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Temporal segregation of biosynthetic 
processes is responsible for metabolic 
oscillations during the budding yeast  
cell cycle

Vakil Takhaveev    1,2, Serdar Özsezen1,3, Edward N. Smith    1, Andre Zylstra    1, 
Marten L. Chaillet    1,4, Haoqi Chen1, Alexandros Papagiannakis    1,5, 
Andreas Milias-Argeitis1 & Matthias Heinemann    1 

Many cell biological and biochemical mechanisms controlling the 
fundamental process of eukaryotic cell division have been identified; 
however, the temporal dynamics of biosynthetic processes during the 
cell division cycle are still elusive. Here, we show that key biosynthetic 
processes are temporally segregated along the cell cycle. Using budding 
yeast as a model and single-cell methods to dynamically measure metabolic 
activity, we observe two peaks in protein synthesis, in the G1 and S/G2/M 
phase, whereas lipid and polysaccharide synthesis peaks only once, 
during the S/G2/M phase. Integrating the inferred biosynthetic rates 
into a thermodynamic-stoichiometric metabolic model, we find that this 
temporal segregation in biosynthetic processes causes flux changes in 
primary metabolism, with an acceleration of glucose-uptake flux in G1 
and phase-shifted oscillations of oxygen and carbon dioxide exchanges. 
Through experimental validation of the model predictions, we demonstrate 
that primary metabolism oscillates with cell-cycle periodicity to satisfy 
the changing demands of biosynthetic processes exhibiting unexpected 
dynamics during the cell cycle.

Cell growth and division are fundamental biological processes. While 
we have a solid account of the cell biological and biochemical mecha-
nisms controlling the cell division cycle, we know much less about 
the temporal dynamics of biosynthesis and primary metabolism that 
drive cell growth during the cell cycle. Whereas DNA biosynthesis is 
known to be temporally constrained within the S phase, the dynamics  
of other major biosynthetic processes, such as protein and lipid 

syntheses, remain unclear; are biosynthetic processes constantly  
active throughout the whole cell cycle? If their activities change, do 
the rates of different biosynthetic processes alter in the same manner?  
Such knowledge is essential to uncover the mechanisms behind 
cell-growth regulation, whose defects are associated with disease1,2.

Currently, protein synthesis is considered to increase with  
either exponential or constant rate throughout the yeast cell cycle,  
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and noticed that the timing of the second peak is more variable com-
pared to the timing of the first (Fig. 1b and Extended Data Fig. 1g). Thus, 
the production rate of a heterologous promoter-controlled fluorescent 
protein, reflecting protein biosynthesis activity, has two waves during 
the cell cycle.

As this finding goes against the prevailing notion that protein bio-
synthesis dynamics are either exponential or constant during the cell 
cycle3–7, we aimed to assess the protein biosynthesis dynamics also with 
a second, independent method. Therefore, we devised a new technique 
(the stop-and-respond method) in which we exploited our capability to 
dynamically monitor the NAD(P)H level in single cells. Specifically, we 
abruptly halt the activity of a particular enzyme or process, for instance 
with a chemical inhibitor, in cells asynchronously growing in the micro-
fluidic device, and simultaneously measure each cell’s instantaneous 
response to this perturbation in terms of the NAD(P)H dynamics. We 
assume that, if the perturbed enzyme or process was inactive in a cell at 
the moment of the inhibitor addition, then this would not result in any 
deviation of the NAD(P)H level from its normal trajectory during the 
cell cycle. By contrast, if the perturbed enzyme or process was active 
at the moment of the inhibitor addition, then the enzyme’s substrates 
would accumulate and the products would be depleted, with these 
changes further propagating to up- and downstream reactions, some 
of which likely involve NAD(P)H. Thus, we argue that the magnitude of 
the perturbation-induced deviation of the NAD(P)H level from its nor-
mal cell-cycle related trajectory could serve as a proxy of the enzyme’s 
activity at the moment of the inhibitor addition.

We applied the stop-and-respond method to determine the  
protein biosynthesis activity throughout the cell cycle by using 
cycloheximide (CYH) to halt translation. Specifically, we added CYH 
to asynchronously growing cells, measured the derivative of NAD(P)
H level in individual cells upon the perturbation, and subtracted from 
it the derivative of NAD(P)H at the same cell-cycle phase before CYH 
addition (Fig. 1c). The difference between these two derivatives, reflect-
ing the perturbation-associated and normal behavior of NAD(P)H,  
was considered as NAD(P)H response to CYH in an individual cell at a 
certain cell-cycle phase. From such single-cell values, by employing 
Gaussian process regression20, we determined the average cell-cycle 
pattern of NAD(P)H response to CYH. The magnitude of the NAD(P)
H response at each cell-cycle phase is assumed to reflect the activity 
of protein biosynthesis at that phase. Here, we discovered that the 
cell-cycle pattern of NAD(P)H response to CYH (Fig. 1d) is highly similar 
to what we found with the sfGFP intensity and cell-volume measure-
ments (Fig. 1a); there are two waves of protein synthesis activity during 
the cell cycle.

The agreement between two independent methods to deter-
mine protein production dynamics, first, validated our new stop- 
and-respond method to infer metabolic activity during the cell cycle. 
Second, both methods revealed that protein biosynthesis has two 
activity waves during the cell cycle, one peaking around START and 
the other in the middle of S/G2/M, opposite to the current notion of 
protein biosynthesis dynamics3–7, but in line with the recent finding 
of cell-cycle-dependent activity of TORC1 and PKA toward ribosome 
biogenesis21. The protein biosynthesis activity has a minimum around 
budding as well as 10–20 min before mitotic exit (Fig. 1a,d), which is 
close to karyokinesis (Extended Data Fig. 2) and may be analogous to 
the mitotic block of protein biosynthesis in animal cells22,23.

Having found unexpected temporal behavior in protein bio-
synthesis, we aimed to determine whether dynamics exist also in the 
biosynthesis of other macromolecular classes. To investigate lipid 
biosynthesis, we again used the stop-and-respond method; this time 
with the inhibitor cerulenin (CER) targeting the fatty acid synthase24. 
Here, we found that the dynamic NAD(P)H response to the inhibitor, 
now reporting lipid biosynthesis activity, is also not constant during 
cell cycle. In contrast to protein synthesis, we found lipid biosynthesis 
to be low between START and budding and to peak in the middle of  

as determined by population-level studies with radioactive labe-
ling3–5 and single-cell analyses6,7. Recently, however, we found that 
the production rate of green fluorescent protein (GFP) controlled by 
the endogenous TEF1 promoter peaks in G1 (ref. 8), suggesting that 
protein biosynthetic activity could actually be non-monotonic during 
the cell cycle. This finding would be consistent with an observed peak of 
ribosomal protein abundance in G1 (ref. 9), although others have found 
no such dynamics10. Likewise, the expression of genes associated with 
ribosome biogenesis and translation has also been observed peaking in 
G1 (refs. 10,11); however, single-cell RNA-sequencing (RNA-seq) studies 
have reported either only a small increase of ribosomal protein mRNA 
in G1 (ref. 12) or no notable differences over the cell cycle13. As for other 
macromolecule classes, such as lipids and nucleic acids, their biosyn-
thesis has also been suggested to accelerate during certain phases 
of the cell cycle according to recent multi-omic studies9,10. Yet, the 
molecular abundances measured in these studies provide only indirect 
evidence for actual biosynthetic rates. Thus, the temporal dynamics 
of biosynthetic activities during the cell cycle are still largely elusive. 
Answering this question will likely require the measurement of rates in 
a dynamic, cell-cycle-resolved manner, which so far poses enormous 
technical challenges.

Here, using budding yeast as a model and employing dynamic 
single-cell fluorescence microscopy with a new stop-and-respond 
method, we discovered that the activities of protein, lipid and polysac-
charide biosynthesis are neither exponential nor constant during the 
cell cycle. Specifically, we found that protein biosynthesis exhibits 
two waves of activity per cell cycle, whereas the activities of lipid and 
polysaccharide biosynthesis are low during the first wave of protein 
biosynthesis in G1 but high during the second wave in S/G2/M. We con-
verted the discovered patterns of biosynthetic activities into absolute 
units via a mathematical model of cell-mass dynamics, integrated them 
into a thermodynamic-stoichiometric metabolic model and thereby 
inferred the cell-cycle dynamics of the primary metabolic fluxes. As we 
could experimentally validate the inferred metabolic flux changes, this 
provided additional evidence for the discovered dynamic patterns of 
the biosynthetic activities and also allowed us to conclude that the tem-
poral segregation in the biosynthetic processes must be responsible 
for the hour-scale oscillations in primary metabolism. Our work shows 
that cell growth during the cell cycle is an aggregate of temporally seg-
regated biosynthetic and primary metabolic processes, which provides 
fundamental insights into the very basics of cellular physiology.

Results
Biosynthesis of macromolecules is temporally segregated
To determine the activity of protein biosynthesis during the cell cycle, 
we expressed superfolder GFP (sfGFP) from a heterologous, and hence 
unregulated, promoter (tetO7) such that sfGFP production solely 
depends on the activity of the protein biosynthesis machinery. We 
recorded sfGFP fluorescence intensity and cell volume over time in sin-
gle cells growing in a microfluidic device14,15 and derived the production 
rate of sfGFP via a mathematical model assuming first-order kinetics of 
sfGFP maturation (Extended Data Fig. 1a–d). To define cell-cycle phases, 
we used the nuclear entry of mCherry-labeled Whi5 to denote mitotic 
exit (beginning of G1) and the subsequent Whi5 re-localization to the 
cytoplasm to indicate START, as conducted previously16,17. We used the 
moment of bud emergence to demark the beginning of S phase18,19.

Here, we found that the production rate of sfGFP exhibits a 
two-wave behavior during the cell cycle (Fig. 1a and Extended Data  
Fig. 1d–f). The first peak occurs around START, similar to what we 
recently found with the endogenous TEF1 promoter8. The sfGFP pro-
duction rate reaches a minimum around budding, rises to a second peak 
in the middle of S/G2/M and displays a further minimum just before 
mitotic exit. By scrutinizing individual cell-cycle traces, we confirmed 
that both waves of increased protein biosynthesis appear in the major-
ity of cell cycles, instead of arising from separate cell subpopulations, 
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S/G2/M (Fig. 2a). Notably, we identified a similar temporal behavior in 
the derivative of the cell surface area (Fig. 2b), which, assuming a cor-
relation between the lipid mass in the plasma membrane and the total 
cellular lipid mass, can be considered a proxy for lipid biosynthesis 
activity. Together, these data suggest that lipid biosynthesis has the 
lowest activity in G1, when protein biosynthesis is highly active, but 
that both biosynthetic processes are active in the middle of S/G2/M 
(Figs. 1a,d and 2a,b).

Polysaccharides represent another substantial biomass com-
ponent. Specifically, the cell wall constituents β-glucans, mannan 
and chitin can account for more than a third of the yeast dry weight25, 
whereas trehalose and glycogen storage can consist of more than 20% 

of the dry weight under some conditions26. To estimate the activity 
of polysaccharide biosynthesis, we again used the stop-and-respond 
method; now not with an inhibitor, but with the auxin-inducible degron 
system27,28 to dynamically deplete the enzyme Ugp1 that synthesizes 
UDP-glucose, the precursor for β-glucans, trehalose and glycogen. 
Here, we found that the NAD(P)H response to auxin-induced Ugp1 
depletion is low in G1 but high in S/G2/M (Fig. 2c), whereas the response 
to auxin in a control strain does not show these dynamics (Extended 
Data Fig. 3). Because there is only minor production of trehalose and 
glycogen under the high-glucose conditions investigated here29–31, 
the recorded NAD(P)H response to Ugp1 depletion must primarily 
reflect the activity of the synthesis of β-glucans, which are the major 
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Fig. 1 | Protein biosynthesis has two activity waves during the cell cycle.  
a,b, Heterologous promoter (tetO7)-expressed sfGFP production rate computed 
from dynamic single-cell fluorescence and volume measurements, incorporating 
sfGFP maturation (Extended Data Fig. 1a–d). Cell-cycle traces (line-connected 
markers) of sfGFP production rate are summarized by posterior mean (thick solid 
curve) and region of high posterior probability (shaded area, mean ± s.d.) of a 
Gaussian process regression model with a radial basis function (RBF) kernel (a). 
AU, arbitrary units; b/w, between. Dashed and dotted thick curves indicate 
posterior means obtained via the same data analysis pipeline in two additional 
replicate experiments (number and average duration of analyzed cell cycles 
indicated). To align cell-cycle traces and calculate cell-cycle phases, we used as 
reference points mitotic exit (ME), START, budding (BUD) and next ME, whose 
average timing in three replicates is indicated. sfGFP production rate in cell 
cycles presented separately (b). Cell-cycle traces from the first replicate in a  
were interpolated, sampled at 17 evenly spaced phase points and min–max 
normalized. c, Measuring protein biosynthesis activity with the stop-and-respond 

method by determining single-cell NAD(P)H response to CYH, which is the 
difference between NAD(P)H derivative upon CYH addition and the median 
NAD(P)H derivative at the same phase (θcBUD) in the unperturbed condition.  
In CYH experiments, this difference is multiplied by −1 so that metabolic 
response is on average non-negative. Markers indicate raw mother-cell NAD(P)H 
fluorescence; curve indicates smoothing (Savitzky–Golay filter). d, NAD(P)H 
response to CYH has two peaks during the cell cycle. Markers indicate single cells 
analyzed as in c from one replicate experiment. Solid curve and shaded area 
indicate posterior mean and region of high posterior probability (mean ± s.d.) of 
a Gaussian process regression summarizing the marker values via an RBF kernel. 
Dashed curve indicates posterior mean obtained via the same data analysis 
pipeline in the second replicate experiment (number of analyzed cells indicated). 
Vertical lines indicate mean phases of ME, START and BUD in two replicate 
experiments. The phase of expected ME is the mean cell-cycle duration before 
CYH addition. We analyzed cells that had produced at least two buds before the 
perturbation (not newborn cells).
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component of the cell wall32. Indeed, the response to Ugp1 depletion 
is similar to the above reported derivative of the cell surface area  
(Fig. 2b), which can be considered a proxy for the rate of cell-wall con-
struction. Thus, akin to lipids, cell wall polysaccharides are predomi-
nantly synthesized in S/G2/M when the bud emerges and grows.

Through Bayesian and frequentist model selection criteria20, we 
confirmed that the oscillatory functions, namely two waves of pro-
tein biosynthesis activity and one wave of lipid and polysaccharide 
biosynthesis activity during the cell cycle, explain the experimental 
data better and have higher predictive performance as compared to 
linear, including constant-linear functions (Supplementary Table 5).

Together, these data demonstrate that the biosynthesis of pro-
teins, lipids and polysaccharides is temporally segregated during 
the cell cycle. Most notably, while protein biosynthesis activity peaks 
twice, the activities of lipid and polysaccharide biosynthesis peak only 
once in S/G2/M.

Biosynthetic rates are inferred with model-based analysis
Cell growth during the cell cycle is often viewed only in terms of inte-
gral variables such as cell size or cell mass; however, our finding of a  
temporal segregation among the different biosynthetic activities  
suggests that cell growth should be considered in a more differentiated 
manner involving individual biosynthetic processes. To this end, we 
next set out to quantify the contribution of each major biosynthetic 
process to the overall rate of cell-mass increase at each phase through-
out the cell cycle.

Here, the challenge was to translate our determined dimension-
less biosynthetic activities into rates expressed in absolute units 
(pg min−1) and to infer the cell-cycle-dependent rates in the synthesis 
of the remaining major biomass components, namely DNA and RNA. 
For this, we formulated an algebraic model (Fig. 3a) that describes the 
development of total cell mass over the cell cycle as a function of the 
pg min−1-expressed biosynthetic rates. The cell-mass development over 
the cell cycle (Fig. 3a; ‘cell-mass estimate’) was defined by these tempo-
rally changing biosynthetic rates, which were determined via the dimen-
sionless biosynthesis patterns (Fig. 3a, left) multiplied by conversion 
factors to obtain absolute units and via other constraints (see below). 
By fitting this model to cell-cycle-resolved cell-mass data (Fig. 3a,  
‘empirical cell mass’), obtained from our dynamic cell-volume meas-
urements (Extended Data Fig. 4) and cell-cycle-dependent cell-density 

values33, we could infer the absolute cell-cycle-resolved biosynthetic 
rates (Fig. 3b).

Specifically, our model describing the dynamics of cell mass  
during the cell cycle has the following features and assumptions  
(Supplementary Methods): (1) DNA synthesis was assumed to occur 
at a constant rate between budding18,19 and karyokinesis. Timing of 
budding and karyokinesis was obtained from microscopic experi-
ments; budding is clearly visible under bright-field illumination and 
karyokinesis was identified as the rapid decrease of tagged histone 
protein Hta2–mRFP1 in the mother cell (Extended Data Fig. 2). (2) RNA 
synthesis rate was considered as the sum of rRNA, the most abundant 
RNA type, and non-rRNA-synthesis rates. Non-rRNA was assumed to be 
produced at a constant rate, as was rRNA between budding and karyoki-
nesis. rRNA synthesis rate was considered proportional to the protein 
translation rate from ~15 min before mitotic exit through to budding. 
This assumption was based on transcriptomics data showing that 
rRNA processing and ribosome biogenesis gene expression peaks once 
during the cell cycle in G1 (refs. 11,34). (3) The rates of protein, lipid and 
polysaccharide biosynthesis in pg min−1 were estimated by multiplying 
their respective dimensionless activities (Fig. 3a, left) with conversion 
factors determined in the fitting. The dimensionless activities were 
allowed to move vertically (to undergo geometric translation) within 
their uncertainty bounds. (4) The mass of each biomass component at 
every given time point was calculated as the sum of the component’s 
initial mass and the integral of its biosynthetic rate over the time dura-
tion from the latest cell division. The initial mass of protein and RNA 
was defined by their masses at cell division multiplied by the measured 
volume fraction of the mother-cell compartment relative to the whole 
cell at that time point. For the lipid and polysaccharide initial masses, 
the cell-surface-area fraction of the mother compartment was used 
instead. (5) Finally, the dynamic cell-mass estimate was calculated 
using the masses of all five macromolecule classes and the water in their 
hydration shells, whose size we constrained according to literature35–39, 
as well as using the mass of free water and metabolites scaled with the 
measured cell volume. Previously reported values on cell-cycle-average 
mass fractions of major biomass components at high growth rates40 
and water41,42 were used to constrain the model.

We then used mathematical optimization to minimize the dif-
ference between the empirical cell mass dynamics, as determined by 
the cell volume and density and the model-based dynamic cell-mass 
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Fig. 2 | The activities of lipid and polysaccharide biosynthesis change during 
the cell cycle, peaking in S/G2/M. a, The NAD(P)H response to CER varies during 
the cell cycle, suggesting that lipid biosynthesis activity peaks in S/G2/M. The 
plot is built analogously to Fig. 1d. The solid curve and shaded area represent 
the posterior mean and the region of high posterior probability (mean ± s.d.) 
of a Gaussian process regression summarizing the values of the markers with 
the help of an RBF kernel. The dashed curve is the posterior mean obtained via 
the same data analysis pipeline from a replicate experiment, for which we do 
not show the single-cell values here for the sake of simplicity but indicate the 
number of analyzed cells. b, The derivative of the cell surface area changes during 

the cell cycle, similarly to the activity of lipid biosynthesis in a. The plot is built 
analogously to Fig. 1a and summarizes 25 cell-cycle traces. The derivative was 
calculated in smoothed single-cell traces of cell surface area with cytokinesis-
associated discontinuity tackled by the y axis geometric translation of the data 
of neighboring cell cycles. c, The NAD(P)H response to the auxin-induced Ugp1 
depletion changes during the cell cycle, suggesting that cell-wall-polysaccharide 
biosynthesis activity peaks in S/G2/M. The synthetic auxin 1-naphthaleneacetic 
acid (NAA) was used to induce the Ugp1 depletion. The plot is built analogously 
to a and Fig. 1d. The NAD(P)H response to NAA in the control strain lacking the 
degron tag is essentially constant during the cell cycle (Extended Data Fig. 3).
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estimate. With this optimization, we inferred the biosynthetic rates 
for each of the five major biomass components, namely proteins, 
lipids, polysaccharides, DNA and RNA in absolute terms, expressed in 
pg min−1 (Fig. 3b). A profile likelihood analysis43 confirmed structural 
identifiability of the model parameters defining these rates (Extended 
Data Fig. 5).

The obtained rates allowed us to quantitatively compare the  
different biosynthetic processes among each other. For instance,  
protein biosynthesis was found to have the highest mass-increase rate 
values of all biosynthetic processes with its lowest value still being 
higher than the maximum of polysaccharide biosynthesis (Fig. 3b). 
Summing up the inferred biosynthetic rates, we found that the total 

biomass production rate has two peaks during the cell cycle (Fig. 3c).  
Dividing the individual biosynthetic rates by the total biomass  
production rate, we obtained the cell-cycle-phase-dependent rela-
tive contribution of each biosynthetic process to the total biomass  
production (Fig. 3d). The relative contribution of protein biosynthe-
sis to the total biomass production was found to be higher around  
mitotic exit and throughout G1 compared to the biggest part of  
S/G2/M (Fig. 3d), when most of the biosynthetic processes peak  
(Fig. 3b). Thus, our model-based analysis revealed the relative contri-
bution of the individual biosynthetic processes to cell growth during 
the cell cycle, which is apparently much more variable and dynamic 
than previously thought.
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composition; and (3) infers the biosynthetic rates of five major biomass 
components expressed in absolute units (pg min−1). To implement this inference, 
we minimize the distance between the cell-mass estimate, which is a function 
of the discovered biosynthetic patterns (Figs. 1d and 2a,c) and the empirical 
cell mass obtained by multiplying our dynamic cell-volume measurements 
(Extended Data Fig. 4) and cell-density measurements33 at corresponding cell-
cycle phases. For proteins, lipids and polysaccharides, we show mean ± s.d. of 
biosynthetic activities measured in two replicate experiments (left). Data are 
from one experiment and shown as mean ± s.d. (right: volume). Model equations 

are provided in Supplementary Methods. b, The inferred biosynthetic rates  
of five major biomass components expressed in absolute units (pg min−1).  
c, Inferred total biomass production rate rbiomass(t) during the cell cycle, computed 
by summing up the rates of protein, RNA, lipid, polysaccharide and DNA 
biosynthesis in b at each phase of the cell cycle. d, Inferred relative contributions 
of biosynthetic process to the total biomass production throughout the cell 
cycle. To calculate the relative contributions, we divided individual biosynthetic 
rates in b by the total biomass synthesis rate rbiomass(t) in c at each phase of the cell 
cycle. For data presentation for cell-mass estimate in a and all variables in b–d, an 
error band shows the minimum–maximum range of an inferred variable among 
eight model optimizations covering all combinations of replicate measurements 
of protein, lipid and polysaccharide biosynthesis (a, left) as inputs; a thick line 
shows an inferred variable in the model optimization that uses the input dataset 
where two replicate measurements of each macromolecule biosynthesis were 
averaged.
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Altering biosynthetic rates change primary metabolic fluxes
Next, we hypothesized that the uncovered temporal segregation of 
the biosynthetic processes could be the reason why metabolism shows 
dynamics during the cell cycle, which were observed in single cells in the 
form of hour-scale-oscillating cofactor levels and referred to as meta-
bolic oscillations44. Our approach to test this hypothesis was the fol-
lowing: we used a recently developed thermodynamic-stoichiometric 
model of yeast metabolism45 to infer the flux dynamics in primary 
metabolism that are necessary to satisfy the cell-cycle-dependent 
requirements of the biosynthetic pathways. If the respective 
model-inferred metabolic flux dynamics could be supported by inde-
pendent experimental observations, then this would suggest that the 
metabolic dynamics, as observed in primary metabolism of yeast, are 
indeed in place to meet the identified cell-cycle-dependent biosyn-
thetic rates.

To infer the metabolic flux dynamics during the cell cycle as 
required to meet the temporally changing biosynthetic dynamics, we 
first had to adjust the earlier developed thermodynamic-stoichiometric 
metabolic model. Specifically, we had to split the model’s biomass 
equation into five separate equations, each respectively defining  
the production of proteins, lipids, cell-wall polysaccharides, RNA  
and DNA, and to introduce a new biomass equation that combines  
these five major biomass components into the final biomass as the 
end product. After a regression analysis to determine the model’s 
parameters (standard Gibbs energies of reactions) as conducted  
previously45, we had a stoichiometric-thermodynamic metabolic 
network model with which we could perform flux balance analysis 
(FBA)-type predictions for each moment in the cell cycle.

For these simulations, we used the momentary relative contri-
butions of the biosynthetic rates to the total biomass production 
(Fig. 3d), which we obtained by relating the individual biosynthetic 
rates (Fig. 3b) to the total biomass production rate (Fig. 3c). We used 
these momentary relative contributions to define the stoichiometric 
coefficients of the respective biomass components in the model’s 
biomass equation in a cell-cycle-dependent manner. For different 
discrete moments during the cell cycle, we assumed a quasi-steady 
state and ran FBA simulations, where we maximized the flux through 
the respectively defined biomass equation, while the model was con-
strained by the earlier identified upper limit in the cellular Gibbs energy 
dissipation rate45. As a global validation of the simulation results, we 
used the predicted cell-cycle-resolved physiological parameters, then 
computed from them the population-level (cell-cycle average) yield 
coefficients and compared these to experimentally measured ones. 
Supporting the validity of the simulations, we found that the computed 
values showed good agreement with those measured in a batch culture 
grown on high glucose, in particular reflecting the globally fermenta-
tive mode of metabolism (Fig. 4a).

Focusing on the inferred cell-cycle-resolved fluxes, we found that 
the glucose-uptake flux (Fig. 4b) and glycolytic flux (Extended Data  
Fig. 6a) markedly change during the cell cycle; these fluxes are high 
in G1, drop after budding and stay low for the largest part of S/G2/M, 
before they rise again toward mitotic exit. High ethanol excretion 
fluxes occur during the phases of high glucose uptake (Fig. 4b). Oxygen 
uptake flux (Fig. 4b) as well as the flux through the electron transport 
chain (Extended Data Fig. 6a) are high after budding during the big-
gest part of S/G2/M. Carbon dioxide is excreted mostly around mitotic 
exit and in G1 (Fig. 4b). The turnover rate of cytoplasmic ATP shows 
highest values around mitotic exit and in G1, with the most important 
ATP-producing reactions being phosphoglycerate kinase and phospho-
enolpyruvate carboxylase kinase (Fig. 4c; PGK and PPCK).

We could also estimate the rates at which precursor metabolites 
are employed to satisfy the momentary biosynthetic requirements. 
The fluxes running from erythrose 4-phosphate, phosphoenolpyru-
vate and pyruvate to biomass follow two waves per cell cycle to  
satisfy protein synthesis (Fig. 4d). In contrast, while acetyl-CoA is 

needed for both protein and lipid biosynthesis, the flux running from 
acetyl-CoA to biomass has only one wave per cell cycle (Fig. 4d), reflect-
ing a larger acetyl-CoA demand for the once-oscillating lipid biosyn-
thesis (Fig. 2a).

For our model simulations, we used a number of assumptions and 
it is thus important to further validate the model predictions. Specifi-
cally, we assumed that (1) fluxes are geared to biomass optimality; that 
(2) fluxes are at quasi-steady state; that (3) there is an upper limit in 
the cellular Gibbs energy dissipation rate as recently identified45; and 
that (4) the above-determined temporally segregated dynamics of the 
biosynthetic processes are correct (Fig. 3). If these assumptions are 
correct, then the cell should exhibit high rates of glucose uptake toward 
mitotic exit and in G1 and low rates in the middle of S/G2/M, as shown in 
Fig. 4b. Furthermore, primary metabolism should respectively alternate 
between a fermentative and respiratory metabolism during the cell cycle 
(Fig. 4b and Extended Data Fig. 6a). In case these predictions agreed with 
independent experimental data, then this would suggest that the tem-
poral segregation in the biosynthetic processes is indeed responsible 
for the metabolic dynamics in primary carbon and energy metabolism.

In fact, data from synchronized high-glucose batch cultures46 
match with our predictions; in line with our predicted oxygen and 
CO2 exchange rates, O2 uptake and CO2 excretion rates were found to 
oscillate almost in antiphase to each other (Extended Data Fig. 6b–d), 
with the O2 uptake peaking soon after the initiation of budding and 
the CO2 excretion peaking in the late S/G2/M and G1 (ref. 46). Further-
more, the model predicted markedly changing glucose-uptake fluxes, 
namely high fluxes in G1 and several minutes before mitotic exit and low 
fluxes during the biggest part of S/G2/M (Fig. 4b). We aimed to validate 
these predictions with cell-cycle-resolved single-cell measurements of 
the glucose-uptake flux. First, we administered a ~13–15-min pulse of 
2-NBDG, a fluorescent non-metabolizable glucose analog, to cells grow-
ing asynchronously in the microfluidic chamber on glucose and used 
the acquired intracellular fluorescence to assess the glucose-uptake 
flux at different cell-cycle stages. Here, we found that the intracellular 
fluorescence acquired following the 2-NBDG pulse varies depending 
on the cell-cycle phase. Particularly, the fluorescence increase, and 
thus glucose-uptake flux, is higher in G1 than during S/G2/M (Fig. 4e), 
which agrees with our model predictions (Fig. 4b).

Second, to further test these predictions, we employed a glyco-
lytic flux biosensor that expresses yellow fluorescent protein (YFP) 
under the control of a glycolytic flux-sensing transcription factor and 
mCherry from a constitutive promoter47. By continuously recording 
YFP and mCherry fluorescence as well as cell volume, we could deter-
mine the momentary production rates of YFP and mCherry in single 
cells. The difference between these two production rates (their uncou-
pling) during the cell cycle is a proxy for the momentary glycolytic flux. 
Here, again consistent with the model predictions, we found that the 
uncoupling between the YFP and mCherry production rates changes 
throughout the cell cycle, with the higher uncoupling toward mitotic 
exit and in G1, suggesting high glycolytic flux in this phase (Fig. 4f). In 
a control strain, the uncoupling is constant throughout the cell cycle 
(Extended Data Fig. 7).

Thus, the key metabolic feature predictions, obtained when 
using the identified temporally segregated biosynthetic rates (Fig. 
3b–d) as input of the thermodynamically constrained model, are 
in agreement with independent experimental observations. These 
include population-level physiological parameters in a batch cul-
ture (Fig. 4a), gas-exchange dynamics previously determined in syn-
chronized high-glucose batch cultures (Extended Data Fig. 6b–d)46  
and cell-cycle-resolved metabolic activity dynamics, such as 
glucose-uptake flux (Fig. 4e) and glycolytic flux (Fig. 4f ) measured 
in single cells. Notably, an enzyme-constrained model48 generated 
flux predictions that could not be validated by these independent 
experimental observations (Extended Data Fig. 8), which suggests that 
the limit on the cellular Gibbs energy dissipation rate is key to predict 
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correct cell-cycle-resolved fluxes. The agreement between the ther-
modynamically constrained model predictions and the independent 
measurements suggests that the temporally segregated biosynthetic 
processes are responsible for the metabolic oscillations, reflecting a 
rewiring of the fluxes in the primary metabolism to meet the changing 
demands in building blocks and energy.

NAD(P)H dynamics support biosynthetic temporal 
segregation
Our conclusion that the temporal segregation of biosynthetic pro-
cesses dictates the primary metabolic dynamics has a number of 

direct consequences. First, the earlier conjectures on the causes of 
metabolic dynamics during the cell cycle, such as respiratory activ-
ity34,49,50 and carbohydrate-storage turnover51–53, should not be correct. 
Second, as the temporal segregation of biosynthetic processes is likely 
a condition-independent behavior, metabolic dynamics should occur 
across all nutrients on which cells grow and divide. Third, inhibition 
of biosynthetic processes should halt the metabolic dynamics. If we 
show that these envisioned consequences of our finding are correct, 
then this would serve as additional validation for what we put forward.

To test the proposed consequences, we made use of our ability 
to dynamically measure NAD(P)H levels in individual cells. We expect 
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Fig. 4 | Dynamic phenotypes of primary metabolism predicted via the 
biosynthetic rates agree with experimental observations. a, Yields of 
extracellularly exchanged metabolites with respect to glucose agree between 
cell-cycle-averaged flux predictions and independent measurements in an 
exponentially growing culture (x axis, mean ± s.d. from elsewhere89; y axis data 
described below). b, Cell-cycle dynamics of predicted fluxes in the primary 
carbon and energy metabolism. c, Predicted turnover of cytoplasmic ATP 
during the cell cycle and the ATP fluxes in reactions that are largest producers 
or consumers of this metabolite. The turnover was calculated as the sum of 
ATP fluxes in reactions where this metabolite is produced. We show reactions 
whose cytoplasmic ATP flux is bigger than 0.09 or smaller than −0.09 mol 
cell−1 h−1 in at least one cell-cycle phase. PGK, phosphoglycerate kinase; PPCK, 
phosphoenolpyruvate carboxylase kinase; ADP/ATP, adenine nucleotide 
translocator (oxidative phosphorylation); PFK, phosphofructokinase; HEX, 
hexokinase. d, Predicted fluxes of biomass precursors diverting from central 
carbon and energy metabolism to the synthesis of major biomass components. 
NA, nucleic acids; PS, polysaccharides; e4p, erythrose 4-phosphate; pep, 
phosphoenolpyruvate; pyr, pyruvate; g6p, glucose 6-phosphate; f6p, fructose 
6-phosphate; accoa, acetyl-CoA; glyc3p, glycerol 3-phosphate; r5p, ribose 
5-phosphate. Vertical lines denote typical cell-cycle phases of major cell-cycle 
events (b–d). For presentation of data (y axis) in a–d: predictions shown by 

markers in a, line-connected bigger markers in b and c, heat map in c and lines 
in d correspond to the output of the cell-mass model provided with averaged 
replicate measurements of macromolecule biosynthesis (solid lines in Fig. 3b–d); 
predictions shown by y axis error bars (min–max range) in a and smaller  
markers in b and c correspond to the output of the cell-mass model using eight 
different combinations of replicate measurements (shaded area in Fig. 3b–d).  
e, Acquired intracellular fluorescence after a pulse of the glucose analog 2-NBDG 
varies during the cell cycle. Solid curve and shaded area indicate posterior 
mean and region of high posterior probability (mean ± s.d.) of the Gaussian 
process regression summarizing single-cell values (markers) via an RBF kernel. 
Dashed curve: posterior mean obtained via the same data analysis pipeline in the 
replicate experiment (number of analyzed cells indicated). f, Production rates of 
YFP and mCherry, having and lacking glycolytic flux regulation, respectively are 
uncoupled during the cell cycle in cells expressing the glycolytic flux biosensor. 
The uncoupling was calculated in individual cell‐cycle traces as the difference 
between the momentary production rates of YFP and mCherry normalized 
to have the same scale. A higher value of the uncoupling reflects a higher 
production rate of YFP with respect to the production rate of mCherry and thus 
a higher value of the glycolytic flux. Curve and shaded area show median and 
its 95% CIs. To align individual cell‐cycle traces and calculate phases, we used as 
reference points cytokinesis (CYT, 0), budding and next cytokinesis (CYT, 1).
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that flux changes in primary metabolic pathways would lead to tran-
sient imbalances between metabolites’ production and depletion and 
thereby to temporal changes in the metabolite levels. The effect of 
such imbalances should be seen in single cells in terms of dynamically 
changing NAD(P)H levels.

By measuring NAD(P)H levels in single cells as a readout of bio-
synthetic and primary metabolic dynamics, we tested whether the 
above-mentioned consequences of our finding are correct. First, the 
conjectures that metabolic oscillations are caused by dynamics in res-
piration34,49,50 or carbohydrate-storage metabolism51–53 are expected to 
be incorrect. Indeed, decreasing the oxygen content in the microfluidic 
device, confirmed by a drop in the level of mCherry-tagged γ-subunit 
Atp3 of the ATP synthase54, did not affect the NAD(P)H oscillations 
(Fig. 5a and Extended Data Fig. 9). This suggests that mitochondrial 
respiration can be excluded as a cause of the metabolic oscillations, 
in line with recent observations55. Furthermore, after deleting the four 
genes needed for trehalose and glycogen biosynthesis, TPS1, TPS2, GSY1 
and GSY2, and thus removing any possibility for carbohydrate-storage 
production30, we still observed NAD(P)H oscillations (Fig. 5b), which 
demonstrates that also dynamics in carbohydrate-storage metabolism 
are not the cause of the metabolic oscillations.

Second, with the temporal segregation of biosynthesis likely being 
a condition-independent behavior, metabolic dynamics should occur 
under all growth conditions. To test this, we performed a series of 
microfluidic experiments, in which we provided cells with different 
nutrients that are utilized through different metabolic pathways, and 
monitored the NAD(P)H dynamics in single cells. Growth medium 
included a minimal medium with either glucose or pyruvate, a glucose 
minimal medium supplemented with either fatty acids or amino acids 
and nucleobases, and a complex medium with glucose (YPD). In all 
these conditions, across which the median cell-cycle duration varied 
between 70 and 260 min and which included largely different metabolic 
operations such as fermentation and respiration, we found NAD(P)
H oscillations (Fig. 5c,d) in line with our finding that the uncovered 
temporal segregation in biosynthesis, rather than a specific primary 
metabolic pathway, is responsible for the metabolic oscillations. In 
fact, phase shifts, which we observed between the NAD(P)H oscillations 
when different biomass precursors (namely, fatty acids, amino acids 
and nucleobases, components of YPD) were provided in the growth 
medium, are consistent with the finding of the temporal segregation 
between different biosynthetic processes (Extended Data Fig. 10a).

Finally, if our finding of the temporal segregation in biosynthesis 
is correct, then inhibition of biosynthetic processes should halt the 
metabolic dynamics. To test this, we returned to the experiments in 
which we inhibited protein biosynthesis with cycloheximide, lipid 
biosynthesis with cerulenin and polysaccharide biosynthesis with the 
auxin-inducible depletion of Ugp1 in cells growing in the microfluidic 
device. Here, in these dynamic inhibition experiments, we observed 
that NAD(P)H levels stopped oscillating immediately after the addi-
tion of the inhibitors or auxin (Fig. 5e). Thus, by confirming all three 
envisioned consequences, we provided additional support for the 
uncovered temporal segregation of biosynthetic processes and for this 
segregation to be the cause of the flux dynamics in primary metabolism.

Discussion
Using dynamic perturbation experiments and new microscopic 
single-cell analyses, we uncovered how the activities of biosynthetic 
processes are organized in time during the cell cycle of budding yeast. 
We found that the protein biosynthesis activity has two waves per cell 
cycle, one in G1 and the other in S/G2/M, whereas the activities of lipid 
and polysaccharide biosynthesis synchronously peak only once in S/
G2/M. Through integration of the generated dynamic biosynthesis data 
in mathematical models, we determined changes of metabolic fluxes 
through primary metabolism that are required to meet the temporally 
changing biosynthetic activities. We could experimentally validate 

the inferred metabolic fluxes and found additional evidence for the 
temporal segregation of biosynthetic processes in NAD(P)H dynamics. 
This suggests that the metabolic flux changes in primary metabolism 
during the cell cycle occur to satisfy the precursor and energy demands 
of the uncovered temporally segregated biosynthetic activities. Thus, 
we have revealed a key temporal aspect of the intracellular physiology 
during the cell cycle.

The uncovered two-wave behavior of protein biosynthesis activity 
opposes the current notion of its monotonic dynamics during the cell 
cycle. This notion has emerged from early studies using radioactive 
labeling3–5. In fact, a mathematical analysis of the key reference work4 
showed that its method based on radioactive dual-labeling and centri-
fugal elutriation is unable to discriminate between exponential and 
periodic dynamics of protein synthesis rate56. More recent single-cell 
studies with microscopy and fluorescent proteins6,7 had also suggested 
that protein synthesis rate is monotonic. Here, it is interesting to note 
that while the authors of previous work7 claim that protein biosynthesis 
rate is constant during the cell cycle, one can clearly see in their data, a 
reproducible drop of the fluorescent-protein production rate around 
budding, which is one the aspects that led us to infer a non-monotonic 
behavior in the protein synthesis rate. Finally, based on a study from the 
Manalis laboratory that used a suspended microchannel resonator to 
determine yeast cell growth rate as a function of cell mass57, one could 
also conclude that protein synthesis rate would be constant during the 
cell cycle. Yet, it must be noted that the authors had performed linear 
regression in rather broad ranges of cell buoyant masses (>threefold 
change) and respective cell growth rates (>11-fold change), which are 
larger spreads than those during the cell cycle (~1.4-fold change of dry 
mass and ~1.6-fold change of dry mass derivative, as estimated from our 
data). The changes in protein synthesis rate during the cell cycle that 
we report here could thus be well hidden in the noise of the cell mass/
growth rate data from the other work57. Moreover, cellular composi-
tion changes during the cell cycle could potentially confound a direct 
comparison of the buoyant-mass data57 with our dry-mass-related data 
(as shown in formula 1 in recent work58). The authors of the paper57 
have cautiously not made any conclusion on cell-cycle dynamics of 
cell growth rate in yeast.

In contrast to the current notion on the protein synthesis dynam-
ics during the cell cycle and in support of our work, an earlier study 
with glucose-limited chemostat cultures found that the rate of protein 
biosynthesis fell close to zero in the first half of the S phase59. A recent 
study employing an inertial picobalance and microscopy showed that 
the growth rate of yeast cells in S/G2/M has a non-monotonic pattern 
similar to the protein synthesis rate dynamics observed in this work60. 
Furthermore, TORC1 and PKA activity toward ribosome biogenesis was 
recently reported to have two waves per cell cycle21 and we found (with 
two completely orthogonal single-cell methods) that protein synthesis 
has two activity peaks during the cell cycle. This suggests that the exist-
ing notion of a constant/exponential protein biosynthesis rate during 
the cell cycle needs to be revised.

Our finding that the activity of lipid and cell-wall-polysaccharide 
biosynthesis changes during the cell cycle is in line with some indirect 
evidence from literature. Specifically, cells with a temperature-sensitive 
mutant of acetyl-CoA carboxylase Acc1, a crucial enzyme in fatty acid 
biosynthesis, were reported to be arrested in G2/M under a restric-
tive temperature61. Besides, the translational efficiency of messenger 
RNAs encoding lipogenic enzymes (Acc1, Fas1 and Fas2) as well as the 
transcription of the fatty acid elongase Elo2 involved in sphingolipid 
biosynthesis were found to increase in G2/M11. Two recent studies have 
demonstrated that a range of metabolites involved in pathways of lipid 
metabolism have peak abundance in S/G2/M9,10. For polysaccharides, 
an early study based on pulse-labeling electron microscopic experi-
ments reported that in Saccharomyces cerevisiae, the rate of glucan 
and mannan biosynthesis increases after budding (S/G2/M) and drops 
at cytokinesis and in the pre-budding phase (G1)62. Thus, our results 
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Fig. 5 | Evidence of the temporal segregation of biosynthetic processes 
is found in NAD(P)H dynamics. a, NAD(P)H oscillations are unperturbed 
(dashed rectangle) in microaerobic condition with disrupted fluorescence 
dynamics of mCherry fused to ATP synthase subunit Atp3. Methods describe 
technical solutions to attain the microaerobic condition. More cells are shown 
in Extended Data Fig. 9. b, NAD(P)H oscillations exist in a strain lacking two 
subunits of trehalose-6-phosphate synthase/phosphatase complex TPS1 and 
TPS2, and two paralogs encoding glycogen synthase GSY1 and GSY2. c,d, NAD(P)
H oscillations are present in cells growing in various media: minimal medium 
containing 1% glucose (Glu), 2% pyruvate (Pyr), combination of 1% Glu with a lipid 
mixture (LM; seven fatty acids) or with a complete supplement mixture (CSM; 
12 amino acids, two nucleobases); complex medium YPD with 1% Glu. NAD(P)
H oscillations with respect to absolute time in single cells growing in indicated 
medium and going through several cell and metabolic cycles (c). Summarized 
NAD(P)H oscillations with respect to cell-cycle-relative time (phase) in multiple 
cells growing in indicated medium (d). Curves and shaded areas show median 

and its 95% CI. Numbers of individual cell cycles (and single cells going through 
them) in each condition are 355 (102) for 1% Glu; 268 (93) for 2% Pyr; 27 (9) for 
1% Glu + LM; 258 (98) for 1% Glu + CSM; and 124 (15) for 1% Glu YPD. NAD(P)H 
fluorescence values were detrended and normalized by performing LOWESS in 
an entire single-cell trace (large window size for line fits) and dividing raw NAD(P)
H values by the resulting LOWESS curve (a–d). Markers show detrended values; 
curves show LOWESS (small window size for line fits) smoothing of detrended 
values (a–c). Window sizes used in LOWESS for detrending and smoothing are 
shown in Supplementary Table 8. Phase shifts and cell-cycle coupling of NAD(P)
H oscillations across growth conditions are shown in Extended Data Fig. 10. 
e, NAD(P)H oscillations cease when CYH and CER are added and when Ugp1 is 
depleted via NAA-induced degradation. Markers show raw (not detrended and 
normalized) NAD(P)H or Ugp1-mCherry fluorescence; curves show smoothing 
with LOWESS (six and three data points for line fitting). Vertical lines indicate 
budding (a–e).
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regarding the increased lipid and polysaccharide biosynthesis activ-
ity in S/G2/M are supported by a range of indications from literature.

One implication of our work is that we potentially should start 
looking at the concept of ‘cell growth’ in a different manner. While 
it is known that the rate of cell growth (in terms of cell mass or size) 
changes during the cell cycle63,64, here we show that the individual 
contributors to cell growth and mass (the biosynthetic processes syn-
thesizing the different cellular components) are differentially active 
at different moments of the cell cycle. We have earlier shown this for 
G1, where protein biosynthesis rate is high and cell size growth is low8,  
but now we extend this to the whole cell cycle and other biosynthetic  
processes. While the concept of cell growth has been viewed holistically  
for decades, expanding the knowledge of cell-size and cell-cycle control,  
we now suggest going a step further to look at cell growth during the 
cell cycle in a more differentiated manner, where protein, lipid and 
polysaccharide biosynthesis as key contributors to cell growth are 
partially segregated in time.

Our work suggests that the uncovered temporal segregation in 
the biosynthetic processes is responsible for the observed metabolic 
dynamics during the cell cycle, where high glucose-uptake and fermen-
tation fluxes occur in G1, followed by a switch to respiration at the onset 
of the S phase and eventual return to high fermentation toward mitotic 
exit. These dynamics in primary carbon and energy metabolism seem 
to be in place to meet the temporally changing demands in the biosyn-
thetic processes. An early work based on glucose-limited synchronous 
cultures59 and a recent multi-omics study with α-factor-synchronized 
cells9 has generated important indications along these lines, but we can 
now (based on direct activity measurements) provide actual evidence 
to this notion. Together with the fact that we have observed metabolic 
oscillations under a broad range of experimental conditions whenever 
cells divided, this indicates that the metabolic oscillations do not 
emerge in specific primary metabolic pathways, such as respiration- or 
storage-related pathways, as earlier conjectured34,49–53. Thus, primary 
metabolism is dynamic likely because it has to fulfill the temporarily 
changing demands for precursors, redox and energy cofactors to  
supply the different biosynthetic processes.

The key question is now what causes this temporal segregation 
in biosynthesis. In the first instance, one would speculate that it is 
driven by the cell-cycle machinery, which indeed has targets in metabo-
lism65–69; however, we and others have recently found that the metabolic 
oscillations in the range of hours, manifesting in NAD(P)H, ATP or flavin 
dynamics, also occur in cells that do not go through the cell cycle44,55, 
including cells undergoing dynamic depletion of the Cdc20 (ref. 70) or 
α-factor treatment44. This suggests that the biosynthetic/metabolic 
oscillations are (at least not primarily) generated by cell-cycle activity. 
We conjecture that negative feedback interactions between different 
biosynthetic processes could form a biosynthetic oscillator. Such 
negative feedback could be based on the competition for the resources 
from the primary metabolism or on the regulation of gene expression, 
for instance, by metabolite-dependent chromatin modification71,72. 
Alternatively, the biosynthetic dynamics could be orchestrated by the 
earlier suggested transcriptional oscillator73, by signaling pathways (for 
example TORC1/2, PKA and Snf1) sensing biomass precursor levels or 
by a mechanism overarching these diverse players.

Methods
Strains
An overview of S. cerevisiae strains used in this study is presented in 
Supplementary Table 1. The strains had the background of the proto-
trophic S288C-derived strain YSBN6 (MATa FY3 HO::HphMX4) or the 
auxotrophic S288C-derived strain YSBN10 (MATa FY3 HO::HphMX4, 
ura3-52)74. Sequences of primers used for strain construction are 
provided in Supplementary Table 2. To construct the strains YSBN6 
Atp3–mCherry, YSBN6.tetO7–sfGFP, YSBN6 Ugp1–mCherry-AID 
and YSBN6.AIDcontrol (Supplementary Table 1), we implemented a 

number of cloning steps with the goal to insert a sequence of interest 
into a parental strain via homologous recombination. First, using 
Gibson assembly or phosphorylation ligation, we created a plasmid 
with Escherichia coli origin of replication as well as antibiotic selection 
marker in the backbone and with the sequence of interest accompa-
nied by a yeast selection marker both flanked by the sequences for 
homologous recombination. The correctness of this plasmid assem-
bly was checked with PCR and sequencing. Second, we linearized the 
plasmid by amplifying the fragment containing the flanking sequences 
and, between them, the sequence of interest with the yeast selection 
marker. Third, we transformed a target strain with the linear fragment 
using an established protocol75 and grew cells on a 2% glucose YPD 
agar plate with a selection agent (for example G418, nourseothricin). 
Fourth, resulting colonies were re-streaked on a replicate selection 
plate, and new colonies on it were inoculated in liquid selection YPD 
with 2% glucose to produce overnight cultures, from which genomic 
DNA (gDNA) was isolated and glycerol stock was made for long-term 
storage at −70/−80 °C. The integration of the sequence of interest was 
verified through PCR on gDNA and sequencing of this PCR amplicon.

To generate a strain with suppressed carbohydrate-storage bio-
synthesis, we knocked out four genes, namely, TPS1, TPS2, GSY1 and 
GSY2, with the CRISPR/Cas9 system adapted from elsewhere76. To 
make the strain expressing Cas9 (YSBN6-Cas9), we integrated the 
Can1Δ::cas9-natNT2 cassette amplified from the strain IMX585 (ref. 76) 
into YSBN6. In parallel, using pROS13 (ref. 76) as a basis, we created two 
plasmids each of which expresses two sgRNAs targeting the genes of 
interest. First, to have different selection markers in these plasmids, the 
kanMX cassette in pROS13 was replaced by the pAgTEF1-ble-tAgTEF1 
cassette from pUG66 (ref. 77) conveying phleomycin resistance (the 
resulting plasmid was called pROS_phleo). Second, using the yeastric-
tion webtool76, we designed primers that target each of the four genes 
of interest using the S288C genome as a template and, following the 
protocol from elsewhere76, introduced the corresponding sequences 
in the plasmids pROS13 and pROS_phleo, obtaining pROS13-Tps2/
Gsy1 and pROS_phleo-Tps1/Gsy2. Subsequently, we transformed the 
YSBN6-Cas9 strain with pROS_phleo-Tps1/Gsy2 using phleomycin for 
selection. To avoid genetic heterogeneity, single colonies were later 
picked and re-streaked on a non-selective plate, from which single 
colonies were taken again to start liquid cultures for PCR verification 
of gene deletion and long-term storage of the strain. Eventually, after 
obtaining the YSBN6 ΔTps1ΔGsy2 strain, we transformed it with the 
pROS13-Tps2/Gsy1 plasmid using G418 for selection and, after colony 
re-streaking and PCR verification, obtained the desired strain YSBN6 
ΔTps1ΔTps2ΔGsy1ΔGsy2. To generate the YSBN10 glycolytic biosen-
sor, we incorporated pTEF7mut_CggRAla250 from Addgene plasmid 
124585 (ref. 47) into the HO region of YSBN10 via CRISPR/Cas9 and 
co-transformed the cells with the reporter plasmid P_cggRO (Addgene 
124582)47. YSBN10 control for the glycolytic biosensor was transformed 
only with the reporter plasmid. Plasmids to generate key strains are 
deposited on Addgene: pB_tetO7_sfGFP (196616), pUGP1.1 (196615), 
GA46 (196614), pROS13-Tps2/Gsy1 (196613) and pROS_phleo-Tps1/Gsy2 
(196612); more details in Supplementary Tables 1 and 2.

Liquid media
In this study, we used two minimal media, one of which was supple-
mented with biomass precursors in several experiments (specified 
below), and one complex medium. The first minimal medium was yeast 
nitrogen base medium without amino acids, referred to as YNB, which 
was prepared by dissolving 6.9 g of the powder (Formedium, CYN0410) 
in 1 l water. YNB was supplemented with 2% (20 g l−1) or 0.015% glucose 
(Millipore, 49159). The second minimal medium was modified Verduyn 
minimal medium78. We composed it using four stock solutions: 10× 
buffer solution, 5× salt solution, 100× tracer salt solution and 1,000× 
vitamin solution. The 10× buffer solution represented 100 mM solution 
of potassium phthalate monobasic (HOOCC6H4COOK, Sigma-Aldrich, 
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60360) in water with pH set to 5 with KOH (Fisher Scientific, 10113190). 
One liter 5× salt solution contained 25 g (NH4)2SO4 (Sigma-Aldrich, 
09978), 15 g KH2PO4 (Sigma-Aldrich, P5655) and 2.5 g MgSO4·7H2O 
(Sigma-Aldrich, 63138) dissolved in water. The 1 l 100× tracer salt 
solution contained 2.135 g EDTA (Na4EDTA·2H2O, Sigma-Aldrich, 
ED4SS), 0.449 g ZnSO4·7H2O (Supelco, 1.08883), 0.031 g CoCl2·6H2O 
(Supelco, 1.02539), 0.099 g MnCl2·4H2O (Sigma-Aldrich, M5005), 0.03 g 
CuSO4·5H2O (Supelco, 1.02790), 0.45 g CaCl2·2H2O (Sigma-Aldrich, 
223506), 0.297 g FeSO4·7H2O (Sigma-Aldrich, 215422; light-blue-green 
powder), 0.044 g NaMoO4·2H2O (Sigma-Aldrich, M1651), 0.1 g H3BO3 
(Sigma-Aldrich, B7901) and 0.01 g KI (Sigma-Aldrich, 221945) dissolved 
in water (the solution was used while its color remained light-green 
and discarded when the color changed to light-red). One liter 1,000× 
vitamin solution contained 0.05 g d-biotin (Sigma-Aldrich, B4501), 
1 g d-pantothenic acid hemicalcium salt (Sigma-Aldrich, 21210), 1 g 
nicotinic acid (Sigma-Aldrich, 72309), 25 g myo-inositol (Millipore, 
57570), 1 g pyridoxine hydrochloride (Sigma-Aldrich, P9755), 0.2 g 
4-aminobenzoic acid (Sigma, A9878) and 1 g thiamine hydrochloride 
(Sigma-Aldrich, T4625) dissolved in water. The modified Verduyn 
minimal medium was supplemented with appropriate carbon sources, 
which are indicated in Methods describing the experiments where 
this medium was used. The complex medium YPD was composed of 
1% (10 g l−1) yeast extract (Difco, 212750), 2% (20 g l−1) peptone (Difco, 
211677) and 1% glucose (Millipore, 49159) dissolved in water.

In the experiments where we determined the sfGFP production 
rate, used the stop-and-respond method, monitored the histone pro-
tein Hta2, traced cell volume and surface dynamics and applied the 
glycolytic flux biosensor, cells were cultivated in YNB with 2% glucose 
supplemented. In the 2-NBDG-addition experiments (Fig. 4e), cells 
were cultivated in 0.015% glucose YNB. In the experiments generating 
Fig. 5a–d, cells were cultivated in modified Verduyn medium with the 
addition of 1% glucose, 2% pyruvate or the combination of 1% glucose 
with LM (Lipid Mixture 1, Sigma, L0288) or with CSM (Formedium, 
DCS0019); cells were also cultivated in YPD with 1% glucose.

Cultivation
Several days before an experiment, we recovered a necessary strain 
from its glycerol stock stored at −70/−80 °C by growing it for 2–3 d 
on a 2% glucose YPD agar plate. A small part of a single colony was 
picked from the plate and inoculated into 10 ml liquid medium in a 
100-ml shake flask, initiating an overnight pre-culture. If we planned 
to eventually grow cells in the microfluidic device in a medium with 
1% glucose or 2% pyruvate, this pre-culture was based on 1% glucose. 
Alternatively, if we planned to eventually grow cells in the microfluidic 
device in a medium with 2% glucose, the pre-culture was based also on 
2% glucose. The pre-culture was grown overnight at 30 °C at a shaking 
speed of 300 r.p.m., with the pre-culture’s OD600 being in the morning 
of the next day typically <2, thus indicating an exponential state. If we 
planned to eventually grow cells in the microfluidic device in a medium 
with 1 or 2% glucose (high glucose), a new culture was started from the 
pre-culture by diluting it in the same fresh medium (10 ml in a 100-ml 
shake flask) at OD600 in the range 0.0125–0.05. This new culture was 
grown at 30 °C at a shaking speed of 300 r.p.m. for several hours and 
at OD600 in the range 0.08–0.2, cells were loaded in the microfluidic 
device as described previously14,15. Cultivating cells in 2% pyruvate and 
0.015% glucose is described in Methods of respective experiments.

Before using a medium in a microfluidic experiment, we filtered 
and prewarmed it by shaking in a flask at 30 °C for at least 30 min. In 
the microfluidic device, cells were constantly provided with fresh 
medium by a syringe pump or an air-pressurized pumping system (OB1, 
Elveflow) assisted by a flow sensor (MFS2, Elveflow). While assembling 
the system that provides the medium to the microfluidic device, we 
took necessary precautions not to contaminate the medium (namely, 
working close to a Bunsen burner or in a laminar flow cabinet, disin-
fecting tubing with ethanol and drying it with compressed clean air).  

During cultivation in the microfluidic device, the temperature  
was maintained at 30 °C with the help of a microscope incubator (Life 
Imaging Services). Cells were kept in the microfluidic device under 
constant conditions by providing fresh medium for controlled periods 
of time. Methods describing individual experiments provide details 
on the media and their carbon-source supplementation, culturing 
scheme in shake flasks, the medium flow rate in the microfluidic device 
and media/oxygen-level switches that were used in these experiments. 
Conditions of the stop-and-respond experiments are summarized in 
Supplementary Table 3. Supplementary Table 8 summarizes the growth 
conditions among which cell-cycle-associated NAD(P)H oscillations 
were compared (Fig. 5a–d).

Microscopy
The microfluidic device was mounted to one of two Nikon Eclipse Ti-E 
inverted wide-field fluorescence microscopes (microscope 1 and 2) 
where time-lapse imaging of cells was performed. Microscopes were 
equipped with Andor DU-897 EX cameras, ×40 (Nikon ×40 S Fluor 
Oil, NA = 1.3) and ×100 (Nikon ×100 S Fluor Oil Iris, NA = 1.30; Nikon 
Plan Apo VC Oil DIC N2, NA = 1.4) objectives. Microscope 1 was used 
with either CoolLED pE-2 (denoted as setup 1a) or Lumencor AURA 
(setup 1b) excitation system. Microscope 2 was always used with the 
CoolLED pE-2 excitation system (setup 2a). For NAD(P)H measure-
ments, we excited cells at 365 nm in setups 1–2a and at 360 nm in setup 
1b, employing a 350/50-nm band-pass filter, a 409-nm beam splitter 
and a 435/40-nm emission filter (NAD(P)H channel). For GFP meas-
urements, we excited cells at 470 nm in setups 1–2a and at 485 nm in 
setup 1b, using a 470/40-nm band-pass filter, a 495-nm beam splitter 
and a 525/50-nm emission filter (GFP channel). For red fluorescent 
protein (RFP) measurements, we excited cells at 565 nm in setups 
1–2a and at 560 nm in setup 1b, using a 560/40-nm band-pass filter, a 
585-nm beam splitter and a 630/75-nm emission filter (RFP channel). 
For YFP measurements, we excited cells at 500 nm in setup 2a, using a 
520/20-nm band-pass filter, a 515-nm beam splitter and a 535/30-nm 
emission filter (YFP channel). For bright-field imaging, a halogen lamp 
produced light that was filtered with a 420-nm beam splitter to exclude 
UV before illuminating cells (BF channel). The microscopes were oper-
ated using NIS-Elements software. We set the Readout Mode to 1 MHz to 
minimize the camera readout noise and fixed the baseline level of the 
cameras to 500 at −75 °C. The Nikon Perfect Focus System was used in 
time-lapse imaging to prevent the loss of focus set at the beginning of 
the experiment (in which a cell was seen as surrounded by two concen-
tric circumferences of very low and high intensity pixels, respectively). 
In Methods sections dedicated to individual experiments, we specify 
the frequency of image acquisition, objective, setup and channels, 
indicating the corresponding percentage of maximal light intensity 
and exposure time.

Image and signal analysis
In every microscopy experiment, multiple non-overlapping regions in 
the XY plane of the microfluidic device were imaged, which resulted in 
a set of Nikon NIS-Elements ND2 files each containing a multi-channel 
video for one XY region. Every ND2 file was imported into ImageJ79,80 
where images in the fluorescent channels were background cor-
rected via rolling-ball background subtraction plugin (except for the 
2-NBDG addition experiment, see details in the respective Methods 
section) and images in the bright-field channel were sharpened and 
contrast-enhanced, after which the video was saved as a TIFF file. Cells 
were tracked throughout the video and segmented by fitting an ellipse 
in the bright-field image at each time point via the semi-automated 
plugin BudJ81 used with ImageJ. Simultaneously, by visual inspection 
and with the help of a custom macro, we recorded for each segmented 
cell the time points of budding events (appearance of a dark-pixel 
cluster from which a daughter cell would later grow) and death 
(abrupt shrinking and darkening of the cell, cessation of cytoplasmic 
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movement, after which the data from the cell were not used). When a 
glycolytic flux biosensor was used, we also recorded the time points 
of cytokinesis events (one time point before the daughter cell would 
rapidly detach from the mother cell, accompanied by the appear-
ance of a dark‐pixel line between the mother and daughter cells). To 
analyze cellular fluorescence data, we uploaded the video-containing 
TIFF file into a NumPy multidimensional array via Python’s module 
scikit-image82 and extracted the pixels corresponding to a cell of inter-
est by overlapping the array with the segmentation ellipses provided by 
BudJ. To get a proxy of concentration, we calculated the average fluo-
rescence intensity of the pixels in the cell segmentation. Cell volume 
and surface area were calculated using the radii of the segmentation 
ellipse provided by BudJ and assuming that a cell is a prolate spheroid. 
All data analysis and result visualization were implemented in Python. 
Methods sections dedicated to individual experiments and figure cap-
tions as well as Supplementary Table 4 and 8 describe further details 
of image and signal analysis.

Detection of mitotic exit and START in Whi5 dynamics
Observing the localization of Whi5 tagged with a fluorescent  
protein (sfGFP, mGFP or mCherry), we identified the time points of the 
cell-cycle events of two kinds, namely, ME and START. Specifically, we 
calculated the ratio between the s.d. and mean of the pixel intensities 
in a cell segmentation (mother-cell compartment) at each time point 
of the video. Further, we automatically detected those time points 
before which this ratio’s derivative reaches its local maxima (ME) and 
minima (START) (Python’s method of scipy.signal.argrelextrema with 
x time points on each side to compare, where x = 12 if δt = 6 or x = 24 if 
δt = 3). To exclude wrongly identified events and add missing ones, we 
visually inspected the single-cell traces of the ratio, having the knowl-
edge that ME precedes START followed by budding and that the time 
period between budding and ME is usually bigger than that between 
ME and budding. In some cell cycles, it was impossible to identify ME 
and START due to noise in the ratio.

Tracing cell volume, surface area and sfGFP production rate
To study the cell volume, cell surface area and the production rate of 
sfGFP during the cell cycle, we microscopically monitored the strain 
YSBN6.tetO7-sfGFP (Supplementary Table 1) with tetO7-sfGFP-KanMX 
in HO locus and Whi5-mCherry-BLE. This strain was cultivated in the 
microfluidics device, with the syringe pump continuously providing 
2% YNB at the 4–5 µl min-1 flow rate. In the first experiment (the first 
replicate in Fig. 1a and Extended Data Fig. 1f as well as Figs. 1b and 2b  
and Extended Data Figs. 1g and 4), microscopy was performed every 
δt = 6 min with the setup 1b, ×100 objective and in the following chan-
nels: BF (3 V, 50 ms), GFP (2%, 100 ms), RFP (10%, 600 ms) and NAD(P)
H (4%, 200 ms). In the second and third experiments (the second 
and third replicates in Fig. 1a and Extended Data Fig. 1f), microscopy 
was performed in the same way, with the exception of no NAD(P)H 
measurement.

To work with a continuous cell volume trace V (t) {fl} without the 
abrupt drop corresponding to cytokinesis, we considered a cell cycle 
to be confined within two MEs, excluding the first but including the 
last one: t ∈ (MEi,MEi+1] {min}. Excluding the first ME is motivated by the 
fact that cytokinesis happens soon after it. In general, the cell volume 
V consists of the mother V m and daughter V d parts. We calculated V m 
and V d separately, using the radii of the ellipse that ImageJ’s plugin BudJ 
fitted to the mother and daughter compartments (also referred to as 
cells) in the bright-field image. Specifically, we assumed that the 
mother and daughter cells are prolate spheroids, therefore, V m and V d 
are calculated via 4

3
πRr2, where R and r are the major and minor radii, 

respectively. Given microscope resolution, it was infeasible to accu-
rately segment daughter cells with BudJ for some time after budding 
(2–4 time points, 12–24 min, on the median level in the replicate experi-
ments). In the corresponding time points, the daughter cell volume 

was reconstructed using linear interpolation between the zero volume 
at budding and the first volume calculation on the basis of BudJ-derived 
radii. Eventually, a cell-cycle trace of the cell volume was assembled as 
follows: V (t) = Vm (t) + Vd (t) , t ∈ (MEi,MEi+1] , with V d(t) equal to zero  
until budding (Extended Data Fig. 1a).

Next, we smoothed the cell volume to filter out local fluctuations 
caused by imperfect segmentation and to capture visible global behav-
ior (Extended Data Fig. 1a). To support smoothing at the beginning 
and end of a cell-cycle trace, we used the data in the adjacent 50 min 
of the preceding and following cell cycles (if there were such data), 
geometrically translating the cell volume down and up to abolish the 
discontinuity caused by cytokinesis:

V (t) , t ∈ (MEi − 50,MEi+1 + 50] =
⎧⎪
⎨⎪
⎩

Vdown (t) , t ∈ (MEi − 50, MEi]

V (t) , t ∈ (MEi,MEi+1]

Vup (t) , t ∈ (MEi+1,MEi+1 + 50]

.

Particularly, in the preceding cell cycle, we subtracted the  
daughter cell volume at ME: Vdown(t) = V(t)−V d (MEi), t∈(MEi−50, MEi]. 
Similarly, in the following cell cycle, we added the daughter cell  
volume at ME belonging to the cell cycle of interest: 
Vup (t) = V (t) + Vd (MEi+1) , t ∈ (MEi+1,MEi+1 + 50] . We smoothed the cell 
volume V (t) → Vsmooth (t) , t ∈ (MEi − 50,MEi+1 + 50]  with the LOWESS 
method selecting the time window size of line fitting individually in 
each cell cycle based on visual inspection of the smoothing quality. 
The selected window sizes for LOWESS were equal to 6 on the median 
level in the replicate experiments and analyses. To present the cell 
volume dynamics, we extracted the values of V smooth (t) in the interval 
t ∈ [MEi,MEi+1].

The cell surface area S was also perceived as the sum of the mother 
and daughter cell surface areas: Sm + Sd, each of which was calculated 
according to the prolate spheroid assumption: 2πr2 (1 + R

re
arcsin e) , 

where e =√1 − r2

R2
 and R and r are the major and minor radii,  

respectively. We tackled the discontinuity caused by cytokinesis  
and interpolated the data points after budding analogously  
to processing the cell volume. The data were smoothed 
s (t) → Ssmooth (t) , t ∈ (MEi − 50,MEi+1 + 50] by applying LOWESS with the 
window size equal to eight time points in all analyzed cell cycles. To 
obtain the derivative of the cell surface area, we differentiated the cubic 
spline that goes through the points of Ssmooth (t) , t ∈ (MEi − 50,MEi+1 + 50] 
and extracted the values in the interval t ∈ [MEi,MEi+1].

We assumed that there is no active degradation of unfused fluo-
rescent proteins and, therefore, calculated the production rate of sfGFP 
rsfGFP(t) directly by differentiating its abundance and considering the 
maturation kinetics of the fluorescent protein. To obtain for this  
purpose a cell-cycle trace of sfGFP abundance AsfGFP(t) (Extended  
Data Fig. 1c), we multiplied two smoothed traces, namely: (1) of  
sfGFP fluorescence averaged across the mother-cell pixels F smoothsfGFP (t) 
(Extended Data Fig. 1b); and (2) of cell volume V smooth(t) (Extended Data 
Fig. 1a). In each replicate experiment, we normalized the sfGFP fluo-
rescence traces by the average fluorescence across all cell-cycle traces.  
We smoothed the cell-cycle trace of sfGFP fluorescence together  
with the data from the adjacent cell cycles using the LOWESS method: 
FsfGFP (t) → F smoothsfGFP (t) , t ∈ (MEi − 50,MEi+1 + 50] (Extended Data Fig. 1b). 
The sfGFP fluorescence is a continuous readout, unaffected by cytoki-
nesis, therefore, we did not pre-process FsfGFP (t) , t ∈ (MEi − 50,MEi+1 + 50] 
by translating the data from the adjacent cell cycles up and down as  
we did with the cell volume and surface area. The individually  
selected window sizes for the LOWESS smoothing were equal to 6–8 
on the median level in the replicate experiments. To obtain the first 
and second derivatives of the cell-cycle trace of sfGFP abundance,  
we differentiated the cubic spline that goes through the points  
of AsfGFP (t) , t ∈ (MEi − 50,MEi+1 + 50]  and extracted the values in the 

http://www.nature.com/natmetab


Nature Metabolism | Volume 5 | February 2023 | 294–313 306

Article https://doi.org/10.1038/s42255-023-00741-x

interval, t ∈ [MEi,MEi+1]. To account for sfGFP maturation kinetics while 
calculating the sfGFP production rate, we used the model described 
previously83 and assumed the sfGFP maturation half-time t1/2 = 6 min84: 
rsfGFP(t) =

t1/2
ln2

⋅ d2AsfGFP(t)
dt2

+ dAsfGFP(t)
dt

, where rsfGFP(t) is the sfGFP production 

rate (Extended Data Fig. 1d). Negative values appearing at some time 
points in several cell-cycle traces (Fig. 1a) likely originate from measure-
ment noise propagated by the calculation of two successive derivatives 
required to obtain the maturation-corrected sfGFP production rate. 
Without accounting for sfGFP maturation, we used the first derivative 
of the cell-cycle trace of sfGFP abundance AsfGFP (t) as the production 
rate of this protein: rsfGFP(t) =

dAsfGFP(t)
dt

 (Extended Data Fig. 1e).
To align several cell-cycle traces and to calculate the phase, we 

used an array of four cell cycle events E = {ME, START, BUD, next ME}  
as reference points. Specifically, we computed the average 
cell-cycle-relative timing for each of these events φ̄e (vertical lines in 
Figs. 1a,b and 2b and Extended Data Figs. 1f,g and 4) in the following 
way: ∀e ∈ E, φ̄e = 1

N
∑N

cc=1
t ecc−tMEcc

tnextMEcc −tMEcc
, where t ecc is the time in minutes when 

the event e happens in the cell cycle cc and N is the number of cell  
cycles. In the aligned cell cycles, we converted the time in minutes t to 
the phase φcc in the following way: φcc(t) = (φ̄E[i+1] − φ̄E[i]) t−t E[i]cc

t E[i+1]cc −t E[i]cc
+ φ̄E[i] 

for t ∈ [t E[i]cc , t E[i+1]cc ] if E [i] = ME or t ∈ (t E[i]cc , t E[i+1]cc ] if E [i] ≠ ME, where i  

is the index number of an event in the array E. To interpret the relative  
phase values and eventually compare Fig. 1a to 1d, one can multiply the 
phase values by provided average cell-cycle durations, thus obtaining 
the phase values expressed in minutes, in the same scale as in Fig. 1d.

To summarize several individual cell-cycle traces and  
obtain an average pattern during the cell cycle, we regressed the  
values belonging to different traces and time points {Vsmooth (t, cc)} /
{ d
dt
Ssmooth (t, cc)} / {rsfGFP (t, cc)}  against the respective cell-cycle phases 

{φcc(t)}. Specifically, we implemented a Gaussian process regression 
(Python’s sklearn.gaussian_process), using as a prior an RBF kernel and 
a white kernel, and maximizing the log-marginal likelihood. The Gauss-
ian process regression ignored the connection of data points between 
adjacent phases, therefore, we attributed all the variability at each 
phase to measurement noise.

To build heat maps (Fig. 1b and Extended Data Fig. 1g), we inter-
polated each cell-cycle trace of sfGFP production rate (line-connected 
markers of the first replicate experiment in Fig. 1a and Extended Data 
Fig. 1f) using a cubic spline and collected from it values at 17 evenly 
spaced phase points making up a new trace r(φ). These values of sfGFP 
production rate were converted to have the minima and maxima fixed 
to 0 and 1, respectively, via r(φ)−min(r(φ))

max(r(φ))−min(r(φ))
.

Stop-and-respond experiments
Multiple XY regions of the microfluidic device were microscopically 
observed in the bright-field, NAD(P)H, GFP and RFP channels with the 
time interval δt of 6 min via the microscopy setup 1b and ×100 objective. 
We provided cells in the microfluidic device with a medium allowing 
normal growth (control medium) for several hours and afterwards 
switched it to the same medium that additionally contained a com-
pound leading to a metabolic perturbation (perturbation medium) 
(Supplementary Table 3).

To precisely control the flow rate in the microfluidic device, we 
used an air-pressurized pumping system (OB1, Elveflow) together with 
a flow sensor (MFS2, Elveflow). Medium replacement was performed 
automatically with a microfluidic flow switch matrix (MUX distribu-
tor, Elveflow). The control medium was usually provided at the flow 
rate 5 µl min−1 (in the first hours of some experiments the flow rate 
was reduced up to 3.6 µl min−1 to retain more cells in the microfluidic 
device). The media switch and the provision with the perturbation 
medium were always conducted at the flow rate 5 µl min−1. The time of 
the arrival of the perturbation medium into the microfluidic device was 
calculated by multiplying the flow rate and the total inner volume of 

the system providing the medium (the combination of the flow switch 
matrix, flow sensor and tubing with the length similar among differ-
ent experiments). In case of CYH and NAA addition, the microscopy 
time point of or right after the arrival of the perturbation medium 
was confirmed by observing a sharp drop of NAD(P)H fluorescence. 
For convenience, we called the first time point of microscopy equal to 
or right after the calculated time of the perturbation medium arrival 
as tswitch. In some experiments, the perturbation medium arrived to 
the microfluidic device during imaging so that some XY regions had 
tswitch one δt bigger that others (in case of CYH and NAA addition, it was 
seen in the dynamics of NAD(P)H signal averaged within individual 
XY regions). In an independent experiment with the shift to a fluores-
cent dye (C368, Thermo Fisher), we found that, having arrived in the 
microfluidic device, the new medium fully replaces a previous one 
within approximately 10 min. Thus, at tswitch and sometimes also at the  
next time point of microscopy, the actual concentration of a perturba-
tion compound in the microfluidic device is likely lower than stated  
in Supplementary Table 3.

To infer the cell-cycle activity pattern of an inhibited process, we 
implemented the following data analysis pipeline:

 1. In the microscopy movie, we traced the maximal number of 
cells that budded at least twice in the control medium and 
remained after tswitch, which constituted the initial set of cells S0. 
With a custom macro in ImageJ, for each cell c ∈ S0, we recorded 
the time points of budding events and stored them in the sorted 
array LBUD (c) = [t1BUD(c),… , tnBUD(c)], |LBUD (c) | ≥ 2.

 2. To decrease the uncertainty in aligning the single-cell responses 
to perturbation along the cell cycle, we focused the analysis on 
the predominant subpopulation of fast-dividing cells. Specifi-
cally, we constructed the distribution of the time duration bet-
ween two latest budding events before tswitch. For further analysis, 
we selected the cells within the interval of the median ± s.d. of this 
distribution, which resulted in a smaller set of cells S1.

 3. For each cell c ∈ S1, via the semi-automatic procedure described 
above, we obtained the sorted arrays with the time points of ME 
and START events: Le (c) , |Le (c) | ≥ 0, ∀e ∈ {ME, START}.

 4. To identify the average relative timing of the cell-cycle events 
during normal growth, we studied the position of ME and START 
between two latest budding events before tswitch. Specifically, 
defining that ME happens at 0 min of the cell cycle, we calculated 
the average relative timing of START and budding in minutes, 
Δ ̄tSTART and Δ ̄tBUD, in the analyzed cells of S1 (by definition, 
Δ ̄tME = 0). We also used the difference between the two latest 
budding events to get the average cell cycle duration Δ ̄tCC.

 5. To decrease the contribution of measurement noise to the 
activity pattern, we smoothed the single-cell NAD(P)H traces: 
from Fcraw (t) to Fcsmooth (t) , t ∈ {tcmin + (i − 1)δt}nc

i=1, where tcmin is the 

first time point in minutes when the cell c was imaged and nc is 
the total number of time points it was imaged. Specifically, we 
applied the Savitzky–Golay filter with the window length 7 and 
the third order of the polynomial used to fit the raw data 
(Python’s method scipy.signal.savgol_filter). An advantage of 
this filter for smoothing the NAD(P)H oscillations is that the 
resulting function minutely follows rather than severely cuts 
away the protruding data points of the crest and trough  
(Fig. 1c). In case of CYH and NAA addition, which caused a sharp 
drop of NAD(P)H fluorescence at the media switch, we broke 
each trace in two pieces, before and after the media switch, and 
smoothed them separately to prevent biasing the filter. To assist 
smoothing at the edges of the two pieces, we considered as if 
there were three more data points at each edge with the same 
value (the method’s mode = ‘nearest’). Once smoothing was 
conducted in two separate pieces of the single-cell trace, they 
were eventually merged back. We calculated the derivative 
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value for each pair of adjacent data points in the smoothed 
NAD(P)H trace and assigned it to the middle between the 
corresponding time frames: Ḟcsmooth(t), t ∈ {tcmin + (i − 0.5)δt}nc−1

i=1 .
 6. In each experiment, we identified the first time point of  

severe metabolic perturbation tp at which the normal 
population-averaged dynamics of both NAD(P)H and growth 
rate sharply changed (Supplementary Table 4). Subsequently, 
we focused on the single cells’ NAD(P)H derivative values 
immediately preceding tp, {Pc}c∈S1,Pc = Ḟ c

smooth (tp − 0.5δt), to 
detect in them the cell-cycle-dependent response to the 
perturbation. To align the derivative values of this set along the 
cell cycle, for every cell c, we measured {θc

e}e, the time periods 
passed from the latest cell cycle event of each kind 
e ∈ {ME, START,BUD} till tp − 0.5δt. Considering that the closest 
event would describe the position of cell c in the cell cycle most 
reliably, we picked the smallest of these three time periods and 
adjusted it to match ME as the beginning of cell cycle: 
φc = min ({θc

e}e∈{ME,START,BUD}) + Δ ̄tEc with 
Ec = argmine ({θc

e}e∈{ME,START,BUD}). To ensure that we are processing 
cells that had normal cell cycle dynamics before tp (for example, 
no cell cycle arrest or slowdown), we excluded the cell c from 
the analysis if its cell cycle event closest to perturbation was 
abnormally delayed, specifically, if φc > Δ ̄tSTART ∩ Ec = ME, 
φc > Δ ̄tBUD ∩ Ec = START or φc > Δ ̄tCC ∩ Ec = BUD. Therefore, we 
arrived to a smaller or the same set of cells S2, |S2| ≤ |S1| , for 
which we associated the NAD(P)H derivative value P c with the 
position in cell cycle φc when perturbation happened. Besides, 
for each cell c ∈ S2, we stored the information about the kind of 
the cell-cycle event closest to perturbation, Ec.

 7. The NAD(P)H derivative value P c is thought to contain not only 
the NAD(P)H response to perturbation but also the normal 
dynamics characteristic to the corresponding position in cell 
cycle φc. Thereby, to obtain the NAD(P)H response to perturba-
tion Rc, we subtracted from P c the median value of NAD(P)H 
derivative at the comparable time in the preceding cell cycle: 
Pc − N(φc), where

N (ϕ) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

median ({Ḟxsmooth(LME (x)[−2] + ϕ)}x∈S1) ,0 < ϕ ≤ Δ ̄tSTART

median ({Ḟxsmooth (LSTART (x)[−2] + ϕ − Δ ̄tSTART)}x∈S1) ,

Δ ̄tSTART < ϕ ≤ Δ ̄tBUD

median ({Ḟxsmooth (LBUD (x)[−2] + ϕ − Δ ̄tBUD)}x∈S1) ,

Δ ̄tBUD < ϕ ≤ Δ ̄tCC

with Le (x)[−2] being the time of the second latest cell cycle event e  
before tswitch. We assume that this subtraction reveals the  
actual NAD(P)H response to perturbation, by removing the  
contribution of normal NAD(P)H dynamics during the cell cycle. 
As the NAD(P)H response to perturbation is considered as a proxy for 
metabolic activity which should be expressed in non-negative values, 
we changed the sign of the obtained difference if P c is on average  
negative: α (Pc − N (φc)), where α = −1 if population-average NAD(P)H 
drops at tp (CYH addition), and α = 1 otherwise. Thus, NAD(P)H  
response to perturbation is always, on average, a positive value. 
To make the value of the NAD(P)H response to perturbation compara-
ble to the normal dynamics of NAD(P)H, we related the difference 
Pc − N(φc) to the amplitude of N (ϕ) (the amplitude of NAD(P)H oscilla-
tion): Rc = α(Pc−N(φc))

max
ϕ∈(0,Δ ̄tCC ]

N(ϕ)− min
ϕ∈(0,Δ ̄tCC ]

N(ϕ)
.

 8. To obtain the desired cell-cycle activity pattern of the inhibited 
process, we regressed the single cells’ values of NAD(P)H 
response to perturbation {Rc}c∈S2 against the corresponding 

positions in cell cycle {φc}c∈S2 when these cells had experienced 
the perturbation. Specifically, we implemented a Gaussian 
process regression (Python’s sklearn.gaussian_process), using 
as a prior an RBF kernel with the length scale range [2δt, 5(or6)δt] 
and a white kernel with the free noise level, and maximizing the 
log-marginal likelihood.

Identification of the cell-cycle phase of karyokinesis
The strain YSBN6 Hta2-mRFP1 (Supplementary Table 1) was  
cultivated in 2% glucose YNB. Microscopy details were setup 2a; ×100 
objective; BF (3 V, 50 ms, EM gain 1), GFP (20%, 200 ms, EM gain 3), RFP 
(10%, 100 ms, EM gain 3); and time step δt = 3 min. The syringe pump 
was used to maintain the flow rate of 2.4 µl min−1 in the microfluidic 
device.

We identified the boundaries of the mother cell in the bright-field 
image via BudJ cell segmentation and analyzed the pixels of the cor-
responding red fluorescence image (Extended Data Fig. 2a). Particu-
larly, we implemented the local thresholding in which a pixel i is 
selected if Fi > Fi (15 × 15) + p30 , where Fi is the pixel’s intensity,  
Fi (15 × 15) – the mean intensity among the nearest 15 × 15 pixels (roughly, 
a third of the mother cell) and p30 – the thirtieth percentile among  
the mother cell’s pixels (Python’s method skimage.filters.threshold_
local with block_size = 15, method = ‘mean’, offset = p30 and mode =  
‘nearest’). Using the offset p30 helps to discard a small number of 
cytoplasmic pixels that due to noise happen to be brighter than their 
neighbors. For the same purpose, after the local thresholding, we 
removed objects (ensembles of selected pixels) smaller than 25 pixels 
and having the connectivity equal to 1 (two pixels are connected  
by one orthogonal step). Eventually, we segmented one object contain-
ing the brightest pixels, which represents nucleus. If some pixels  
inside this object were not selected in the local thresholding  
(due to noise, some single pixels may be dimmer), then we added these 
pixels to the selection. To calculate the abundance of the fusion 
Hta2-mRFP in the mother-cell nucleus, we summed the intensities of 
the pixels located within the segmented nucleus. Microscopy image 
processing was performed in Python with the help of the module 
skimage.

Mathematical modeling of metabolism
The mathematical model describing the dynamics of cell mass  
during the cell cycle and inferring the absolute units for the biosyn-
thetic rates by solving an optimization problem was built and imple-
mented via General Algebraic Modeling System (GAMS) (GAMS 
Development Corporation) with the help of the solver ANTIGONE85. 
Supplementary Methods and Supplementary Table 6 provide a detailed  
description of the model with literature and experimentally derived 
parameter values.

To infer the fluxes of the core carbon and energy metabo lism,  
we modified and simulated a previously developed thermo dynamic- 
stoichiometric model of yeast metabolism45. Specifically, we split the 
model’s existing biomass equation into six separate equations, respec-
tively defining the production of proteins, lipids, cell-wall polysac-
charides, storage polysaccharides, RNA and DNA (Supplementary  
Table 7), which was conducted in accordance with the original formu-
lation of this biomass equation86. Next, we introduced a new biomass 
production equation that combines these six major biomass com-
ponents into biomass as the end product (Supplementary Table 7; 
biomass reaction). Regression analysis to determine the parameters 
of the modified model (standard Gibbs energies of formation and 
reactions) was performed in GAMS using the global optimization 
solver ANTIGONE85 as described previously45, where metabolomics 
and physiology data from elsewhere40 were employed. To estimate the 
formation Gibbs free energies of the major biomass components, we 
introduced them as estimated parameters to the regression problem, 
using the following equations:

http://www.nature.com/natmetab


Nature Metabolism | Volume 5 | February 2023 | 294–313 308

Article https://doi.org/10.1038/s42255-023-00741-x

j ∈ {proteins, lipids,polysacch,DNA,RNA, storage} and

β ∈ {
protein reaction, lipid reaction,polysaccharide reaction,

DNAreaction,RNA reaction, storage reaction
} ∶

ΔfG′0
biomass = ∑

j
ΔfG′0

j ,

ΔrG′0
β = ΔfG′0

j + ∑
m≠j

Sm,βΔfG′0
m , j is produced inβ,

ΔrG′
biomass reaction = 0

where ΔfG′0
biomass, ΔfG′0

j  and ΔfG′0
m  are the standard Gibbs energies of 

formation of biomass, the biomass component j and the metabolite 
m; ΔrG′0

β  and ΔrG′
biomass reaction  are the standard Gibbs energies of the  

reaction β and the biomass reaction; Sm,β is the stoichiometric  
coefficient of the metabolite m in the reaction β. Besides, in our  
modified model, we changed the Gibbs energy balance45, by using  
the formation Gibbs energies of the major biomass components 
instead the formation Gibbs energy of biomass.

FBA on the basis of this parameterized model was implemented 
in Python using the global optimization solver Gurobi87.  
To model primary metabolism during the cell cycle, we used  
the momentar y relative contributions of biosynthetic  
processes to the total biomass production (Fig. 3d) to define  
the stoichiometric coefficients of the respective components  
in the biomass reaction in a cell-cycle-dependent manner. Specifi-
cally, for each of 17 discrete moments during the cell cycle 
t ∈ T = {Ti}

n
i=1 ,δt = 6 min,T1 = 3 min, Tn = 99 min , we defined the bio-

mass reaction as follows:

cproteinss (t)
cproteinsmodel

proteins + clipidss (t)
clipidsmodel

lipids + cpolysacchs (t)
cpolysacchmodel

polysacch + cDNAs (t)
cDNAmodel

DNA

+ cRNAs (t)
cRNAmodel

RNA <=>,

where c j
s (t) j ∈ {proteins, lipids,polysacch,DNA,RNA}  is the momentary 

relative contribution of the biosynthetic process of component j to the 
total biomass production in the cell-mass model trained on the set s of 
replicate measurements of biosynthetic activities (in total nine sets; 
more details are provided on the sets at the end of Supplementary 
Methods), c j

model is the mass fraction of the component j regarding 
biomass in the model (Supplementary Table 7). Because there is only 
minor production of trehalose and glycogen under the high-glucose 
condition investigated in this study29–31, we set the coefficient of storage 
to zero throughout the cell cycle.

For each t ∈ T, we ran nine FBA simulations corresponding to dif-
ferent sets of experimental measurements used to train the cell-mass 
model (end of Supplementary Methods) and thus using slightly differ-
ent values of the coefficients in the biomass reaction (as per the reac-
tion above). In each simulation, we maximized the flux through the 
respectively defined biomass reaction, while using glucose as the sole 
carbon and energy source, and constraining the cellular Gibbs energy 
dissipation rate by the upper limit of 12.3 J gDW−1h−1 (ref. 45). Contrarily 
to previous work45, we did not use population-level data to set bounds 
for variables (metabolite concentrations and Gibbs energies of reac-
tions) to prevent biasing the simulations during the cell cycle. As an 
exception, we set the lower bound of cytoplasmic fdp to exp(−10.058) 
mol and the upper bound of cytoplasmic glyc3p to exp(−8.794) mol as 
in few individual simulations (in few combinations of t and s) without 
these bounds the reaction direction of fructose 1,6-bisphosphatase 
and glycerol kinase was different from expectations for high-glucose 
cultivation. Toward identifying optimal solutions in the large 
non-convex and non-linear solution space, we used the global optimiza-
tion solver Gurobi 9.5.1 (ref. 87). The constraints on the formation energy 
of the biomass components and biomass were relaxed from the values 

estimated by the regression (±100 kJ mol−1) to account for potential 
variability in the organization of the macromolecules during the  
cell cycle. The objective function was extended to minimize the  
difference between the predicted formation energy of biomass com-
ponents from the regression and the estimated values from the 
cell-cycle-specific FBA.

After the FBA simulations, we integrated the inferred fluxes with 
the total biomass synthesis rate (Fig. 3c), thus translating the 
FBA-associated flux units mmol (mmolbiomass)−1h−1 to the absolute flux 
units pmol cell−1 h−1:

vcelli,s (t) pmol
cell⋅h

= 10−3 ⋅
vFBAi,s (t) mmol

mmol biomass⋅h

vFBAbiomass,s(t)
1
h

⋅ 1
Mbiomass

gbiomass
mmol biomass

⋅ rbiomass,s(t)
pgbiomass
cell⋅h

,

where t is one of the 17 time points during the cell cycle for which  
independent FBA simulations were implemented; s is one of the  
nine sets of coefficients in the biomass reactions obtained via the 
cell-mass model trained on different sets of replicate measurements; 
vcelli,s (t) is the flux of the reaction i in the absolute sense, expressed in 
pmol cell−1h−1, without being related to a gram or mole of biomass; 
vFBAi,s (t) is the flux of the reaction i in a relative sense, expressed in 
mmol (mmolbiomass)−1 h−1, vFBAi,s (t) was obtained in FBA; Mbiomass is the 
molar weight of biomass in the model (0.966 g mmol−1), which  
was calculated by uniting the equations in Supplementary Table 7  
into one and subtracting the sum of the products’ molar masses  
multiplied by their coefficients from the sum of the substrates’  
molar masses multiplied by their coefficients; vFBAbiomass,s (t) is the flux of 
the biomass reaction in FBA; rbiomass,s(t) is the total biomass synthesis 
rate (Fig. 3c) obtained in the cell-mass model.

In Fig. 4a, to better compare the cell-cycle-phase-resolved FBA 
predictions (shown in Fig. 4b) with the population-level measure-
ments in the exponentially growing culture, the calculation of the 
cell-cycle-average yields from the predicted fluxes was conducted by 
considering a long early G1 (ME to START) characteristic of newborn 
cells that to a large extent constitute the exponentially growing culture. 
Cell-cycle-average yields of extracellularly exchanged metabolites 
with respect to glucose (Fig. 4a; y axis) were calculated from the flux 
predictions in the following way:

YPmetEX ,s =
∑t [v

cell
metEX ,s (t)

pmol
cell⋅h

⋅Mmet
g
mol

⋅ φP(t)]

−∑t [v
cell
glcEX ,s

(t) pmol
cell⋅h

⋅Mglc
g
mol

⋅ φP(t)]
,

where YPmetEX ,s  is the cell-cycle-average yield of the extracellularly 
exchanged metabolite metEx given P, the cell-cycle-phase distribution 
of cells in a population; t is one of the 17 time points during the cell  
cycle for which independent FBA simulations were implemented;  
s is one of the nine sets of coefficients in the biomass reactions  
obtained via the cell-mass model trained on different sets of replicate 
measurements; vcellmetEX ,s (t) is the flux of the exchange of the metabolite 
metEX through the plasma membrane, with positive values correspond-
ing to excretion and negative values meaning uptake (for example 
oxygen uptake); vcellglcEX ,s

(t) is the flux of glucose uptake (negative values); 

Mmet and Mglc are the molar masses of the metabolite metEX and glucose, 

respectively; φP(t) is the proportion of cells undergoing the cell-cycle 
phase t in a population given the distribution P. We used the following 

distribution P: φP (t) =
mean(ΔtnewbornearlyG1 )

ΔtmatureearlyG1
 for t ∈ {3,9} (min) that are in the early 

G1 (between ME and START) in the mature cell, and φP (t) = 1 for the rest 
of t, where mean (ΔtnewbornearlyG1 ) = 79.75 min is the mean of the early G1 dura-

tion (between ME and START) in newborn cells and ΔtmatureearlyG1 = 11 min  

is the early G1 duration in a mature, not newborn, cell. The duration of 
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the rest of the cell cycle is virtually the same between the newborn and 
mature cells. Thus, the calculation of the cell-cycle-average yields from 
the predicted fluxes was performed by considering a long early G1 
observed in newborn cells that to a large extent constitute an exponen-
tially growing culture, for which measured yields are available in  
the same strain YSBN6 and the same medium 2% glucose YNB (Fig. 4a; 
x axis).

In Fig. 4b, the fluxes of glucose and oxygen uptake were multiplied 
by −1 as these fluxes are negative in the model by definition (uptake 
fluxes). In Fig. 4c, the turnover was calculated as the sum of ATP fluxes 
in reactions where this metabolite is produced: ∑i Sijv

cell
i (t), if 

Sijvcelli (t) > 0, where Sij is the coefficient of j = ATP in the reaction i  
that has the flux vcelli (t) (mol cell−1 h−1) (due to the steady-state assump-
tion of FBA, the turnover values would be the same if ATP-depletion 
fluxes only were summed). We showed individual reactions i whose 
cytoplasmic flux of j = ATP calculated as Sij vcelli (t) is bigger than  
0.09 or smaller than −0.09 (mol cell−1 h−1) in at least one cell-cycle phase. 
In Fig. 4d, for each precursor, we calculated the sum of its fluxes, 
∑i Sijv

cell
i (t), in the reactions diverting from central metabolic pathways 

to the synthesis of major biomass components: for ribose 5-phosphate 
(r5p), its fluxes in the syntheses of AMP, GMP and UMP as well as  
phosphoribosyl pyrophosphate; for erythrose 4-phosphate (e4p), its 
flux in the synthesis of 3-deoxy-d-arabino-heptulosonate 7-phosphate; 
for phosphoenolpyruvate (pep), its fluxes in the reactions of 
3-deoxy-d-arabino-heptulosonate 7-phosphate synthetase and 
3-phosphoshikimate 1-carboxyvinyltransferase; for pyruvate (pyr), 
the l-alanine flux in the reaction of protein biosynthesis; for acetyl- 
CoA (accoa), its fluxes in the reactions of zymosterol synthesis, 
homoserine O-trans-acetylase, 2-isopropylmalate synthase and lipid 
biosynthesis; for glycerol 3-phosphate (g3p), its flux in lipid biosyn-
thesis; for glucose 6-phosphate (g6p), its fluxes in polysaccharide and 
lipid biosynthesis; for fructose 6-phosphate (f6p), its flux in polysac-
charide biosynthesis.

Estimating the glucose-uptake flux during the cell cycle
The experiment with 2-NBDG addition was performed in two  
replicates. The strain YSBN6 WHI5-mCherry was recovered from  
a −80 °C stock on a 2% (m/V) glucose YPD plate, whose single  
colony initiated an overnight pre-culture in 1% (m/V) glucose YNB 
medium. Afterward cells were cultivated in 0.015% (m/V) glucose  
YNB medium for several hours before being loaded into the micro-
fluidic device. With microscopy imaging every δt = 6 min, we moni-
tored cells inside the microfluidic device in the following channels: BF 
(3 V, 50 ms), GFP (2%, 200 ms) and RFP (10%, 600 ms), via microscope  
setup 1b and ×100 objective. In the microfluidic device, we cultivated 
cells for 4.8–5.2 h in the YNB medium with 0.015% (m/V) glucose  
and 0.6% (V/V) dimethylsulfoxide (DMSO) (the vehicle of the subse-
quently added 2-NBDG). Due to the competition between glucose  
and 2-NBDG for hexose transporters88, cells were cultivated with a  
lower glucose concentration (0.015%), which, nevertheless, led to 
the same average cell-cycle duration of ~100 min as on 2% glucose 
used in other experiments. We used the air-pressurized pumping 
system together with the flow sensor to maintain the flow rate of 
5 µl min−1. Afterward, we paused the time-lapse microscopy and, 
at the beginning of this interruption period, stopped the flow of 
the medium for several minutes to switch it manually (Switch 1), 
by cutting and reconnecting the tubing in the ~10 cm proximity 
of the microfluidic device. Specifically, we switched to the YNB 
medium with 0.015% (m/V) glucose, 0.6% (V/V) DMSO and 180 µM  
2-NBDG (Thermo Fisher, N13195) (DMSO was used to dissolved 
2-NBDG in its 10 mg ml−1 stock); the flow rate was returned to 
5 µl min−1. After two consecutive rounds of imaging of all XY posi-
tions in the microfluidic chamber, we paused the microscopy again 
and, at the beginning of this second interruption period, stopped 
the medium flow for several minutes to manually switch back to the 

previous medium lacking 2-NBDG (Switch 2). The flow rate was set 
to 5 µl min−1 again.

The pulse of 2-NBDG in the cellular environment was estimated to 
last ~13–15-min. The middle of this time period was then used to meas-
ure the cell-cycle phases when individual cells experienced the pulse of 
2-NBDG, which was conducted in a manner analogous to the analysis of 
the stop-and-respond experiments (such as using the latest cell-cycle 
event before the perturbation and excluding cells with abnormally 
long cell-cycle phases; for more details see above).

To tackle uneven illumination in the GFP channel (manifesting in 
the brighter center and darker corners of an image), which may con-
found low-signal intracellular 2-NBDG fluorescence, we implemented a 
flat-field correction. Specifically, we stacked GFP-channel images from 
almost all XY positions at the time point before Switch 1 and calculated 
the median intensity for each pixel. The resulting image with median 
intensities lacked the structure with microfluidic device pads and cells 
that were visible in the images of individual XY positions. We subtracted 
the camera baseline value of 500 from the image with median intensi-
ties and fitted a two-dimensional (2D) Gaussian distribution to the 
image to learn the shape of the uneven illumination. To correct for the 
uneven illumination, we subtracted from every GFP-channel image of 
the movie the camera baseline value and multiplied the image by the 
ratio between the maximal value of the fitted 2D Gaussian and the 2D 
Gaussian itself.

To measure the fluorescence of the intracellular (acquired) 
2-NBDG, we used the first microscopy image after Switch 2, when 
2-NBDG was gone from the extracellular environment. We did not use 
images between Switch 1 and 2, with the medium containing 2-NBDG, 
because the high extracellular fluorescence under and above a seg-
mented cell likely confounded the intracellular fluorescence in the 
wide-field microscopy (which was supported by large values of fluo-
rescence within the cell’s segmentation and gradual decrease in pixel 
intensities when moving from the cell’s edges to the center).

To remove the contribution of cellular autofluorescence in the GFP 
channel to the measurement of the intracellular 2-NBDG fluorescence, 
we subtracted from a cell’s fluorescence after Switch 2 the mean value 
of the autofluorescence in the five time points before Switch 1 (we did 
not observed a cell-cycle dependency of cellular autofluorescence, 
therefore, correction for it was not cell-cycle-related, rather it was indi-
vidual cell-related). By implementing this correction, we also removed 
the contribution of the background to the measured fluorescence 
within a cell’s segmentation (rolling-ball background correction was 
not implemented for these experiments).

We noticed that the intracellular fluorescence of the accumulated 
2-NBDG decreased as a function of the time that a cell was kept in the 
medium without the glucose analog (likely due to reverse transport 
of the analog to the environment). The first microscopy imaging after 
Switch 2 that we used to measure the accumulated 2-NBDG was per-
formed at slightly different time moments in different XY positions, 
therefore, cells in these positions were kept in the analog-free medium 
for slightly different time periods. We found that cells in the positions 
that were imaged later had lower values of the intracellular fluores-
cence. To correct for it, we united the cells from up to four XY positions 
imaged immediately after each other, calculated the median fluores-
cence of the accumulated 2-NDBG in these cells and normalized by it 
the individual cell values. After this normalization, we merged the cells 
from all XY positions, assigned to them the cell-cycle phases in which 
they experienced the pulse and run a Gaussian process regression to 
find a cell-cycle dependency in the intracellular 2-NBDG fluorescence. 
In the regression, we used as a prior an RBF kernel and a white kernel, 
maximizing the log-marginal likelihood.

Estimating glycolytic flux during the cell cycle
Two strains, namely YSBN10 glycolytic biosensor and YSBN10 con-
trol for glycolytic biosensor, were each grown in two consecutive 
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exponential 2% (m/V) glucose YNB cultures. The strains were loaded 
in two separate microfluidic devices attached to the same cover glass. 
In both microfluidic devices, cells were provided with 2% (m/V) glucose 
YNB medium at the flow rate of 4 µl min−1 via a syringe pump. With 
microscopy imaging every δt = 6 min, we simultaneously monitored 
cells inside both microfluidic devices in the following channels: BF 
(3 V, 50 ms), YFP (50%, 300 ms, EM gain 25) and RFP (25%, 200 ms, EM 
gain 25), via microscope setup 2a and ×100 objective. The analysis of 
microscopy data and the derivation of the uncoupling between YFP 
and mCherry production rates during the cell cycle is described else-
where47, where this biosensor was used to assess glycolytic flux during 
the cell cycle in a respiratory metabolic condition (TM6* strain growing 
on 2% glucose). The length‐scale range of the RBF kernel that was used 
in the Gaussian process regression for smoothing the volume, YFP 
and mCherry fluorescence trajectories was set to [18, 48] {min}. The 
maturation half‐times were assumed to be 25 min for YFP and 50 min 
for mCherry.

Dynamic switches between aerobic and microaerobic 
conditions
A 1% glucose modified Verduyn minimal medium was used to cultivate 
the cells of the strain YSBN6 Atp3-mCherry (Supplementary Table 1; our 
experiments did not focus on properties originating from the cassette 
pTEF1-pH-tdGFP-pADH1-OsTIR1-KanMX4 in the HO locus). To maintain 
the aerobic condition in the microfluidic device with cultivated cells, we 
continuously provided the medium that, right before the experiment, 
had been aerated by shaking for several hours in a 100-ml Erlenmeyer 
flask. To make the cells’ environment microaerobic, we provided the 
medium that had been bubbled with nitrogen for 1 h immediately 
before the experiment. To minimize the exposure of this medium 
to atmospheric oxygen, we did not change its reservoirs before the 
experiment and bubbled nitrogen in the syringe that was later used to 
inject the medium in the microfluidic chamber. The syringe pump was 
employed to maintain the medium flow rate at 3.6–4 µl min−1. To switch 
between the aerobic and microaerobic conditions, in a close proximity 
to the microfluidic device, we cut and reconnected the tubing coming 
from two syringes that contained the aerated and nitrogen-bubbled 
medium, respectively.

To decrease the contact of the nitrogen-bubbled medium with 
atmospheric oxygen through the tubing or the material of the micro-
fluidic device (PDMS), we added a range of accessories to the micro-
fluidic setup. First, we connected the syringe with this medium to 
the air-impermeable tubing (VICI Jour, JR-T-6130-M3) that, in ~10 cm 
proximity to the microfluidic device, was attached to the Tygon 
microbore tubing (0.030 inch inner diameter × 0.090 inch outer 
diameter) followed by the PTFE microbore tubing (0.012 inch inner 
diameter × 0.030 inch outer diameter) wrapped in parafilm and epoxy 
glue. A short fragment of the Tygon and PTFE microbore tubing needed 
for the medium switch in the closest vicinity to the microfluidic device 
was not protected by the parafilm and epoxy glue. As the second modi-
fication to the microfluidic setup previously described14,15, we used a 
transparent plastic plate of ~5-mm thickness to close the top of the 
metal holder that accommodated the cover slip at the bottom and, on 
it, the PDMS chip both forming the microfluidic device. With the help 
of screws, the cover slip and the plastic plate were tightly connected to 
the metal holder, with a grease applied at interfaces to block contacts 
with the outside air. The plastic plate contained three small holes 
with the diameter slightly bigger than 0.030 inch through which PTFE 
microbore tubing was inserted to connect with the PDMS chip’s inlet, 
side channel and outlet, respectively. The plastic plate also contained 
two bigger holes with 0.090-inch diameter and Tygon microbore tub-
ing providing nitrogen (when necessary) was tightly connected to one 
of these. Therefore, the PDMS chip with the microfluidic chamber with 
trapped cells was concealed in a small box formed by the metal holder, 
the cover slip and the plastic plate. When the aerated medium was 

switched to the nitrogen-bubbled medium, this box was continuously 
ventilated with nitrogen, preventing the increase of oxygen level in the 
cells’ environment due to the air permeability of PDMS.

Microscopy details were setup 2a; ×40 objective; BF (3 V, 50 ms), 
NAD(P)H (15%, 200 ms), GFP (2%, 30 ms), RFP (25%, 250 ms); time 
step δt = 5 min. For Fig. 5a and Extended Data Fig. 9, mCherry fluores-
cence was determined as the average value across the pixels of the 
entire mother cell. In Fig. 5a, one unit of mCherry fluorescence was the  
minimal value of the smoothed trajectory of this cell.

NAD(P)H dynamics in the carbohydrate-storage mutant
A 1% glucose modified Verduyn minimal medium was used to cultivate 
the cells of the strain YSBN6 ΔTps1ΔTps2ΔGsy1ΔGsy2 (Supplementary 
Table 1). Microscopy details were setup 2a; ×100 objective; BF (3 V, 
200 ms), NAD(P)H (20%, 200 ms); time step δt = 5 min. The syringe 
pump was employed to maintain the medium flow of 4.8 µl min−1. In 
Fig. 5b, not every metabolic oscillation was accompanied by budding, 
which was described earlier44.

Cell-cycle NAD(P)H dynamics in different growth conditions
Experiments were performed with the strain YSBN6.G2J (Supplemen-
tary Table 1; our experiments did not focus on properties originating 
from the cassette KanMX4-pTEF1-mGFP-AID-tCYC-pADH1-AtTIR-tADH1 
in the HO locus). Cells were cultivated either in modified Verduyn’s 
minimal medium (MM) or in YPD. In case of conditions containing 1% 
glucose, cells were cultivated in two consecutive exponentially growing 
batch cultures and then loaded to the microfluidic device. To get cells 
growing on 2% pyruvate MM in the microfluidic device, we first inocu-
lated the strain in a flask with 1% glucose MM for a 1-d cultivation to pass 
the diauxic shift, then diluted the culture at the OD 0.1 in a flask with 2% 
pyruvate MM for an overnight growth and, again, diluted the culture at 
the OD ~0.05 in the same medium so that the cells grew exponentially 
for 1 d before loading. We cultivated cells with the same medium in  
two last consecutive exponentially growing batch cultures and after-
ward in the microfluidic device, aside from the case of 1% Glu + CSM 
(Formedium, DCS0019) to which cells were shifted after ~7 h of growing 
on 1% Glu in the microfluidic device. Minimizing the probability that 
the adaptation to this shift confounds the cell-cycle-related NAD(P)H 
dynamics, for this analysis, we processed the NAD(P)H data after 4 h 
of growing on 1% Glu + CSM.

The syringe pump was employed to maintain the medium flow  
in the microfluidic device. The composition of the medium as well as 
the details of microscopy and microfluidic cultivation are given in 
Supplementary Table 8. We detrended single-cell NAD(P)H traces 
(average pixel intensity in the mother-cell compartment), dividing 
them by the corresponding curves obtained using LOWESS with large 
window sizes for line fitting (see window size values in Supplementary 
Table 8). Before detecting the phase of NAD(P)H oscillation’s crest and 
trough, we smoothed the detrended NAD(P)H traces using LOWESS 
with small window sizes for line fitting (Supplementary Table 8).  
For Fig. 5d and Extended Data Fig. 10a, to calculate the phase, 
cell-cycle-relative time, each time point of t minutes between  
two adjacent budding events happening at t iBUD and t i+1BUD minutes is 

converted in the following way: t−t iBUD
t i+1BUD−t

i
BUD

. In Fig. 5d, the values of the 

detrended NAD(P)H fluorescence are linearly interpolated at  
100 phase points, from 0 to 1, for which we calculated the median 
NAD(P)H fluorescence and obtained its confidence interval via  
bootstrapping with 5,000 iterations. For Extended Data Fig. 10a, the 
frequency was determined as the inverse time difference between  
two adjacent buddings: 1

t i+1BUD−t
i
BUD

. The phase of the crest is identified  

as the phase in the range (−0.25, 0.5) at which the detrended and 
smoothed NAD(P)H fluorescence is maximal (negative phase values 

correspond to the time preceding t iBUD, the first of the two analyzed 
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adjacent buddings). The phase of the trough is identified as the phase 
in the range (0.25, 1) at which the detrended and smoothed NAD(P)H 
fluorescence is minimal. Cells cultivated in 1% Glu (2) were later  
shifted to 1% Glu + CSM. The marked variability between the cells in  
1% Glu and 1% Glu (2) is likely explained by the difference in light  
exposure (Supplementary Table 8) and, hence, by different degrees  
of phototoxicity during the corresponding microscopy experiments. 
For Extended Data Fig. 10b, we calculated budding frequency as  

1
t i+1BUD−t

i
BUD

. To calculate the respective NAD(P)H oscillation peak frequency, 

we identified the oscillation peaks in detrended and smoothed 
single-cell NAD(P)H trajectories through visual inspection assisted  
by an automatic local maximum detection tool (Scipy’s signal.find_
peaks). For each budding event, we then found the closest NAD(P)H 
oscillation peak tpeak(t iBUD), which allowed us to calculate the NAD(P)H 

oscilla tion peak frequency as N(i,i+1)−1
tpeak(t i+1BUD)−tpeak(t

i
BUD)

, where N(i,i + 1) is the 

number of the NAD(P)H oscillation peaks in the inclusive interval 
[tpeak (t iBUD) , tpeak (t

i+1
BUD)], which is in the majority of cases equal to 2.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data extracted from microscopy imaging, analysis- and modeling- 
related data required to generate the figures are available at dataverse.
nl (https://doi.org/10.34894/XPYC7Y). Microscopy raw data can be 
obtained from M.H. Strains can be obtained from Addgene and M.H.

Code availability
Code underlying the models (the cell-mass model and the FBA model) 
and analysis files (Python) required to generate the figures are available 
at dataverse.nl (https://doi.org/10.34894/XPYC7Y).
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Extended Data Fig. 1 | Processing raw single-cell data: smoothing single-cell 
traces of volume and sfGFP fluorescence, obtaining the production rate of 
sfGFP expressed from the heterologous promoter tetO7, with and without 
accounting for sfGFP maturation. (a,b) Single-cell volume (a) and sfGFP 
fluorescence (b) during an individual cell cycle. We show raw data with asterisks 
when corresponding to the daughter cell, triangles when corresponding to the 
mother cell and circles when corresponding to the whole cell. The vertical lines 
denote major cell cycle events: mitotic exit (ME), START and budding (BUD). 
The curves show the LOWESS smoothing with adjacent smoothed values (at 
the same time points as the raw data) connected with a line. a: the discontinuity 
in the values that should immediately follow mitotic exits due to cytokinesis 
is tackled by vertically moving down the data before the first mitotic exit and 
up the data after the second mitotic exit. b: we measured sfGFP fluorescence 

only in the mother cell and assumed that it is the same in the whole cell. (c–e) 
Single-cell sfGFP abundance (c), sfGFP production rate calculated with (d) and 
without (e) accounting for the maturation of the fluorescent protein (assumed 
maturation half-time 6 minutes, first-order maturation kinetics). The curves 
show linearly connected values corresponding to the same time points as the raw 
data. c: values are the product of the smoothed cell volume (a) and smoothed 
sfGFP fluorescence (b). d: values are a linear combination of the first and second 
derivatives of sfGFP abundance (c). e: values are the first derivative of sfGFP 
abundance (c). (f, g) The production rate of sfGFP presented as a summary of 38 
individual cell-cycle traces. The sfGFP production rate was computed without 
accounting for the maturation of this fluorescent protein. Values from (e) and 
other 37 cell cycles correspond to the markers. The plots were built analogously 
to Fig. 1a, b.

http://www.nature.com/natmetab
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Extended Data Fig. 2 | Identification of the typical cell-cycle phase of 
karyokinesis, which is assumed to denote the end of DNA replication. 
(a) Microscopy image segmentation to locate the nucleus in the mother cell 
containing mRFP1 fused to the histone protein Hta2, and to calculate the 
abundance of the fusion. Details of automatic nucleus segmentation are 
provided in Methods. To calculate the abundance of the fusion Hta2-mRFP in 
the mother cell nucleus, we sum the intensities of the pixels located within the 
segmented nucleus. This experiment was performed once, however, similar 
nucleus segmentation micrographs were observed in all microscopy time points 
in 105 cell cycles. (b) The relative abundance of the fusion Hta2-mRFP1 in the 
mother-cell nucleus during the cell cycle to identify the phase of karyokinesis. In 
each individual cell-cycle trace, we divide the abundance by the value at the phase 

zero (the first mitotic exit ME). The circular markers correspond to different 
cell-cycle traces and phases. The plot is built analogously to Fig. 1a. Cell cycles 
whose duration is smaller or equal to 120 mins are considered for this analysis. 
The average cell-cycle duration measured in minutes is indicated. To summarize 
the behavior of the relative abundance during the cell cycle, we obtain the 
Gaussian process (GP) regression, whose mean and region of high posterior 
probability density (mean ± SD) are presented as the thick curve and the shaded 
area. The radial basis function (RBF) kernel assuming smoothness with the length 
scale range [0.05, 0.1] and the white kernel explaining the noise in the data with 
free noise level are used as a prior. We identified the typical cell cycle phase of 
karyokinesis as the middle time point between the maximal and minimal values 
of the GP regression mean after budding (the black vertical line).

http://www.nature.com/natmetab
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Extended Data Fig. 3 | NAD(P)H response to the synthetic auxin 1-naphthaleneacetic acid (NAA) during the cell cycle. The strain treated with NAA lacks the 
degron tag (the control for the dynamic NAA-induced depletion of Ugp1 having the degron tag; Fig. 2c, the same y axis scaling). The plot is built analogously to Fig. 2c.

http://www.nature.com/natmetab
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Extended Data Fig. 4 | Cell volume during the cell cycle. Cell volume dynamics is presented as a summary of 25 individual cell-cycle traces. The plot is built 
analogously to Figs. 1a, 2b.

http://www.nature.com/natmetab
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Extended Data Fig. 5 | The cell-mass model parameters used to define the 
biosynthetic rates are structurally identifiable according to profile 
likelihood analysis. We considered 9 parameters defining the rates of protein, 
lipid, polysaccharide, RNA and DNA biosynthesis in the model of cell-mass 
dynamics during the cell cycle (details in Supplementary Methods). For each 
fixed parameter value (x-values of empty circular markers), we optimized the 
model over the rest of parameters and reported the objective function value 
(y-values of empty circular markers). The red diamond marker shows the result of 
the free optimization in which the parameters of interest were not fixed. The 
yellow internal plot zooms in on the proximity of the red marker. For each of the 9 
parameters, the objective function in the optimization where the parameter is 

free proves to be the smallest compared to the optimizations where the 
parameter is fixed to a value different from the optimal one, which demonstrates 
that the 9 parameters of interest are structurally (globally) identifiable according 
to profile likelihood approach [main-text ref. 43]. The optimal value of f errlipids is at 
the lower boundary of feasibility; this parameter cannot be smaller, otherwise 
the rate of lipid biosynthesis becomes negative at some cell-cycle phases. The 
optimal value of f errpolysaccharides is at the upper boundary of feasibility defined by 
the variability of the measurement of the polysaccharide biosynthesis activity. 
The profile likelihood analysis was performed using the input data set where the 
replicate measurements of each biosynthetic activity were averaged (the 
respective simulation results are showed via the solid line in Fig. 3b–d).

http://www.nature.com/natmetab
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Extended Data Fig. 6 | Additional model predictions and comparison with 
independent measurements. (a) Primary metabolism is predicted to alternate 
between fermentative and respiratory modes during the cell cycle. The predicted 
flux dynamics in glycolysis (phosphofructokinase) and in electron transport 
chain (Complex III). See the caption of Fig. 4b for more details. (b–d) Predicted 
carbon dioxide and oxygen exchange rates match von Meyenburg measurements 
performed in synchronized batch cultures grown on high glucose [main-text 
ref. 46]. (b,c) von Meyenburg measurements: cells from the late stage of budding 
phase were isolated via dextrin gradient centrifugation and cultivated in a high-

glucose batch culture, with the synchrony controlled by monitoring the fraction 
of initial budding cells. Here, the beginning of the S phase is defined as the time 
point corresponding to one third of the ascending part in each wave of the initial 
budding cell percentage (b). The G1 boundaries are established by considering 
that G1 constitutes 33% of the total cell-cycle duration on high glucose as 
observed in this work. (d) The predicted fluxes of carbon dioxide excretion and 
oxygen uptake. These data are also shown in Fig. 4b, more details can be found in 
its caption.

http://www.nature.com/natmetab
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Extended Data Fig. 7 | The uncoupling between the YFP and mCherry production rates in the control strain lacking the glycolytic flux regulation of YFP 
expression (the control experiment for Fig. 4f ). The figure was obtained after the same analysis as in Fig. 4f, see more details in its caption and Methods.

http://www.nature.com/natmetab
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Thermodynamically constrained model better 
predicts the cell-cycle dynamics of key metabolic fluxes compared to 
enzyme-constrained model. (a) Glucose-uptake flux measurements, described 
in Fig. 4e. (b) Glycolytic flux measurements, described in Fig. 4f. (c) Glucose-
uptake flux predictions of thermodynamically constrained model, described 
in Fig. 4b. In agreement with independent experimental measurements (a, b), 
the model predicts the highest fluxes (violet) in G1 and the trough of the flux 
dynamics in S/G2/M. (d) Glucose-uptake flux predictions of enzyme-constrained 
model. This model predicts the highest glucose-uptake-flux values in the middle 
of S/G2/M, contradicting experimental observations (a, b). (e,f) Measurements 
of carbon dioxide and oxygen exchange rates, described in Extended Data Fig. 
6c. (g) O2-uptake and CO2-excretion flux predictions of thermodynamically 
constrained model, described in Fig. 4b. In agreement with experimental 
measurements (f), the model predicts that O2-uptake and CO2-excretion rates 
oscillate almost in antiphase, O2 uptake peaks soon after budding and CO2 
excretion peaks in late S/G2/M and G1. (h) O2-uptake and CO2-excretion flux 
predictions of enzyme-constrained model. This model predicts the highest 

values of CO2-excretion flux in the middle of S/G2/M and synchronized dynamics 
of O2-uptake and CO2-excretion fluxes, contradicting independent observations 
(f). d,h: we predicted metabolic fluxes via the model with constraints over 
enzyme kinetics and abundance (GECKO, v.2.0.2) [main-text ref. 48] by 
incorporating the cell-cycle-resolved macromolecular synthesis rates (Fig. 
3c, d) identically to how we did it with thermodynamically constrained model. 
We used the same stoichiometry of macromolecule and biomass reactions 
(Supplementary Table 7). In GECKO, the total amount of enzyme had an upper 
limit such that the model could freely distribute individual enzyme amounts 
under this overall constraint. In model simulations for all cell-cycle time points, 
we set the upper limit of the total enzyme amount to 0.0445 g/gDW, under 
which GECKO with modified macromolecule reaction stoichiometries correctly 
predicts, at the population level, changes of yeast physiology (the rates of 
growth, oxygen uptake, ethanol and carbon dioxide excretion) across the range 
of glucose uptake rates [main-text ref. 40]. GECKO was accessed with the help of 
the Python module geckopy.

http://www.nature.com/natmetab
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | NAD(P)H oscillations are unperturbed in the 
microaerobic condition indicated by a disruption in the dynamics of the 
fluorescence of mCherry fused to the ATP synthase subunit Atp3. The upper 
plot summarizes the dynamics of mCherry fluorescence in 24 cells with the mean 
and its 95% confidence interval. The NAD(P)H dynamics of these 24 cells are 

shown separately below. Cell 1 is also shown in Fig. 5a. With the whiskers in the 
upper plot, we show the spread of values of a cell not expressing mCherry that 
was monitored in the mCherry microscopy channel in a separate experiment.  
See more details in the caption of Fig. 5 and Methods.

http://www.nature.com/natmetab
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Extended Data Fig. 10 | Phase shifts and cell-cycle coupling of NAD(P)H 
oscillations across growth conditions. (a) NAD(P)H oscillations are phase-
shifted across growth conditions. NAD(P)H oscillation frequency versus the 
crest and trough phases in different conditions: minimal medium containing 1% 
glucose (Glu), 2% pyruvate (Pyr), combination of 1% Glu with a lipid mixture (LM, 
7 fatty acids) or with a complete supplement mixture (CSM: 12 amino acids, 2 
nucleobases); complex medium YPD with 1% Glu. Markers and error bars: median 
and its 95% confidence intervals. Circular markers: data sets of Fig. 5d, diamonds: 
replicates in 1% Glu and 2% Pyr with 155 (89) and 192 (80) cell cycles (and cells). 
Inclined lines: relationship between frequency and crest/trough phase in single 
carbon and energy source conditions (linear regression of four 1% Glu and 2% 
Pyr median values). Arrows: pronounced deviations from these lines (no overlap 

between a line and both confidence intervals). Pronounced deviations from the 
trough line have different directions between the cases of YPD and CSM (protein 
and nucleic-acid precursors) versus the case of LM (lipid precursors), suggesting 
temporal segregation between respective biosynthetic processes. (b) NAD(P)H 
oscillations and cell cycle are strongly coupled across growth conditions. Each 
marker corresponds to a pair of adjacent budding events, for which we calculated 
budding frequency and NAD(P)H oscillation peak frequency. We used the same 
data set as in (a) and indicated different growth conditions with the same colors 
and marker styles. The following numbers of budding pairs (cell cycles) were 
used: 319 for 1% Glu, 125 for 1% Glu (2), 234 for 2% Pyr, 161 for 2% Pyr, 26 for 1% 
Glu + LM, 192 for 1% Glu + CSM and 117 for 1% Glu YPD. We present the Pearson 
correlation coefficient for the frequencies.

http://www.nature.com/natmetab
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YSBN6 ΔTps1ΔGsy2 Can1Δ::cas9-natNT2, This study 
YSBN6 ΔTps1ΔTps2ΔGsy1ΔGsy2 Can1Δ::cas9-natNT2, This study 
YSBN6 HO::KanMX4-pTEF1-mGFP-AID-tCYC-pADH1-AtTIR-tADH1, Papagiannakis et al., 2017 
YSBN6 HO::tetO7-sfGFP-KanMX WHI5::mCherry-BLE, This study 
YSBN6 HO::pTEF1-sfGFP-KanMX WHI5::mCherry-BLE, Litsios et al., 2019 
YSBN6 UGP1::mCherry-AID-NatMX  WHI5::mGFP-ZEO HO::ADH1p-OsTIR1-KanMX4, This study 
YSBN6 WHI5::mGFP-ZEO HO::ADH1p-OsTIR1-KanMX4, This study 
YSBN6 HTA2::mRFP1-NAT WHI5::sfGFP-KanMX, Litsios et al., 2019 
YSBN6 WHI5::mCherry-BLE, Litsios et al., 2019 
YSBN10 wild type (S288C background), Canelas et al., 2010 
YSBN10 HO::pTEF7mut_CggRAla250, P_cggRO reporter plasmid, This study 
YSBN10 P_cggRO reporter plasmid, This study

Authentication Authentication of strains which were not generated in this study was done on the basis of their expected phenotype

Mycoplasma contamination Given that only yeast strains were used in this study, no testing for mycoplasma contamination was performed

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used
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