, S. C. et al. Impaired bone remodeling and its correction by combination therapy in a mouse model of mucopolysaccharidosis-I. Hum. Mol. Genet. 24, 7075–7086 (2015).

    CAS  PubMed  Google Scholar 

  53. Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Szustakowski, J. D. et al. Advancing human genetics research and drug discovery through exome sequencing of the UK Biobank. Nat. Genet. 53, 942–948 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12, 581–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Kathiresan, S. et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat. Genet. 41, 56–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Lemke, G. How macrophages deal with death. Nat. Rev. Immunol. 19, 539–549 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Kuchroo, V. K., Dardalhon, V., Xiao, S. & Anderson, A. C. New roles for TIM family members in immune regulation. Nat. Rev. Immunol. 8, 577–580 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Fazio, S. et al. Leukocyte low-density lipoprotein receptor (LDL-R) does not contribute to LDL clearance in vivo: bone marrow transplantation studies in the mouse. J. Lipid Res. 38, 391–400 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Magalhaes, M. S. et al. Role of Tim4 in the regulation of ABCA1. Nat. Commun. 12, 4434 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alsheikh, A. J. et al. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med. Genom. 15, 74 (2022).

    Article  Google Scholar 

  63. Porcu, E. et al. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. Nat. Commun. 10, 3300 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gudmundsson, S. et al. Addendum: the mutational constraint spectrum quantified from variation in 141,456 humans. Nature 597, E3–E4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. Limited overlap of eQTLs and GWAS hits due to systematic differences in discovery. Preprint at bioRxiv https://doi.org/10.1101/2022.05.07.491045 (2022).

  67. Akbari, P. et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science 373, eabf8683 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Zhong, W. et al. Next-generation plasma proteome profiling to monitor health and disease. Nat. Commun. 12, 2493 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Assarsson, E. et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 9, e95192 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. B Stat. Methodol. https://doi.org/10.1111/rssb.12388 (2020).

  71. Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale data. Nat. Genet. 51, 1749–1755 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Consortium, U. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).

    Article  Google Scholar 

  75. Elsworth, B. et al. The MRC IEU OpenGWAS data infrastructure. Preprint at bioRxiv https://doi.org/10.1101/2020.08.10.244293 (2020).

  76. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. GTEx Consortium. The GTEx Consortium Atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article  Google Scholar 

  79. Foley, C. N. et al. A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits. Nat. Commun. 12, 764 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pulit, S. L. et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet. 28, 166–174 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The EPIC-Norfolk study (https://doi.org/10.22025/2019.10.105.00004) received funding from the Medical Research Council (MR/N003284/1 MC-UU_12015/1 and MC_UU_00006/1, to N.J.W.) and Cancer Research UK (C864/A14136. to N.J.W.). The genetics work in the EPIC-Norfolk study was funded by the Medical Research Council (MC_PC_13048, to N.J.W.). We are grateful to all the participants who have been part of the project and to the many members of the study teams at the University of Cambridge, including the EPIC-Norfolk investigators, the study coordination team, the epidemiology field, data and laboratory teams who have enabled this research. This work was supported in part by MRC Rapid Call (MC_PC_21036, to N.J.W. and C.L.) and HDRUK Multi-Omics (G107794, to C.L.) grants and the UKRI/NIHR Strategic Priorities Award in Multimorbidity Research for the Multimorbidity Mechanism and Therapeutics Research Collaborative (MR/V033867/1, to C.L.). Proteomics measurements were also supported by a collaboration agreement between the University of Cambridge and Olink. We thank P. Pettingill, I. Grundberg and J. Kenyon for their support with QC of the proteomic data. M.K. is supported by Gates Cambridge Trust. J.C.-Z. is supported by a 4-year Wellcome Trust PhD Studentship and the Cambridge Trust. C.L., E.W., M.P., N.D.K. and N.J.W. are funded by the Medical Research Council (MC_UU_00006/1). For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) license to any author accepted manuscript version arising. The authors thank the MVP staff, researchers and volunteers, who contributed to MVP and especially participants who previously served their country in the military and generously agreed to enroll in the study (see https://www.research.va.gov/mvp/ for more details). We thank F. Paul, A. Hingorani and S. Gordon for sharing their expertise on disease-specific examples. We thank Gabi Kastenmüller and Maria Anna Wörheide for their support in making genome-wide summary statistics from this study available on omicscience.org.

Author information

Authors and Affiliations

Authors

Contributions

M.K., M.P. and C.L. designed the analysis and drafted the manuscript. M.K., M.P. and E.W. performed the bioinformatics analyses. J.C.-Z. and N.D.K. performed QC and data preparation of the proteomic data. S.L. contributed to the interpretation and curation of disease examples. N.J.W. is the principal investigator of the EPIC-Norfolk study. All authors contributed to the interpretation of the results and critically reviewed the manuscript.

Corresponding author

Correspondence to Claudia Langenberg.

Ethics declarations

Competing interests

E.W. is now an employee of AstraZeneca. All other authors have no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Åsa Johansson, Jochen Schwenk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Isabella Samuelson, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Supplementary Figs. 1 and 2 and descriptions of Supplementary Tables 1–9 and Supplementary Data.

Reporting Summary

Supplementary Tables 1–9

Supplementary Table 1. Demographics of the EPIC-Norfolk study. Supplementary Table 2. List of diseases for discovery (n = 425) and replication (n = 706) cases. Supplementary Table 3. Independent credible sets for protein targets at protein-encoding loci (±500 kb) identified by fine-mapping. Supplementary Table 4. Variance explained by all cis-pQTLs for each protein with at least one cis-pQTL identified in this study. Supplementary Table 5. Results from colocalization analysis with gene eQTLs from GTEx v.8 release at the protein-encoding loci (±500 kb). Supplementary Table 6. cis-pQTLs with sex-differential effects at a Bonferroni-corrected significance threshold (P < 0.05 / 1,553). Supplementary Table 7. Protein-target–phenotype pairs with strong evidence of colocalization at the protein-encoding locus (±500 kb). Supplementary Table 8. pQTL mapping of candidate causal genes at previously reported GWAS loci from GWAS catalog. Supplementary Table 9. Phenotypic convergence between pQTL colocalization and rare LoF gene-burden associations.

Supplementary Data

Protein–disease network as a Cytoscape session. Results from phenome-wide colocalization at protein-coding loci (±500 kb) are shown. For simplicity, only proteins with at least one binary outcome (mainly diseases) association are included. Proteins are presented by a square, binary outcomes are presented as large circles and continuous outcomes are presented as small circles. The color for the circles indicates the trait category. Edges between proteins and phenotypes represent strong evidence for a shared genetic signal (PP > 80% and LD between regional sentinel variants >0.8). Effect directions are indicated by the line type (solid, higher protein abundance, increased risk; dashed, higher protein abundance, reduced risk) and are derived based on the lead cis-pQTL at the corresponding locus. The full list of colocalization results is in Supplementary Table 7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koprulu, M., Carrasco-Zanini, J., Wheeler, E. et al. Proteogenomic links to human metabolic diseases. Nat Metab 5, 516–528 (2023). https://doi.org/10.1038/s42255-023-00753-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00753-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing