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GAB functions as a bioenergetic and 
signalling gatekeeper to control T cell 
inflammation

Siwen Kang    1, Lingling Liu1, Tingting Wang1, Matthew Cannon1, Penghui Lin2, 
Teresa W.-M. Fan2, David A. Scott    3, Hsin-Jung Joyce Wu4, Andrew N. Lane    2 
and Ruoning Wang    1 

γ -A mi no bu tyrate (GAB), the biochemical form of (GABA) γ-aminobutyric 
acid, participates in shaping physiological processes, including the 
immune response. How GAB metabolism is controlled to mediate such 
functions remains elusive. Here we show that GAB is one of the most 
abundant metabolites in CD4+ T helper 17 (TH17) and induced T regulatory 
(iTreg) cells. GAB functions as a bioenergetic and signalling gatekeeper by 
reciprocally controlling pro-inflammatory TH17 cell and anti-inflammatory 
iTreg cell differentiation through distinct mechanisms. 4-Aminobutyrate 
aminotransferase (ABAT) funnels GAB into the tricarboxylic acid (TCA) 
cycle to maximize carbon allocation in promoting TH17 cell differentiation. 
By contrast, the absence of ABAT activity in iTreg cells enables GAB to be 
exported to the extracellular environment where it acts as an autocrine 
signalling metabolite that promotes iTreg cell differentiation. Accordingly, 
ablation of ABAT activity in T cells protects against experimental a ut-
oi mm une e nc ep ha lo my elitis (EAE) progression. Conversely, ablation 
of GABAA receptor in T cells worsens EAE. Our results suggest that the 
cell-autonomous control of GAB on CD4+ T cells is bimodal and consists of 
the sequential action of two processes, ABAT-dependent mitochondrial 
anaplerosis and the receptor-dependent signalling response, both of which 
are required for T cell-mediated inflammation.

Mounting a robust and effective adaptive immune response in verte-
brates is metabolically costly and requires proper allocation of essential 
yet limited energy and carbon resources. Metabolism must be tightly 
controlled at the cellular level to coordinate rapid expansion followed 
by a fine-tuned differentiation process in T cells. Beyond acting as 
bioenergetic substrates and biosynthetic precursors, metabolites 

can directly control cellular signalling responses through influencing 
DNA, RNA and protein modifications, signalling receptors’ activities 
and the production of reactive oxygen species1–5. As such, metabo-
lism is fundamental to fine-tuning carbon and nitrogen allocation and 
optimizing immune response, which is at the centre of many diseases. 
Previous studies have used systemic approaches to comprehensively 
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aminotransferase (ABAT), indicating increased GAB catabolism in TH17 
cells but not in iTreg cells (Fig. 1f). Collectively, these findings suggest 
that extracellular metabolome profiling is a robust approach to reveal-
ing T cell metabolic characteristics in vitro. Using this approach, we 
have found that GAB is an abundant metabolite produced by T cells.

T cells use both Gln and Arg to produce GAB
Given the higher expression of GAD and ABAT in TH17 cells relative to 
iTreg cells, we reasoned that both iTreg cells and TH17 cells could produce 
GAB. However, the fate of GAB depends on ABAT, that is, GAB is diverted 
into the tricarboxylic acid (TCA) cycle in the presence of ABAT in TH17 
cells instead of being exported into the extracellular compartment in 
the absence of ABAT as in iTreg cells. To test this idea, we cultured TH17 
cells with or without the potent ABAT inhibitor vigabatrin (Vig)15,16, 
for 6 h and then measured the levels of a panel of metabolites. Inhibit-
ing ABAT activity by Vig led to the accumulation of intracellular GAB 
and GAB release into the medium (Fig. 1k,j). Notably, inhibiting ABAT 
activity rendered GAB one of the most abundant metabolites in the 
medium and cell pellet (Fig. 1k,j). Moreover, we have validated that 
ABAT was expressed in TH17 cells but not in iTreg cells using immunoblot 
(IB) analysis and intracellular staining (Fig. 2a,b). Interestingly, inhibit-
ing ABAT activity reduced Gln consumption without changing Glu levels 
significantly but increased GAB levels over 100-fold (Fig. 2c,d). The 
reciprocal changes in Gln consumption versus GAB production raise 
the possibility of a Gln-independent GAB production route in TH17 cells. 
Gln catabolism via the GABA shunt is the canonical GAB biosynthesis 
pathway17. Alternatively, GAB could be formed from putrescine (Put), 
a metabolite mainly derived from arginine (Arg) (Fig. 2d)18,19. Indeed, 
the metabolic genes involved in converting Arg into GAB were highly 
expressed in TH17 cells (Fig. 2e). To determine to what extent Gln and 
Arg contribute to GAB biosynthesis, we cultured TH17 cells with Vig in 
the presence or absence of Gln, Arg or both. Then, we collected spent 
medium to measure the levels of various metabolites. While removing 
Gln or Arg reduced GAB production, the removal of both completely 
blocked GAB production (Fig. 2f). Next, we supplied [13C6]Arg, [13C5]
Gln, [13C6]glucose (Glc) or [13C4]Put as metabolic tracers in the culture 
medium and followed 13C incorporation into individual metabolites 
by GC–MS. The presence of the 13C4 isotopologue of GAB and the cor-
responding 13C4 or 3C5 isotopologues of upstream metabolites further 
confirmed that Gln and Arg are carbon donors of GAB (Fig. 2g). How-
ever, only the 13C2 isotopologue of GAB was detected in samples with 
[13C6]Glc, suggesting that Glc can support Glu (and GAB) synthesis 
through the TCA cycle (Fig. 2h). Finally, we showed that Put can be 
converted to GAB via a diamine oxidase (DAO)-dependent reaction as 
its inhibitor aminoguanidine (AG) completely blocked the production 
of [13C4]GAB from [13C4]Put (Fig. 2i). In addition to a general require-
ment of both amino acids for protein synthesis, we envisioned that 
Gln and Arg might also support TH17 function and survival through 
supporting GAB biosynthesis. To test this idea, we cultured TH17 cells 
in Gln/Arg-replete medium or suboptimal medium (with low levels of 
Gln/Arg) in the absence or presence of high levels of GAB. Support-
ing our hypothesis, reducing the amount of either amino acid led to 
defects in the maintenance of viability and interleukin (IL)-17+ popu-
lations. Notably, GAB supplementation could correct both defects  
(Fig. 2j,k). We, therefore, conclude that TH17 cells can use both Gln-derived 
and Arg-derived carbon to synthesize GAB and support cell viability  
and function.

ABAT confers GAB-dependent anaplerosis on TH17 cells
Next, we reasoned that the expression of ABAT may render TH17 cells 
capable of diverting GAB into the TCA cycle in a way that maximizes 
carbon allocation and oxidative phosphorylation (OXPHOS) in mito-
chondria. To test this idea, we added [13C4]GABA as a metabolic tracer 
into the culture medium and followed 13C incorporation into interme-
diate metabolites of the TCA cycle in iTreg cells and TH17 cells with or 

characterize the transcriptome, the abundance of intracellular metabo-
lites and the overall catabolic activities of T cells at the different stages 
during the T cell life cycle6,7. These studies have generated critical tem-
poral snapshots of the metabolic landscapes, which help establish a 
conceptual foundation for understanding T cell metabolic reprogram-
ming. However, most of these studies have centred mainly on intra-
cellular metabolites and activities of the central carbon metabolism. 
The overall metabolic landscape of T cells can also be delineated by 
monitoring the metabolites consumed from and secreted into the 
growth medium. The extracellular metabolome represents the ultimate 
outcome of metabolic input, processing and output. Extracellular 
metabolome profiling (also called metabolic footprinting) has been 
applied as a standard technique to optimize microbial bioprocesses by 
analysing substrates consumed from and metabolites secreted into a 
microorganism’s culture medium8,9. Here, we took a similar approach 
(Fig. 1a) to compare the extracellular metabolome profiles of naive 
T (Tnai) cells and different subsets of effector T (Teff) cells, including T 
helper (TH0, TH1, TH17) cells and induced regulator T (iTreg) cells.

Results
GAB is an abundant metabolite produced by effector T cells
The control (blank) medium and the spent medium of different subsets 
of Teff cells (Extended Data Fig. 1a) were profiled on a semi-quantitative 
untargeted global metabolomics platform based on liquid chroma-
tography–mass spectrometry (LC–MS), with broad coverage of up to 
1,000–2,500 compounds, including amino acids, energy metabolites, 
nucleotides and lipids. Using this approach, we have classified metabo-
lites as having changes in production or consumption according to 
whether the fold change compared with control was positive or nega-
tive, respectively. Hierarchical clustering analysis, the pairwise compar-
ison and the principal-component analysis revealed that T cell subsets 
were characterized by distinct extracellular metabolome profiles  
(Fig. 1b and Extended Data Fig. 1b–g). Consistent with the role of central 
carbon metabolism in supporting cell growth, the hyper-proliferative 
Teff groups consumed more carbohydrates and produced more lactate 
than the Tnai group (Extended Data Fig. 1e). Additionally, the TH17 group 
was characterized by the highest production of polyamines (Fig. 1b), 
in line with the recent finding of a critical role for polyamine in deter-
mining TH17 differentiation10–12. Intriguingly, iTreg cells produced high 
levels of γ-aminobutyrate (GAB) and its derivatives (Fig. 1b). Next, we 
applied gas chromatography–MS (GC–MS)-based targeted metabo-
lomics and nuclear magnetic resonance (NMR) to validate and quantify 
intracellular and extracellular GAB production. We confirmed that iTreg 
cells produced much higher levels of GAB than TH17 cells (Fig. 1c–h). 
Unexpectedly, GAB was the most abundant intracellular metabo-
lite and among the top three extracellular metabolites in iTreg cells  
(Fig. 1c,d). However, neither prolonged culture nor restimulation would 
significantly changed GAB excretion (Extended Data Fig. 1h,i). Following 
activation, thymus-derived Treg (tTreg) cells could also excrete a com-
parable amount of GAB to the medium as iTreg cells (Fig. 1i). Notably, 
the intracellular level of GAB was even higher than that of glutamate 
(Glu) in iTreg cells, which is one of the most abundant intracellular 
metabolites in various organisms13. GAB is produced by catabolizing 
glutamine (Gln) through the (GABA) γ-aminobutyric acid shunt and 
elicits GABAergic response through GABA receptors (GABA-Rs) in 
neurons. To better understand the molecular nature that determines 
GAB production and function in T cells, we examined the expression 
of a panel of GABA-related metabolic and receptor genes by qPCR  
(Fig. 1e,f). Consistent with the previous findings on the GABA-R expres-
sion profile in immune cells14. Teff cells expressed a selected group of 
GABA-R subunits. However, only iTreg and TH17 cells expressed high 
levels of glutamate decarboxylase (GAD), the enzyme that catalyzes the 
decarboxylation of Glu to GAB. Unexpectedly, the TH17 group exhibits 
a higher level of GAD than the iTreg group and was the only group that 
expressed a high level of the GAB-catabolizing enzyme 4-aminobutyrate 
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without Vig treatment (Fig. 3a,b). In line with the expression of ABAT 
in TH17 cells but not in iTreg cells, TH17 cells exhibited much higher levels 
of the 13C4 isotopologue of succinate and its downstream metabolites 
in the TCA cycle than iTreg cells (Fig. 3a). Inhibiting ABAT activity by 
Vig completely abolished the 13C4 isotopologue of succinate and its 
downstream metabolites in TH17 cells, supporting the idea that GAB 
is diverted to the TCA cycle via an ABAT-dependent reaction (Fig. 3b). 

Next, we sought to determine the temporal change in respiration fol-
lowing a sequential supplementation of GABA, Vig, oligomycin or car-
bonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) into the 
TH17 cell culture medium. Indeed, GABA supplementation enhanced 
oxygen consumption in an ABAT-dependent manner, while ATPase 
inhibitor oligomycin suppressed and FCCP maximized oxygen con-
sumption as expected (Fig. 3c). We and others have recently shown 
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Fig. 1 | GAB is an abundant metabolite produced in TH17 and iTreg cells. 
 a, Experimental scheme of T cell extracellular metabolome profiles (LC–
MS). b, Extracellular metabolites associated with amino acid metabolism 
in the indicated T cell subsets were profiled by LC–MS. The value for each 
metabolite represents n = 3 biologically independent samples. The heatmap 
represents the value of the relative amount (see colour scale). The complete 
metabolomic profile is provided as source data. c,d,j,k, Indicated metabolites 
were quantified by GC–MS. The value for each metabolite represents n = 3 
biologically independent samples. Cysteinylglycine disulfide*, (2R)-2-amino-3-
{[2-amino-2-(carboxymethylcarbamoyl)ethyl]disulfanyl}propanoic acid; alpha-
ketoglutaramate*, 2-keto-glutaramate; 2-oxoarginine*, 5-[(diaminomethylidene)
amino]-2-oxopentanoic acid; 2,3-dihydroxy-5-methylthio-4-pentenoate 
(DMTPA)*, (2R,3R,4E)-2,3-dihydroxy-5-(methylsulfanyl)pent-4-enoic acid. The 
heatmaps (c,k) represent the log value (medium) or the absolute value (pellet) 
of the indicated metabolite quantity (see colour scale). The complete data are 
provided as source data. The volcano plots (d,j) show changes in metabolites in 
the cell medium and cell pellet. Heatmaps and volcano plots are representative 

of n = 3 independent biological samples from n = 2 independent biological 
experiments. e, Schematic of the pathway of GABA metabolism. f, RNA was 
isolated from the indicated T cell subsets (n = 3 biologically independent 
samples) and used for qPCR analyses of the indicated metabolic genes. mRNA 
levels of Tnai cells were set to 1. The heatmap represents the log value of the 
relative mRNA expression level (see colour scale). Values and s.d. are provided 
as source data. g,h, GAB in the indicated groups was determined and quantified 
by NMR (n = 3 biologically independent samples). i, As illustrated by the 
experimental scheme (left), GAB production in iTreg and tTreg cells was quantified 
by a GAB bioassay kit (n = 4 biologically independent samples). Statistical 
analysis was performed by R (b) or unpaired two-tailed Student’s t-test (c,d,i–k). 
GAD, glutamate decarboxylase; SSADH, succinic semialdehyde dehydrogenase; 
SSAR, succinic semialdehyde reductase; GHB-R, γ-hydroxybutyrate receptor; 
GATs, GABA transporters; VGAT, vesicular GABA transporter; GABAA-R, GABA 
type A receptor; GABAB-R, GABA type B receptors; DBI, diazepam binding 
inhibitor.
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that Arg-dependent polyamine biosynthesis is required to support 
T cell proliferation and TH17 cell differentiation10–12. We reasoned that 
ABAT expression in TH17 cells might allow Arg-derived carbons to be 
diverted into the TCA cycle through Put and GAB. Supporting this idea, 

[13C6]Arg-derived and [13C4]Put-derived 13C were incorporated into the 
13C4 isotopologue of succinate and its downstream metabolites in an 
ABAT-dependent manner in TH17 cells (Fig. 3d, e). Finally, we sought to 
determine whether Gln-derived carbons could enter the TCA cycle via 
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ABAT. Gln is a major carbon donor known to drive the TCA cycle and 
OXPHOS via glutamine transaminase and glutamate dehydrogenase 
(GDH) in Teff cells20–22. We found that a sequential supplementation with 
Vig and the GDH inhibitor R162 (ref. 23) suppressed oxygen consump-
tion additively (Fig. 3f). Similarly, combining Vig and R162 suppressed 
[13C5]Gln-derived 13C incorporation into the TCA cycle metabolites more 
profoundly than single-agent treatment (Fig. 3g). Collectively, we have 
identified GAB as a conditional anaplerotic substrate in T cells, and 
its catabolism via the TCA cycle depends on the expression of ABAT.

GAB metabolism controls proliferation and differentiation
To further delineate the role of ABAT in T cells, we generated a 
T cell-specific Abat-knockout strain (Abat cKO) by crossing the Abatfl 
strain with the Cd4-Cre strain. qPCR, IB and intracellular staining analy-
ses validated the deletion of ABAT (Fig. 4a, b). ABAT deletion did not 
result in T cell development defects in the thymus, the spleen or lymph 
nodes (Extended Data Fig. 2a–f). In addition, ABAT deletion did not 
affect cell viability, the expression of cell surface activation markers, the 

cell cycle progression from G0/G1 to the S phase, RNA, DNA or protein 
contents, cell size, or viability 24 h after activation in vitro (Extended 
Data Fig. 3a–d). However, ABAT deletion moderately suppressed overall 
T cell proliferation after activation in vitro (Fig. 4c and Extended Data 
Fig. 3e). Remarkably, both genetic and pharmacological ablation of 
ABAT activity inhibited pro-inflammatory TH17 cell differentiation while 
enhancing anti-inflammatory iTreg cell differentiation in vitro (Fig. 4c). 
Supporting these findings, the RNA-seq analysis of wild-type (WT) and 
Abat cKO T cells activated under the TH0 condition revealed enriched 
gene signatures associated with inflammation and T cell differentia-
tion (Fig. 4d–f). Notably, the ABAT inhibitor (Vig) did not potentiate 
the effect of genetic deletion in suppressing TH17 cell differentiation, 
suggesting that Vig is a specific inhibitor of ABAT (Extended Data  
Fig. 4a). Moreover, overexpressing ABAT (ABAT-OE) suppressed iTreg 
differentiation and could synergize with IL-6 to increase the percentage 
of IL-17+ cells under the iTreg-polarizing condition in vitro (Extended 
Data Fig. 4b). Next, we examined the effect of ABAT inhibition on TH1 
and TH2 differentiation. Genetic and pharmacological ablation of ABAT 
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Fig. 3 | ABAT enables diversion of GAB into the TCA cycle in T cells. 
 a,b,c,d,e,g,Diagrams of the conversion of [13C4]GABA (a,b, left), [13C6]Arg  
(d, left), [13C4]Put (e, left) and [13C5]Gln (g, left) to downstream metabolites. Indicated 
metabolites in TH17 cells were quantified by GC–MS (n = 3 biologically independent 
samples) (right). Black dot, 12C; blue dot, 13C derived from the indicated tracers. 
Numbers along the x axis represent those of 13C atoms in the given metabolites. 

Significance was calculated by unpaired two-tailed Student’s t-test (a, b, d, e and g); 
NS, no significant differences. c,f, OCR of TH17 cells with the indicated treatments 
was determined by Seahorse. Data are representative of n = 16 independent 
biological samples from n = 3 independent biological experiments. Two-way 
ANOVA with Sidak’s multiple-comparisons test (c) and (f). α-KG, α-ketoglutarate; 
GDH, glutamate dehydrogenase.
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activity inhibited TH1 cell differentiation without significantly changing 
TH2 cell differentiation significantly in vitro (Extended Data Fig. 4c, 
d). Finally, we asked whether TH1 cells could divert GAB into the TCA 
cycle as TH17 cells did. We applied [13C4]GABA as a metabolic tracer and 
followed 13C incorporation into intermediate metabolites of the TCA 
cycle in TH1 and TH17 cells. Only TH17 cells exhibited high levels of the 13C4 
isotopologue of succinate and its downstream metabolites in the TCA 

cycle (Extended Data Fig. 4e). Notably, genetic and pharmacological 
ablation of ABAT activity completely abolished the 13C4 isotopologues 
of metabolites in TH17 cells (Extended Data Fig. 4e).

The expansion and balance between pro-inflammatory CD4+ Teff 
cells and anti-inflammatory CD4+ Treg cells determine the pathogenic 
development of experimental autoimmune encephalomyelitis (EAE), 
a mouse model of multiple sclerosis (MS), which is an inflammatory 
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demyelinating disease of the central nervous system (CNS). Consist-
ent with the expression profile of ABAT in vitro, the IL-17+CD4+ T cell 
group expressed the highest level of ABAT among all the CD4+ T subsets 
with infiltration into the CNS in animals with EAE (Fig. 4g). Notably, 
the genetic deletion of Abat in T cells or the systemic delivery of Vig 
conferred significant protection against EAE pathogenic progression, 
associated with more infiltrated FoxP3+CD4+ T cells and fewer infil-
trated inflammatory CD4+ T cells, reciprocally (Fig. 4h,i and Extended 
Data Fig. 5a,b). However, Vig treatment resulted in better protection 
against EAE and a broader impact on periphery CD4+ T cells in the 
periphery than T cell-specific deletion of Abat, indicating that the 
systemic inhibition of ABAT might affect inflammation through both 
T cell-intrinsic and T cell-extrinsic mechanisms (Fig. 4j,k, and Extended 
Data Fig. 5c,d). We also used a competitive antigen-specific, T cell 
receptor (TCR)-dependent proliferation assay (OT-II) and a competi-
tive homeostatic proliferation assay to assess T cell proliferation and 
differentiation in vivo. Notably, the ratio between WT and Abat cKO 
CD4+ T cells, CFSE dilution patterns and the percentage of IL-17+CD4+ 
or interferon-γ (IFNγ+)CD4+ T cells in various tissues suggested that the 
loss of ABAT dampens T cell proliferation and TH1 and TH17 differentia-
tion in vivo (Extended Data Fig. 6a–e). Collectively, our results indicate 
that ABAT status determines the fate of intracellular GAB and, hence, 
pro-inflammatory TH17 and anti-inflammatory iTreg cell differentiation 
in vitro and in vivo.

GAB regulates T cell differentiation through the GABAA 
receptor
In line with earlier studies14, we have found that Teff cells express vari-
ous subunits of the GABAA receptor (GABAA-R) (Fig. 1f). Additionally, 
T cells can produce and secrete a large amount of GAB into the extracel-
lular compartment, which may elicit a context-dependent autocrine 
signalling response to regulate T cell differentiation (Fig. 5a). Sup-
porting this idea, a low level of GAB supplementation could reduce 
TH17 but enhance iTreg differentiation without significantly affecting 
T cell activation and proliferation in vitro (Fig. 5b,c and Extended Data 
Fig. 7a,b). Conversely, GABAA-R antagonists with distinct antagonistic 
mechanisms enhanced TH17 cell differentiation but reduced iTreg cell 
differentiation without affecting T cell activation and proliferation 
in vitro (Fig. 5c–e and Extended Data Fig. 7c,d). The β-subunit is a core 
component of GABAA-R, and the β3 subunit (encoded by Gabrb3) was 
highly expressed in all Teff subsets (Fig. 1f). We generated a T cell-specific 
Gabrb3-knockout strain (Gabrb3 cKO) by crossing the Gabrb3fl strain 
with the CD4-Cre strain. Gabrb3 deletion did not result in T cell develop-
ment defects in the thymus, spleen and lymph nodes (Extended Data 
Fig. 8a–f). In addition, cell viability, the expression of cell surface acti-
vation markers and cell proliferation were comparable in both WT and 
Gabrb3 cKO T cells after activation in vitro (Extended Data Fig. 9a,b).  
However, genetic ablation of Gabrb3 promoted pro-inflammatory 
TH17 cell differentiation while reducing anti-inflammatory iTreg cell 
differentiation in vitro (Fig. 5c,f). Notably, GABA supplementation 
only affected WT but not Gabrb3 cKO T cell differentiation in vitro  
(Fig. 5c,f). Finally, the T cell-specific Gabrb3 deletion let to significantly 
deteriorated EAE pathogenic progression, associated with increased 
inflammatory CD4+ T cells and decreased FoxP3+CD4+ T cells in the CNS 
and periphery (Fig. 5g,h and Extended Data Fig. 9c,d).

GAB regulates T cells through a bimodal mechanism of action
Next, we sought to dissect the effect of ABAT-dependent mitochon-
drial anaplerosis and GABAA-R-mediated signalling on T cell differ-
entiation and function (Extended Data Fig. 10a). We envisioned that 
the ABAT-dependent anaplerotic reaction might support TH17 dif-
ferentiation by providing succinate to fuel mitochondrial OXPHOS 
(Fig. 6a). Indeed, inhibiting ABAT activity by Vig suppressed oxygen 
consumption, which was reversed by adding a cell-permeable suc-
cinate analogue NV118 (Fig. 6a,b)24. In line with the effect of NV118 

on oxygen consumption, the NV118 supplementation could partially 
reverse the inhibition of TH17 differentiation resulting from genetic or 
pharmacological inhibition of ABAT (Fig. 6c,d). Next, we asked whether 
ABAT-dependent mitochondrial anaplerosis could impact transcrip-
tion factors critical for TH17 lineage differentiation, such as RORγt and 
STATs25. To test this idea, we reduced the medium’s Gln concentration 
and added a high concentration of GAB (1 mM) with a GABAA-R antago-
nist. We reasoned that reducing Gln levels would force cells to use GAB 
as a mitochondrial fuel and adding the receptor antagonist would elimi-
nate the effects of receptor signaling. Indeed, GAB supplementation 
significantly enhanced the levels of RORγt and phosphorylated STAT3 
(pSTAT3) but reduced the levels of phosphorylated STAT5 (pSTAT5) 
(Extended Data Fig. 10b).

Next, we sought to determine whether modulating GABAA-R 
affects key signalling molecules involved in regulating TH17 and iTreg 
differentiation. We treated T cells with a low dose of GAB (10 μM) in 
the presence of a GABAA-R antagonist. We reasoned that the low dose 
of GAB could engage the receptor-mediated signalling response with-
out significantly fuelling mitochondrial metabolism. We assessed the 
levels of phosphorylated STAT proteins and the phosphorylation of 
a canonical mTORC1 substrate (pS6) because mTORC1 is critical for 
determining TH17 and iTreg differentiation26,27. Treating TH17 and iTreg 
cells with a low dose of GAB suppressed pSTAT3 and mTORC1 substrate 
phosphorylation (pS6) but increased pSTAT5 (Extended Data Fig. 10c). 
Notably, the effects of GAB on these signalling molecules could be 
reversed by a GABAA-R antagonist (Extended Data Fig. 10c). We showed 
that iTreg cells can excrete GAB into the extracellular compartment 
(Extended Data Fig. 1g–i). Finally, we sought to determine whether GAB 
contributes to Treg-dependent immune suppression. We performed a 
competitive Treg suppression assay by co-culturing iTreg cells with WT 
and Gabrb3 cKO CD4+ T cells that carried different isogenic markers 
(Fig. 6e). Indeed, Gabrb3 cKO CD4+ T cells proliferated better than the 
WT group, indicating that genetic ablation of GABAA-R could partially 
alleviate iTreg-mediated suppression (Fig. 6e). Together, these results 
suggest that GAB is an abundant metabolite produced by T cells and 
exerts both bioenergetic control and receptor-mediated signalling 
control of T cell differentiation (Fig. 6f).

Discussion
The vertebrate immune and nervous systems are intimately connected 
with each other developmentally, anatomically and physiologically. 
Interaction between the two systems coordinates their sensory func-
tions to ensure organismal homeostasis and survival28–31. Immune 
cells and neurons can communicate with each other through a group 
of shared ligand molecules and receptors, including the neurotrans-
mitter GABA and its receptors14,32. Beyond mediating intersystem 
communication between the immune and nervous systems, grow-
ing evidence suggests that GABA can also act as a paracrine signalling 
molecule mediating intrasystem communication to regulate immune 
response33. One recent study has found that B cells can produce GABA 
and suppress anti-tumour immunity through paracrine modulation 
of intratumoural macrophages and CD8+ T cells34. Additionally, GABA 
in macrophages has been implicated as an intracellular metabolite 
with a pro-inflammatory function14. Here, we show that GAB (the bio-
chemical form of GABA at physiological pH) is one of the most abundant 
metabolites in T cells and promotes inflammation through modulating 
T cell proliferation and differentiation. Depending on the status of its 
catabolizing enzyme ABAT, GAB can act as a conditional anaplerotic 
substrate to promote TH17 cell differentiation or an autocrine signal-
ling metabolite to enhance iTreg cell differentiation. In addition to its 
role in mediating intercellular communications, GAB also serves as 
a metabolic and signalling gatekeeper to regulate inflammation in a 
T cell-autonomous manner.

Teff cells consume Gln and Arg at high rates35,36. Beyond a gen-
eral requirement for protein synthesis, Gln and Arg support T cell 
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proliferation and function through their catabolic products. Gln is 
a primary carbon source to sustain the TCA cycle, which generates 
energy through OXPHOS and allocates carbon to produce biosynthetic 
precursors to support T cell growth21,36,37. Similarly, Arg catabolism is 
coupled with the urea cycle to produce bioactive metabolites such as 
polyamines to support T cell proliferation and differentiation10–12. Our 
results show that both Arg catabolism (via Put) and Gln catabolism 
(via Glu) are coupled with GAB biosynthesis in TH17 cells, implicating 
GAB as a crucial metabolic node and a branch point in amino acid 
catabolism. GAB can be consumed through the TCA cycle to enhance 
bioenergetic and biosynthetic capacities or be secreted as an auto-
crine signalling metabolite depending on the status of ABAT. We have 
further revealed that Gln can replenish the TCA cycle intermediate 
metabolites through either Glu or GAB anaplerosis. Glu increases the 
levels of α-ketoglutarate (α-KG), while GAB increases the levels of suc-
cinate. Therefore, it is conceivable that the carbon input from Glu or 
GAB may change the intracellular α-KG to succinate ratio reciprocally. 
Hence, the GABA shunt in T cells may impact the hypoxia signalling 
response and/or DNA/histone methylation patterns by modulating 
the enzymatic activities of the α-KG-dependent dioxygenase fam-
ily37–40, and Glu and Put are highly abundant intracellular metabolites 
that can be secreted to the extracellular environment by TH17 cells  
(Fig. 1a)10,41. The GAB-catabolizing enzyme ABAT may provide a sensi-
tive and precise regulation of the three interconnected and highly 
abundant metabolites: GAB, Glu and Put, permitting rapid metabolic 
and signalling responses to control inflammation.

The high and dynamic metabolic demands of T cells during inflam-
matory and autoimmune responses require fine-tuned regulation of 
central carbon and ancillary metabolic pathways. Hence, metabolic 
pathways have been therapeutically exploited to target inflammatory 
and autoimmune diseases42,43. Disruption of central carbon catabolism 
can affect many cellular processes and cell types. However, targeting 
ancillary metabolic pathways engaged in a small group of specialized 
immune cells under physio-pathological conditions may result in less 
toxicity but maximal clinical benefits6. Gene and protein expression 
profiling studies have suggested that human autoimmune diseases, 
including MS, type 1 diabetes and rheumatoid arthritis, are associ-
ated with the dysregulation of GABA-related metabolic and signaling 
genes44–47. Interestingly, cortical GAB levels are lower in patients with 
relapsing–remitting multiple sclerosis MS than in healthy controls48,49. 
In addition, one recent study based on genome-scale metabolic mod-
elling and in silico simulations for drug response indicated that GAB 
metabolism and signalling pathway not only are involved in the disease 
process but also are potential drug targets in human autoimmune 
diseases50. Consistent with clinical profiling and in silico studies, phar-
macological modulation of GAB metabolism and receptor-mediated 
signalling response could ameliorate pathological phenotypes in sev-
eral preclinical models of autoimmune diseases51–55. Our results further 
elucidate a previously unrecognized aspect of the T cell-intrinsic effects 
conferred by GAB catabolism and receptor-mediated signalling. Col-
lectively, GAB-modulating strategies via blockade of GAB catabolism, 
activation of receptor-mediated response, or both may present a prom-
ising therapy for treating inflammatory and autoimmune diseases.

Methods
Mice
C57BL/6 (WT), Flippase (B6.129S4Gt(ROSA)26Sortm1(FLP1)Dym/RainJ), 
OT-II (B6.Cg-Tg(TcraTcrb)425Cbn/J), CD45.1+ (B6.SJL-PtprcaPepcb/
BoyJ), Rag1−/− (B6.129S7-Rag1tm1Mom/J), IL17A-IRES-GFP-KI (C57B
L/6-Il17atm1Bcgen/J), FoxP3GFP+ (C57BL/6-Tg(Foxp3-GFP)90Pkraj/J) 
and Gabrb3fl (B6;129-Gabrb3tm2.1Geh/J) mice were obtained from the 
Jackson Laboratory ( JAX, Bar Harbor, ME). Mice with one targeted 
allele of Abat on the C57BL/6 background (Abattm1a(EUCOMM)Hmgu) were 
generated by the European Conditional Mouse Mutagenesis Pro-
gram (EUCOMM)56. The mice were first crossed with a transgenic 

Flippase strain (B6.129S4Gt(ROSA)26Sortm1(FLP1)Dym/RainJ) to remove 
the lacZ-reporter allele and then crossed with the Cd4-Cre strain to 
generate the T cell-specific Abat knockout strain (Abat cKO). OT-II mice 
were crossed with Cd4-Cre Abat cKO mice to generate the OT-II Cd4-Cre 
Abat cKO mice. OT-II mice were crossed with Thy1.1+ mice (B6.PL-Thy1a/
CyJ) to generate the OT-II Thy1.1 mice. Gabrb3fl mice were crossed 
with the Cd4-Cre strain to generate T cell-specific Gabrb3-knockout 
strain (Gabrb3 cKO). For one independent experiment, we used male 
and female mice from the same strain that were both sex and age 
matched (6–12 weeks old), such as two males and two females for WT 
mice, as well as for KO mice. All mice were bred and kept in specific 
pathogen-free conditions at the Animal Center of the Abigail Wexner 
Research Institute at Nationwide Children’s Hospital. A low-fat diet was 
provided (Envigo 2920, the irradiated form of 2020X; https://insights.
envigo.com/hubfs/resources/ data-sheets/2020x-datasheet-0915.
pdf). Animals were killed by carbon dioxide asphyxiation followed 
by cervical dislocation under protocols approved by the Institutional 
Animal Care and Use Committee of the Abigail Wexner Research 
Institute at Nationwide Children’s Hospital (IACUC; protocol number  
AR13-00055).

Murine T cell isolation and culture
Naive CD4+ T cells were enriched from mouse spleen and lymph nodes 
by negative selection using the MojoSort™ Mouse CD4+ Naive T Cell 
Isolation Kit (MojoSort, BioLegend) according to the manufacturer’s 
instructions. For the activation assay, freshly isolated CD4+ T cells were 
either maintained in a culture medium with 5 ng/ml-1 IL-7 or activated 
with 5 ng/ml-1 IL-2 and plate-bound anti-mouse CD3 and anti-mouse 
CD28. The culture plates were precoated with 2 μg/ml-1 anti-mouse CD3 
and 2 μg/ml-1 anti-mouse CD28 antibodies overnight at 4 °C. Naive tTreg 
cells were enriched from mouse spleen and lymph nodes by positive 
selection using the MojoSort™ Mouse CD4+CD25+ Regulatory T Cell 
Isolation Kit (MojoSort, BioLegend) according to the manufacturer’s 
instructions. For the activation assay, freshly isolated CD4+CD25+ 
regulatory T cells were either maintained in a culture medium with 
5 ng/ml-1 IL-2 or activated with 5 ng/ml-1 IL-2 and anti-mouse CD3/CD28 
beads according to the manufacturer’s instructions (Gibco, Thermo 
Fisher Scientific). Unless indicated separately, the cells were seeded 
in the RPMI-1640 medium (Corning) supplemented with 10% FBS, or 
heat-inactivated dialysed FBS (DFBS), 2 mM l-glutamine, 1% sodium 
pyruvate (Sigma-Aldrich), 100 units/ml-1 penicillin, 100 μg/ml-1 strep-
tomycin and 0.05 mM 2-mercaptoethanol (Sigma-Aldrich) at 37 °C 
and 5% CO2.

For CD4+ T cell differentiation, 48-well culture plates were pre-
coated with 2 μg/ml-1 (iTreg differentiation), 5 μg/ml-1 (TH1/ TH2 differ-
entiation) or 10 μg/ml-1 (TH17 differentiation) anti-mouse CD3 and 
anti-mouse CD28 antibodies overnight at 4 °C. Freshly isolated naive 
CD4+ T cells (0.5 × 106 cells per ml) were activated with plate-bound 
antibodies and with mouse IL-2 (3 ng/ml-1) and human TGF-β1 (10 ng/
ml-1) for iTreg differentiation, with mouse IL-2 (10 ng/ml-1) and mouse 
IL-12 (20 ng/ml-1) for TH1 differentiation, with mouse IL-2 (2 ng/ml-1), 
mouse IL-4 (50 ng/ml-1) and anti-mouse IFN-γ (10 μg/ml-1) for TH2 dif-
ferentiation, or with mouse IL-6 (50 ng/ml-1), human TGF-β1 (20 ng/ml-1), 
anti-mouse IL-2 (8 μg/ml-1), anti-mouse IL-4 (8 μg/ml-1), and anti-mouse 
IFN-γ (8 μg/ml-1) for TH17 differentiation. In some experiments, Vig 
(1 mM), GABA (0.1 μM~1 mM), NV118 (25 μM), GABAA-R antagonists 
including bicuculline (Bicl, 5 or 50 μM), picrotoxin (PicroT, 5 or 50 μM) 
and flumazenil (10 or 1 μM), R162 (20 μM), oligomycin (1.5 μM), FCCP 
(1 μM), or AG (0.2 mM) was added to cell culture medium. Additional 
information on cytokines, antibodies and chemicals is listed in Sup-
plementary Table 1.

Flow cytometry
For analysing surface markers, cells were stained in phosphate-buffered 
saline (PBS) containing 2% (wt/vol) BSA and the appropriate antibodies 
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from BioLegend. For analysing the intracellular cytokines IFN-γ 
and IL-17A, T cells were stimulated for 4 hrs with eBioscience™ Cell 
Stimulation Cocktail (eBioscience) before being stained with cell 
surface antibodies. Cells were then fixed and permeabilized using 
FoxP3 Fixation/Permeabilization solution according to the manu-
facturer’s instructions (eBioscience). Cell proliferation was assessed 
using CFSE staining according to the manufacturer’s instructions 
(Invitrogen). Cell viability was evaluated by 7AAD staining accord-
ing to the manufacturer’s instructions (BioLegend). For analysing 
DNA/RNA content, cells were collected and stained for surface mark-
ers before being fixed with 4% paraformaldehyde for 30 min at 4 °C, 
followed by a permeabilization step with FoxP3 permeabilization 
solution (eBioscience). Cells were stained with 7AAD for 5 min and 
then stained with pyronin-Y (4 μg/ml-1; PE) for 30 min before being 
analysed using flow cytometer with the PerCP channel for 7AAD 
(DNA) and PE channel for pyronin-Y (RNA). A protein synthesis assay 
kit (Item No.601100, Cayman) was used for analysing protein content. 
Briefly, cells were incubated with O-propargyl-puromycin (OPP) for 
1 hr and then they were fixed and stained with 5 FAM-azide staining 
solutions before being analysed using a flow cytometer with the FITC 
channel. For analysing the cell cycle profile, cells were incubated with 
10 μg/ml-1 BrdU for 1 hr, followed by cell surface staining, fixation 
and permeabilization based on the Phase-Flow Alexa Fluor 647 BrdU 
Kit (BioLegend). Flow cytometry data were acquired on Novocyte 
(ACEA Biosciences) and were analysed with FlowJo software (TreeS-
tar). Additional information on flow cytometry antibodies is listed in  
Supplementary Table 2.

Treg cell suppression assay
For the iTreg suppression assay, naive CD4+ T cells isolated from CD45.1 
mice using the naive CD4+ mouse T cell isolation kit (BioLegend) were 
differentiated for 3 d to generate iTreg cells. Naive CD4+ T cells isolated 
from CD45.2/Thy1.1 WT donor mice and CD45.2/Thy1.2 Gabrb3 cKO 
donor mice were mixed at a 1:1 ratio (as Tconv cells) and labelled with 
CFSE. Then, approximately 5 × 104 Tconv cells were mixed with iTreg cells 
(with indicated ratios) and cultured with 3 ng/ml-1 IL-2 and anti-mouse 
CD3/CD28 beads. Cells were collected 4 d later and processed to assess 
proliferation by flow cytometry analysis.

Retrovirus production and transduction
Phoenix Eco cells that were cultured in fresh DMEM media (Corn-
ing) supplemented with 10% heat-inactivated FBS and 0.5% 
penicillin-streptomycin were transfected with the control plasmid 
(pMIC, MSCV-IRES-mCherry) or pMIC-ABAT (Supplementary Table 
3). Viral-Boost Reagent (ALSTEM) was added to the culture medium 
at a 1:600 dilution 6 h after transfection. Cell medium was collected 
at 48 h after transfection, centrifuged at 300g for 10 min, and then fil-
tered through a 0.45-μm filter unit (GVS Filter Technology). Retrovirus 
Precipitation Solution (ALSTEM) was added to retrovirus-containing 
supernatant at 1:4 dilution and incubated overnight at 4 °C, followed 
by centrifugation at 1,500g for 30 min at 4 °C to concentrate the virus. 
Then, approximately 0.3 × 106 activated CD4+ T cells (1 d after activa-
tion) were resuspended in 1 ml of retroviral supernatant containing 
8 μl/ml-1 Lipofectamine (Invitrogen) and cultured under iTreg differ-
entiation for 4 d.

Adoptive cell transfer assays
For homeostatic proliferation in lymphopenic Rag−/− mice, naive CD4+ 
T cells isolated from donor mice using a naive CD4+ mouse T cell isola-
tion kit (BioLegend) were labelled with CFSE. Approximately 1 × 107 cells 
(mix of WT and KO cells at a 1:1 ratio) in 150 μl of PBS were transferred via 
caudal venous injection into 6- to 8-week-old sex-matched host mice. 
Mice were killed between 4–7 d after cell transfer. Lymph nodes and 
spleen were collected and processed to assess cell ratio and prolifera-
tion by flow cytometry analysis.

For antigen-driven proliferation using OT-II mice, naive CD4+ 
T cells isolated from OT-II/CD45.2 TCR-transgenic donor mice using 
the naive CD4+ mouse T cell isolation kit (BioLegend) were labelled 
with CFSE. Approximately 1 × 107 cells (mix of WT and KO cells at a 1:1 
ratio) in 150 μl of PBS were transferred via caudal venous injection 
into 6- to 8-week-old sex-matched CD45.1 host mice. Host mice were 
immunized subcutaneously in the hock area (50 μl each site) in both 
legs with 1 mg/ml-1 ovalbumin (OVA)323–339 peptide (InvivoGen) emulsi-
fied with complete Freund adjuvant (CFA; InvivoGen). The mice were 
then killed 8 d after immunization. Lymph nodes were collected and 
processed to assess cell ratio, proliferation and protein expression by 
flow cytometry analysis.

EAE
Mice were immunized subcutaneously with 100 μg of myelin oligoden-
drocyte glycoprotein (MOG)35–55 peptide emulsified in CFA, which was 
made from IFA (Difco) plus Mycobacterium tuberculosis (Difco). Mice 
were injected intraperitoneally with 200 ng of pertussis toxin (PTX, 
List Biological Laboratories) on the day of immunization and 2 d later. 
In the experiments shown in Fig. 4j,k and Extended Data Fig. 5c,d, the 
mice were injected intraperitoneally with 250 mg/kg-1 of Vig in 100 μl 
PBS daily from day 3 after immunization throughout the end of the 
experiment. In the experiments shown in Fig. 5g,h and Extended Data 
Fig. 9c,d, the animals were injected with PTX only once on the day of 
immunization for a suboptimal EAE induction. All mice were observed 
daily for clinical signs and scored as described previously10. In some 
experiments, the mice were killed when the control mice reached the 
onset of symptoms. The CNS (brain and spinal cord), spleen and periph-
eral lymph nodes were collected and mashed to generate the single-cell 
suspension. The cell suspension was centrifuged on a 30%/70% Percoll 
gradient at 500g for 30 min to isolate mononuclear cells from the CNS, 
followed by cell surface and intracellular staining and flow cytometry 
analysis described above.

Stable isotope labelling experiments
[13C5]Gln, [13C6]Arg and [13C6]Glc labelling of TH17 cells. Naive CD4+ 
T cells isolated from WT mice were polarized for 72 h under TH17 culture 
conditions before being collected and reseeded at 2 × 106 cells per 
ml in a conditional medium (RPMI-1640) containing 4 mM [13C5]Gln, 
1 mM [13C6]Arg or 10 mM [13C6]Glc. After 12 h of culture, around 1 × 107 
cells for each sample were collected and washed three times with PBS 
before being snap-frozen.

[13C6]Arg labelling of TH17 cells. TH17 cells (as described above) were 
pretreated with vehicle or Vig (1 mM) for 1 h before being collected and 
reseeded at a density of 2 × 106 cells per ml in a conditional medium 
(RPMI-1640) containing 4 mM 1 mM [13C6]Arg with vehicle or Vig (1 mM). 
After 6 h of culture, around 1 × 107 cells for each sample were collected 
and washed three times with PBS before being snap-frozen.

[13C4]Put labelling of TH17 cells. TH17 cells (as described above) were 
pretreated with vehicle, Vig (1 mM), or AG (0.2 mM) for 1 h and then col-
lected and reseeded at a density of 2 × 106 cells per ml in a conditional 
medium (RPMI-1640) containing 0.1 mM [13C4]Put and 10 μM Arg and 
with vehicle, Vig (1 mM), or AG (0.2 mM) treatment. After 6 h of culture, 
around 1 × 107 cells for each sample were collected and washed three 
times with PBS before being snap-frozen.

[13C4]GABA labelling of TH17, iTreg and TH1 cells. Naive CD4+ T cells 
isolated from WT mice were polarized for 72 h under TH17, iTreg or TH1 
culture conditions before being collected and re-seeded at a density 
of 2 × 106 cells per ml in a conditional medium (RPMI-1640) containing 
0.5 mM [13C4]GABA, 0.1 mM Gln and the GABAA-R antagonist bicuculline 
(5 μM). After 12 h of culture, around 1 × 107 cells for each sample were 
collected and washed three times with PBS before being snap-frozen.
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[13C4]GABA labelling of TH17 cells with Vig. TH17 cells (as described 
above) generated from WT or Abat cKO mice were pretreated with 
vehicle or Vig (1 mM) for 1 h before being collected and reseeded at a 
density of 2 × 106 cells per ml in the conditional medium containing 
0.5 mM [13C4]GABA, 0.1 mM Gln and the GABAA-R antagonist bicuculline 
(5 μM) and with vehicle or Vig (1 mM) treatment. After 12 h of culture, 
around 1 × 107 cells for each sample were collected and washed three 
times with PBS before being snap-frozen.

[13C5]Gln labelling of TH17 cells with multiple inhibitors. TH17 cells 
(as described above) were pretreated with vehicle, Vig (1 mM) or R162 
(20 μM) for 1 h and then collected and reseeded at a density of 2 × 106 
cells per ml in a conditional medium (RPMI-1640) containing 4 mM 
[13C5]Gln and with vehicle, Vig (1 mM), R162 (20 μM) or the combination 
of Vig and R162 treatment. After 6 h of culture, around 1 × 107 cells for 
each sample were collected and washed three times with PBS before 
being snap-frozen. Additional information on stable isotope labelling 
is listed in Supplementary Table 4.

Gas chromatography–mass spectrometry sample preparation 
and analysis
GC–MS was performed as previously described57, and cell pellets were 
resuspended in 0.45 ml of −20 °C methanol/water (1:1 v/v) contain-
ing 20 μM l-norvaline as internal standard. Further extraction was 
performed by adding 0.225 ml of chloroform followed by vortexing 
and centrifugation at 15,000g for 5 min at 4 °C. The upper aqueous 
phase was evaporated under vacuum using a Speedvac centrifugal 
evaporator. Separate tubes containing varying amounts of standards 
were evaporated. Dried samples and standards were dissolved in 30 μl 
of 20 mg/ml-1 isobutylhydroxylamine hydrochloride (TCI #I0387) 
in pyridine and incubated for 20 min at 80 °C. An equal volume of 
N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) 
(Soltec Ventures) was added and incubated for 60 min at 80 °C. After 
derivatization, samples and standards were analysed by GC–MS using 
an Rxi-5ms column (15 m × 0.25 internal diameter × 0.25 μm, Restek) 
installed in a Shimadzu QP-2010 Plus GC–MS instrument. GC–MS was 
programmed with an injection temperature of 250 °C, injection volume 
of 1.0 μl and a split ratio of 1/10. The GC oven temperature was initially 
130 °C for 4 min, rising to 250 °C at 6 °C min-1 and to 280 °C at 60 °C 
min-1 with a final hold at this temperature for 2 min. GC flow rate, with 
helium as the carrier gas, was 50 cm s-1. GC–MS interface temperature 
was 300 °C, and the (electron impact) ion source temperature was 
200 °C, with an ionization voltage of 70 eV. Fractional labelling from 
13C-labelled substrates and mass isotopomer distributions were cal-
culated as described previously57. Data from standards were used to 
construct standard curves in MetaQuant58, from which metabolite 
amounts in samples were calculated. Metabolite amounts were cor-
rected for the recovery of the internal standard and for 13C labelling 
to yield total (labelled and unlabelled) quantities in nanomoles per 
sample and then adjusted by cell number.

Liquid chromatography–mass spectrometry sample 
preparation and analysis
Naive CD4+ T cells were polarized under TH0, TH1, TH17 and iTreg culture 
conditions or cultured with IL-7 (Tnai condition) for 72 h. Then, the cells 
were collected, washed with PBS and reseeded at a density of 5 × 106 
cells per ml in fresh medium. After 6 h of culture, the cell medium was 
collected and snap-frozen. Sample preparation and analysis were 
carried out as described previously at Metabolon59. In brief, sample 
preparation involved protein precipitation and removal with methanol, 
shaking and centrifugation. The resulting extracts were profiled on an 
accurate mass global metabolomics platform consisting of multiple 
arms differing by chromatography methods and MS ionization modes 
to achieve broad coverage of compounds differing by physiochemi-
cal properties such as mass, charge, chromatography separation and 

ionization behaviour. Metabolites were identified by automated com-
parison of the ion features in the experimental samples to a reference 
library of chemical standard entries that included retention time, 
molecular weight (m/z), preferred adducts and in-source fragments as 
well as associated MS spectra and were curated by visual inspection for 
quality control using a software developed at Metabolon.

Metabolite quantification
In some experiments, TH17 cells were suspended at a density of 5 × 106 
cells per ml with medium containing vehicle or Vig (1 mM). After 6 h 
of culture, blank medium (without cells) and spent medium were col-
lected. The levels of Gln and Glu were measured using the Bioanalyzer 
(YSI 2900). Following the manufacturer’s instructions, Arg and GAB 
quantities were determined by l-Arginine Assay Kit (BioVision) and 
GABA Research ELISA Kit (LDN). Consumption or production of each 
metabolite was determined by calculating the difference between 
blank and spent media.

OCR
Following the manufacturer’s instructions, the OCR was determined 
using the Seahorse XFe96 Analyzer (Agilent Technologies). Briefly, 
approximately 1 × 105 TH17 cells were suspended in a 50 μl assay medium 
(Seahorse XF RPMI Assay Medium, pH 7.4, Agilent Technologies) con-
taining 10 mM Glc, 2 mM Glu and 1 mM pyruvate and were seeded in 
an XF96 Cell Culture Microplates (Seahorse, Agilent Technologies) 
precoated with poly(d-lysine) (50 μg ml-1; Millipore). The cells were 
centrifuged at 200g for 2 min on a zero-braking setting to immobilize 
the cells before they were supplied with an additional 130 μl of assay 
medium and kept in a non-CO2 incubator for 30 min. Data analysis 
was performed using the Seahorse Wave Software (Seahorse, Agilent 
Technologies). In some experiments, the GABAA-R antagonist bicuc-
ulline (5 μM) was added along with GABA to prevent the activation of 
GABAA-R. Various compounds were injected into each well sequentially 
to achieve the following final concentrations: 0.5 mM GABA, 1 mM Vig, 
20 μM R162, 1.5 μM oligomycin, and 1 μM FCCP.

Western blot analysis, RNA extraction, qPCR, and RNA-seq and 
NMR analysis of medium
Details are provided in the Supplementary Information.

Statistical analysis
Statistical analysis was conducted using the GraphPad Prism software 
(GraphPad Software; v 8.0.1). To determine the statistical significance, 
different tests including unpaired two-tailed Student’s t-test, one-way 
ANOVA with Tukey’s multiple-comparisons test and two-way ANOVA 
with Sidak’s multiple-comparisons test were used as indicated in the 
figure legends. The number of experimental repeats is indicated in 
the figure legends. R software (v 4.2.1) was used for Metabolon and 
RNA-seq data analysis. P values that were considered significant are 
shown in the corresponding figures.

Reporting summary
Further information on the research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The RNA-seq datasets generated for this study can be found in the Gene 
Expression Omnibus under accession GSE190818. The authors declare 
that all other data supporting the findings of this study are available 
within the paper and supplementary information files. Source data  
are provided with this paper.
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Extended Data Fig. 1 | Distinctive extracellular metabolome profiles 
characterize T cell subsets. a, Cytokine production of indicating T cell 
subsets was determined by flow cytometer. b, Principal component analysis 
(PCA) for the correlations among each subset. c, Pairwise comparison of the 
statistical analysis, the numbers reflect the correlation R values. d, Extracellular 
metabolites in indicated T cell subsets were profiled by LC-MS. The hierarchical 
clustering heatmap represents the value of the relative amount (see color scale). 
e-g, Extracellular metabolites associated with energy metabolism (e), nucleotide 

metabolism (f), and lipid metabolism (g) in indicated T cell subsets were profiled 
by LC-MS. The value for each metabolite represents the average of triplicates. 
The complete metabolomic profile is provided in Source Data file 5. Statistical 
analysis was performed by R Programming Language (b–g). h, i, As illustrated 
by the experimental scheme (left), GAB production of iTreg cells in indicated 
conditions was quantified by a GAB bioassay kit (n = 4 biologically independent 
samples).
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Extended Data Fig. 2 | ABAT is dispensable for normal T cell development 
after the double-positive stage. a–f, Distribution of CD4+ and CD8+ T cell (a, d), 
indicated intracellular proteins (b, e) and surface markers (c, f) were determined 

by flow cytometer. Data are shown as mean ± SEM, n = 3 biologically independent 
samples, significance was calculated by unpaired Two-tail Student’s t-test. ns, no 
significant differences.
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Extended Data Fig. 3 | ABAT is dispensable for T cell activation. a, Cell viability, 
size and activation markers (a), cell cycle profile (b), DNA/RNA contents (c), 
protein synthesis activity (d), and CFSE dilution and cell viability (e) were 
determined by flow cytometry. Data are shown as mean ± SEM, n = 3 biologically 

independent samples, significance was calculated by Two-way ANOVA 
with Sidak’s multiple comparisons test. ns, no significant differences. OPP: 
o-propargyl-puromycin, MFI: median fluorescence intensity.
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Extended Data Fig. 4 | ABAT regulates T cell differentiation in vitro. a–d, 
Expression of indicated cytokines in indicated groups was determined by 
flow cytometry: a, c, d, data represents of n = 3 biologically independent 
samples, significance was calculated by one-way ANOVA with Tukey’s multiple 
comparisons test. ns, no significant differences. b, data represents of n = 4 
biologically independent samples, unpaired Two-tail Student’s t-test. ns, 

no significant differences. e, Diagram of converting [13C4]-GABA (left) to 
downstream metabolites. Indicated metabolites were quantified by GC-MS (n = 3 
biologically independent samples). Black dot: 12C; Blue dot: 13C derived from the 
indicated tracers. Numbers in the X-axis represent those of 13C atoms in given 
metabolites. Significance was calculated by unpaired Two-tail Student’s t-test. 
ABAT-OE: ABAT overexpression, α-KG: α-Ketoglutarate, M: mass spectrum.
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Extended Data Fig. 5 | Genetic ablation or pharmacological inhibition of 
ABAT reduces T cell inflammation in EAE. a–d, T cells were isolated from 
indicated sites in experimental animals described in Fig. 4h (a, b) and Fig. 4j  
(c, d). The expression of indicated proteins was determined by flow cytometry. 

Statistical analysis (n = 3 biologically independent samples) was calculated 
by unpaired Two-tail Student’s t-test. Data are shown as mean ± SEM, ns, 
no significant differences. Vig: vigabatrin, EAE: experimental autoimmune 
encephalomyelitis, CNS: central nervous system, LNs: lymph nodes.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Inhibition of ABAT suppresses T cell proliferation 
and differentiation in vivo. a–c, As illustrated by the experimental diagram 
of competitive antigen (OVA)-specific proliferation (a, top), the donor cell 
ratio (a, bottom and b), CFSE dilution (a, bottom), and indicated protein levels 
(a, bottom and c), were determined by flow cytometry (n = 3 biologically 
independent samples). b, c, Data are shown as mean ± SEM, significance was 

calculated by unpaired Two-tail Student’s t-test. ns, no significant differences. 
d–e, As illustrated by the experimental diagram of competitive homeostatic 
proliferation (d, top). The donor cell ratio (d, bottom, and e) and CFSE dilution 
(d, bottom) were determined by flow cytometry (n = 3 biologically independent 
samples). e, Significance was calculated by unpaired Two-tail Student’s t-test. 
CSA: cervical, submandibular and axilla.
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Extended Data Fig. 7 | Modulating GABA receptor-mediated response does not affect activation and proliferation significantly during TH17 and iTreg 
differentiation. a–d, Cell activation markers (a, c), and CFSE dilution (b, d) were determined by flow cytometry (n = 3 biologically independent experiments). Bicl: 
bicuculline, PicroT: picrotoxin, Flu: flumazenil.
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Extended Data Fig. 8 | GABA receptor is dispensable for normal T cell 
development after the double-positive stage. a–f, Distribution of CD4+ and 
CD8+ T cell (a, d), indicated intracellular proteins (b, e), and surface markers 

(c, f) were determined by flow cytometer. Data are shown as mean ± SEM, n = 3 
biologically independent samples, significance was calculated by unpaired Two-
tail Student’s t-test. ns, no significant differences.
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Extended Data Fig. 9 | GABA receptor is required for T cell differentiation 
but not activation. a, b, Cell viability, cell activation markers (a), and 
CFSE dilution (b) were determined by flow cytometry (n = 3 biologically 
independent experiments). c, T cells were isolated from indicated sites in 
experimental animals described in Fig. 5g. The expression of indicated proteins 

was determined by flow cytometry. d, Statistical analysis (n = 3 biologically 
independent samples) was calculated by unpaired Two-tail Student’s t-test. 
Data are shown as mean ± SEM, ns, no significant differences. EAE: experimental 
autoimmune encephalomyelitis, CNS: central nervous system, LNs: lymph nodes.
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Extended Data Fig. 10 | GAB controls T cell signaling pathways through 
both receptor and mitochondrial metabolism. a, Schematic diagram of GAB 
metabolism and GABAA-R-mediated signaling response. b, c, The schematic 
diagram of the experiment (top), the expression of indicated proteins from 

each group was determined by flow cytometry (n = 3 biologically independent 
samples). Data are shown as mean ± SEM. b, Significance was calculated by 
unpaired Two-tail Student’s t-test. c, Significance was calculated by one-way 
ANOVA with Tukey’s multiple comparisons test. ns, no significant differences.
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