Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A critical assessment of the role of creatine in brown adipose tissue thermogenesis

Abstract

Brown adipose tissue is specialized for non-shivering thermogenesis, combining lipolysis with an extremely active mitochondrial electron transport chain and a unique regulated uncoupling protein, UCP1, allowing unrestricted respiration. Current excitement focuses on the presence of brown adipose tissue in humans and the possibility that it may contribute to diet-induced thermogenesis, countering obesity and obesity-related disease as well as protecting cardio-metabolic health. In common with other tissues displaying a high, variable respiration, the tissue possesses a creatine pool and mitochondrial and cytosolic creatine kinase isoforms. Genetic and pharmacological manipulation of these components have pleiotropic effects that appear to influence diet- and cold-induced metabolism in vivo and modeled in vitro. These findings have been used to advance the concept of a UCP1-independent diet-induced thermogenic mechanism based on a dissipative hydrolysis of phosphocreatine in beige and brown adipose tissue. Here we review the in vivo and in vitro experimental basis for this hypothesis, and explore alternative explanations. We conclude that there is currently no convincing evidence for a significant futile creatine cycle in these tissues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic thermogenic pathways in BATM mediated by UCP1 or postulated to be involved in FCC.
Fig. 2: UCP1-dependent and creatine-dependent in vitro respiratory responses.

Similar content being viewed by others

References

  1. Nicholls, D. G. Mitochondrial proton leaks and uncoupling proteins. Biochim. Biophys. Acta Bioenerg. 1862, 148428 (2021). A review of UCP1, from the intact adipocyte to the isolated protein.

    Article  CAS  Google Scholar 

  2. Nedergaard, J. & Cannon, B. Diet-induced thermogenesis: principles and pitfalls. Methods Mol. Biol. 2448, 177–202 (2022).

    Article  Google Scholar 

  3. Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015). The initial proposal for a futile creatine cycle in beige adipose tissue.

    Article  CAS  Google Scholar 

  4. Roesler, A. & Kazak, L. UCP1-independent thermogenesis. Biochem. J. 477, 709–725 (2020).

    Article  CAS  Google Scholar 

  5. Himms-Hagen, J. Regulation of metabolic processes in brown adipose tissue in relation to nonshivering thermogenesis. Adv. Enzym. Regul. 8, 131–151 (1970).

    Article  CAS  Google Scholar 

  6. Foster, D. O. & Frydman, M. L. Nonshivering thermogenesis in the rat. II. Measurements of blood flow with microspheres point to brown adipose tissue as the dominant site of the calorigenesis induced by noradrenaline. Can. J. Physiol. Pharmacol. 56, 110–122 (1978).

    Article  CAS  Google Scholar 

  7. Lindberg, O., de, P. J., Rylander, E. & Afzelius, B. A. Studies of the mitochondrial energy-transfer system of brown adipose tissue. J. Cell Biol. 34, 293–310 (1967).

    Article  CAS  Google Scholar 

  8. Rafael, J., Ludolph, H.-J. & Hohorst, H.-J. Mitochondria from brown adipose tissue: uncoupling of oxidative phosphorylation by long chain fatty acids and recoupling by guanine triphosphate. Hoppe Seylers Z. Physiol. Chem. 350, 1121–1131 (1969).

    Article  CAS  Google Scholar 

  9. Nicholls, D. G., Grav, H. J. & Lindberg, O. Mitochondria from brown adipose tissue: regulation of respiration in vitro by variations in volume of the matrix compartment. Eur. J. Biochem. 31, 526–533 (1972).

    Article  CAS  Google Scholar 

  10. Nicholls, D. G. & Lindberg, O. Brown adipose tissue mitochondria: the influence of albumin and nucleotides on passive ion permeabilities. Eur. J. Biochem. 37, 523–530 (1973).

    Article  CAS  Google Scholar 

  11. Mitchell, P. & Moyle, J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature 213, 137–139 (1967).

    Article  CAS  Google Scholar 

  12. Nicholls, D. G. The influence of respiration and ATP hydrolysis on the proton electrochemical potential gradient across the inner membrane of rat liver mitochondria as determined by ion distribution. Eur. J. Biochem. 50, 305–315 (1974).

    Article  CAS  Google Scholar 

  13. Nicholls, D. G. Hamster brown adipose tissue mitochondria: the control of respiration and the proton electrochemical potential by possible physiological effectors of the proton conductance of the inner membrane. Eur. J. Biochem. 49, 573–583 (1974).

    Article  CAS  Google Scholar 

  14. Cunningham, S. A., Wiesinger, H. & Nicholls, D. G. Quantification of fatty acid activation of the uncoupling protein in brown adipocytes and mitochondria from the guinea-pig. Eur. J. Biochem. 157, 415–420 (1986).

    Article  CAS  Google Scholar 

  15. Nicholls, D. G. Hamster brown adipose tissue mitochondria: purine nucleotide control of the ionic conductance of the inner membrane, the nature of the nucleotide-binding site. Eur. J. Biochem. 62, 223–228 (1976).

    Article  CAS  Google Scholar 

  16. Heaton, G. M., Wagenvoord, R. J., Kemp, A. & Nicholls, D. G. Brown adipose tissue mitochondria: photoaffinity labelling of the regulatory site for energy dissipation. Eur. J. Biochem. 82, 515–521 (1978).

    Article  CAS  Google Scholar 

  17. Crichton, P. G., Lee, Y. & Kunji, E. R. The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism. Biochimie 134, 35–50 (2017).

    Article  CAS  Google Scholar 

  18. Rafael, J. & Heldt, H. W. Binding of guanine nucleotides to the outer surface of the inner membrane of guinea-pig brown fat mitochondria in correlation with the thermogenic capacity of the tissue. FEBS Lett. 63, 304–308 (1976).

    Article  CAS  Google Scholar 

  19. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  Google Scholar 

  20. Rafael, J., Fesser, W. & Nicholls, D. G. Cold-adaptation in the guinea-pig at the level of the isolated brown adipocyte. Am. J. Physiol. 250, C228–C235 (1986).

    Article  CAS  Google Scholar 

  21. Rial, E. & Nicholls, D. G. The mitochondrial uncoupling protein from guinea-pig brown adipose tissue: synchronous increase in structural and functional parameters during cold-adaptation. Biochem. J. 222, 685–693 (1984).

    Article  CAS  Google Scholar 

  22. Locke, R. M., Rial, E. & Nicholls, D. G. The acute regulation of mitochondrial proton conductance in cells and mitochondria from the brown fat of cold-adapted and warm-adapted guinea pigs. Eur. J. Biochem. 129, 381–387 (1982).

    Article  CAS  Google Scholar 

  23. Jansky, L. et al. Interspecies differences in cold adaptation and nonshivering thermogenesis. Fed. Proc. 28, 1053–1058 (1969).

    CAS  Google Scholar 

  24. Cannon, B. Control of fatty-acid oxidation in brown-adipose-tissue mitochondria. Eur. J. Biochem. 23, 125–135 (1971).

    Article  CAS  Google Scholar 

  25. Nicholls, D. G. & Locke, R. M. Thermogenic mechanisms in brown fat. Physiol. Rev. 64, 1–64 (1984).

    Article  CAS  Google Scholar 

  26. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  Google Scholar 

  27. Fischer, A. W. et al. Intact innervation is essential for diet-induced recruitment of brown adipose tissue. Am. J. Physiol. 316, E487–E503 (2019).

    CAS  Google Scholar 

  28. Wang, H. et al. Uncoupling protein-1 expression does not protect mice from diet-induced obesity. Am. J. Physiol. 320, E333–E345 (2021).

    CAS  Google Scholar 

  29. Rothwell, N. J. & Stock, M. J. A role for brown adipose tissue in diet-induced thermogenesis. Nature 281, 31–35 (1979).

    Article  CAS  Google Scholar 

  30. Kozak, L. P. Brown fat and the myth of diet-induced thermogenesis. Cell Metab. 11, 263–267 (2010).

    Article  CAS  Google Scholar 

  31. Hussain, M. F., Roesler, A. & Kazak, L. Regulation of adipocyte thermogenesis: mechanisms controlling obesity. FEBS J. 287, 3370–3385 (2020).

    Article  CAS  Google Scholar 

  32. Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  CAS  Google Scholar 

  33. Kazak, L. et al. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proc. Natl Acad. Sci. USA 114, 7981–7986 (2017).

    Article  CAS  Google Scholar 

  34. Feldmann, H. M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209 (2009).

    Article  CAS  Google Scholar 

  35. Matthias, A. et al. Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty acid-induced thermogenesis. J. Biol. Chem. 275, 25073–25081 (2000).

    Article  CAS  Google Scholar 

  36. Nedergaard, J. et al. Life without UCPI: mitochondrial, cellular and organismal characteristics of the UCPI-ablated mice. Biochem. Soc. Trans. 29, 756–763 (2001).

    Article  CAS  Google Scholar 

  37. Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 is essential for adaptive adrenergic nonshivering thermogenesis. Am. J. Physiol. 291, E350–E357 (2006).

    CAS  Google Scholar 

  38. Hofmann, W. E. et al. Effects of genetic background on thermoregulation and fatty acid-induced uncoupling of mitochondria in UCP1-deficient mice. J. Biol. Chem. 276, 12460–12465 (2001).

    Article  CAS  Google Scholar 

  39. Meyer, C. W. et al. Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice. Am. J. Physiol. 299, R1396–R1406 (2010).

    CAS  Google Scholar 

  40. Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27–37 (2019).

    Article  CAS  Google Scholar 

  41. Bertholet, A. M. et al. Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab. 25, 811–822 (2017).

    Article  CAS  Google Scholar 

  42. Rahbani, J. F. et al. Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature 590, 480–485 (2021). Creatine kinase B is proposed to be the mitochondria-associated isoform for FCC.

    Article  CAS  Google Scholar 

  43. Sun, Y. et al. Mitochondrial TNAP controls thermogenesis by hydrolysis of phosphocreatine. Nature 593, 580–585 (2021). Tissue non-specific alkaline phosphatase is proposed to be the mitochondria-associated phosphocreatine phosphatase.

    Article  CAS  Google Scholar 

  44. Greenhill, C. Obesity: role for creatine metabolism in energy expenditure. Nat. Rev. Endocrinol. 13, 624 (2017).

    Article  Google Scholar 

  45. Wallimann, T. et al. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem. J. 281, 21–40 (1992).

    Article  CAS  Google Scholar 

  46. Wallimann, T., Tokarska-Schlattner, M. & Schlattner, U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40, 1271–1296 (2011).

    Article  CAS  Google Scholar 

  47. Pollard, A. E. et al. AMPK activation protects against diet induced obesity through Ucp1-independent thermogenesis in subcutaneous white adipose tissue. Nat. Metab. 1, 340–349 (2019).

    Article  CAS  Google Scholar 

  48. Kuiper, J. W., Oerlemans, F. T., Fransen, J. A. & Wieringa, B. Creatine kinase B deficient neurons exhibit an increased fraction of motile mitochondria. BMC Neurosci. 9, 73 (2008).

    Article  Google Scholar 

  49. Streijger, F. et al. Mice lacking brain-type creatine kinase activity show defective thermoregulation. Physiol. Behav. 97, 76–86 (2009).

    Article  CAS  Google Scholar 

  50. Kazak, L. et al. Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab. 26, 693 (2017).

    Article  Google Scholar 

  51. Berlet, H. H., Bonsmann, I. & Birringer, H. Occurrence of free creatine, phosphocreatine and creatine phosphokinase in adipose tissue. Biochim. Biophys. Acta 437, 166–174 (1976).

    Article  CAS  Google Scholar 

  52. Cannon, B. & Vogel, G. The mitochondrial ATPase of brown adipose tissue. Purification and comparison with the mitochondrial ATPase from beef heart. FEBS Lett. 76, 284–289 (1977).

    Article  CAS  Google Scholar 

  53. Maqdasy, S. et al. Impaired phosphocreatine metabolism in white adipocytes promotes inflammation. Nat. Metab. 4, 190–202 (2022).

    Article  CAS  Google Scholar 

  54. Bournat, J. C. & Brown, C. W. Mitochondrial dysfunction in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 17, 446–452 (2010).

    Article  CAS  Google Scholar 

  55. Connell, N. J. et al. No evidence for brown adipose tissue activation after creatine supplementation in adult vegetarians. Nat. Metab. 3, 107–117 (2021).

    Article  CAS  Google Scholar 

  56. Song, A. et al. Low- and high-thermogenic brown adipocyte subpopulations coexist in murine adipose tissue. J. Clin. Invest. 130, 247–257 (2020).

    Article  CAS  Google Scholar 

  57. Schottl, T. et al. Limited mitochondrial capacity of visceral versus subcutaneous white adipocytes in male C57BL/6N mice. Endocrinology 156, 923–933 (2015).

    Article  Google Scholar 

  58. Shabalina, I. G. et al. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 5, 1196–1203 (2013).

    Article  CAS  Google Scholar 

  59. Houstek, J. et al. The expression of subunit c correlates with and thus may limit the biosynthesis of the mitochondrial F0F1-ATPase in brown adipose tissue. J. Biol. Chem. 270, 7689–7694 (1995).

    Article  CAS  Google Scholar 

  60. Nicholls, D. G. & Bernson, V. S. M. Inter-relationships between proton electrochemical gradient, adenine nucleotide phosphorylation potential and respiration during substrate-level and oxidative phosphorylation by mitochondria from brown adipose tissue of cold-adapted guinea-pigs. Eur. J. Biochem. 75, 601–612 (1977).

    Article  CAS  Google Scholar 

  61. Nicholls, D. G., Shepherd, D. & Garland, P. B. A continuous recording technique for the measurement of carbon dioxide, and its application to mitochondrial oxidation and decarboxylation reactions. Biochem. J. 103, 677–691 (1967).

    Article  CAS  Google Scholar 

  62. Held, N. M. et al. Pyruvate dehydrogenase complex plays a central role in brown adipocyte energy expenditure and fuel utilization during short-term beta-adrenergic activation. Sci. Rep. 8, 9562 (2018).

    Article  Google Scholar 

  63. Briolay, A., Bessueille, L. & Magne, D. TNAP: a new multitask enzyme in energy metabolism. Int. J. Mol. Sci. 22, 10470 (2021).

  64. Rahbani, J. F., Chouchani, E. T., Spiegelman, B. M. & Kazak, L. Measurement of futile creatine cycling using respirometry. Methods Mol. Biol. 2448, 141–153 (2022). Adetailed description of the mitochondrial FCC assay.

    Article  Google Scholar 

  65. Lawson, J. W. & Veech, R. L. Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions. J. Biol. Chem. 254, 6528–6537 (1979).

    Article  CAS  Google Scholar 

  66. Mookerjee, S. A., Gerencser, A. A., Nicholls, D. G. & Brand, M. D. Quantifying rates, pathways and flexibility of intracellular ATP production and consumption using extracellular flux measurements. J. Biol. Chem. 292, 7189–7207 (2017).

    Article  CAS  Google Scholar 

  67. Matsushima, K. et al. Comparison of kinetic constants of creatine kinase isoforms. Int. J. Biol. Macromol. 38, 83–88 (2006).

    Article  CAS  Google Scholar 

  68. Basson, C. T., Grace, A. M. & Roberts, R. Enzyme kinetics of a highly purified mitochondrial creatine kinase in comparison with cytosolic forms. Mol. Cell. Biochem. 67, 151–159 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D. N. and M. B. jointly conceived and wrote the manuscript.

Corresponding author

Correspondence to David G. Nicholls.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Uwe Schlattner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Isabella Samuelson.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicholls, D.G., Brand, M.D. A critical assessment of the role of creatine in brown adipose tissue thermogenesis. Nat Metab 5, 21–28 (2023). https://doi.org/10.1038/s42255-022-00718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-022-00718-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing