Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Metabolic Messengers
  • Published:

Metabolic Messengers: bile acids

Abstract

Bile acids (BAs) are amphipathic steroid acids whose production and diversity depend on both host and microbial metabolism. These metabolites have emerged as biologically active signalling molecules that inform organs of nutrient availability. Their actions, through activation of the dedicated BA receptors FXR and TGR5, control the body’s integrated physiological metabolic responses. Alterations in BA abundance or signalling are associated with metabolic diseases including obesity, type 2 diabetes, non-alcoholic steatohepatitis and atherosclerosis. Consequently, modulation of the BA pool could be a valid therapeutic approach, as demonstrated in preclinical and clinical models. Here we provide a historical summary of the discovery of BAs and their receptors, as well as a summary on the role of BA signalling in the control of energy homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of major discoveries in the BA field.
Fig. 2: Target tissues and biological activity of BAs.
Fig. 3: BA signalling controls whole-body energy homeostasis through direct and indirect mechanisms.

References

  1. Bryan, C. P. The Papyrus Ebers. (Appleton, New York, 1931).

    Google Scholar 

  2. Wang, D. Q. H. & Carey, M. C. Therapeutic uses of animal biles in traditional Chinese medicine: an ethnopharmacological, biophysical chemical and medicinal review. World J. Gastroenterol. 20, 9952–9975 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Russell, D. W. Fifty years of advances in bile acid synthesis and metabolism. J. Lipid Res. 50(Suppl), S120–S125 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sjövall, J. Fifty years with bile acids and steroids in health and disease. Lipids 39, 703–722 (2004).

    Article  PubMed  Google Scholar 

  5. Hofmann, A. F. & Hagey, L. R. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J. Lipid Res. 55, 1553–1595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, H., Chen, J., Hollister, K., Sowers, L. C. & Forman, B. M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Parks, D. J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365–1368 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Fiorucci, S. et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 127, 1497–1512 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Pellicciari, R. et al. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J. Med. Chem. 52, 7958–7961 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Pellicciari, R. et al. 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J. Med. Chem. 45, 3569–3572 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trauner, M. et al. Long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis: 3-year results of an international open-label extension study. Lancet Gastroenterol. Hepatol. 4, 445–453 (2019).

    Article  PubMed  Google Scholar 

  16. Ahmad, T. R. & Haeusler, R. A. Bile acids in glucose metabolism and insulin signalling - mechanisms and research needs. Nat. Rev. Endocrinol. 15, 701–712 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boyer, J. L. Bile formation and secretion. Compr. Physiol. 3, 1035–1078 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Russell, D. W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Jia, W., Wei, M., Rajani, C. & Zheng, X. Targeting the alternative bile acid synthetic pathway for metabolic diseases. Protein Cell 12, 411–425 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Guzior, D. V. & Quinn, R. A. Review: microbial transformations of human bile acids. Microbiome 9, 140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perino, A., Demagny, H., Velazquez-Villegas, L. & Schoonjans, K. Molecular physiology of bile acid signaling in health, disease, and aging. Physiol. Rev. 101, 683–731 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Arab, J. P., Karpen, S. J., Dawson, P. A., Arrese, M. & Trauner, M. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 65, 350–362 (2017).

    Article  PubMed  Google Scholar 

  23. Chávez-Talavera, O., Tailleux, A., Lefebvre, P. & Staels, B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152, 1679–1694.e3 (2017).

    Article  PubMed  Google Scholar 

  24. Gonzalez, F. J., Jiang, C. & Patterson, A. D. An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease. Gastroenterology 151, 845–859 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Hegyi, P., Maléth, J., Walters, J. R., Hofmann, A. F. & Keely, S. J. Guts and gall: bile acids in regulation of intestinal epithelial function in health and disease. Physiol. Rev. 98, 1983–2023 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Kuipers, F., Bloks, V. W. & Groen, A. K. Beyond intestinal soap—bile acids in metabolic control. Nat. Rev. Endocrinol. 10, 488–498 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Molinaro, A., Wahlström, A. & Marschall, H. U. Role of bile acids in metabolic control. Trends Endocrinol. Metab. 29, 31–41 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Perino, A. & Schoonjans, K. TGR5 and immunometabolism: insights from physiology and pharmacology. Trends Pharmacol. Sci. 36, 847–857 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Forman, B. M. et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81, 687–693 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Appelman, M. D., van der Veen, S. W. & van Mil, S. W. C. Post-translational modifications of FXR; implications for cholestasis and obesity-related disorders. Front. Endocrinol. 12, 729828 (2021).

    Article  Google Scholar 

  31. Kemper, J. K. Regulation of FXR transcriptional activity in health and disease: Emerging roles of FXR cofactors and post-translational modifications. Biochim. Biophys. Acta 1812, 842–850 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Vassileva, G. et al. Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem. J. 398, 423–430 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gadaleta, R. M. & Moschetta, A. Metabolic Messengers: fibroblast growth factor 15/19. Nat. Metab. 1, 588–594 (2019).

    Article  PubMed  Google Scholar 

  34. Goodwin, B. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell 6, 517–526 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Lu, T. T. et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell 6, 507–515 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Halilbasic, E., Claudel, T. & Trauner, M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J. Hepatol. 58, 155–168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Keitel, V. & Häussinger, D. Role of TGR5 (GPBAR1) in liver disease. Semin. Liver Dis. 38, 333–339 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Sun, L., Cai, J. & Gonzalez, F. J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 18, 335–347 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Wahlström, A., Sayin, S. I., Marschall, H. U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article  PubMed  Google Scholar 

  40. Fiorucci, S. & Distrutti, E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol. Med. 21, 702–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Winston, J. A. & Theriot, C. M. Diversification of host bile acids by members of the gut microbiota. Gut Microbes 11, 158–171 (2020).

    Article  PubMed  Google Scholar 

  42. Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Funabashi, M. et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582, 566–570 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marion, S. et al. In vitro and in vivo characterization of Clostridium scindens bile acid transformations. Gut Microbes 10, 481–503 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Fujisaka, S. et al. Antibiotic effects on gut microbiota and metabolism are host dependent. J. Clin. Invest. 126, 4430–4443 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Watanabe, K. et al. Dietary soybean protein ameliorates high-fat diet-induced obesity by modifying the gut microbiota-dependent biotransformation of bile acids. PLoS One 13, e0202083 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Devkota, S. & Chang, E. B. Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases. Dig. Dis. 33, 351–356 (2015).

    Article  PubMed  Google Scholar 

  49. Just, S. et al. The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome 6, 134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wu, Q. et al. Intestinal hypoxia-inducible factor 2α regulates lactate levels to shape the gut microbiome and alter thermogenesis. Cell Metab. 33, 1988–2003.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Bianco, A. C. & Kim, B. W. Deiodinases: implications of the local control of thyroid hormone action. J. Clin. Invest. 116, 2571–2579 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, X. et al. Chenodeoxycholic acid attenuates high-fat diet-induced obesity and hyperglycemia via the G protein-coupled bile acid receptor 1 and proliferator-activated receptor γ pathway. Exp. Ther. Med. 14, 5305–5312 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Teodoro, J. S. et al. Enhancement of brown fat thermogenesis using chenodeoxycholic acid in mice. Int. J. Obes. 38, 1027–1034 (2014).

    Article  CAS  Google Scholar 

  55. Broeders, E. P. M. et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab. 22, 418–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Carino, A. et al. Gpbar1 agonism promotes a Pgc-1α-dependent browning of white adipose tissue and energy expenditure and reverses diet-induced steatohepatitis in mice. Sci. Rep. 7, 13689 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Carino, A. et al. Agonism for the bile acid receptor GPBAR1 reverses liver and vascular damage in a mouse model of steatohepatitis. FASEB J 33, 2809–2822 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Maruyama, T. et al. Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. J. Endocrinol. 191, 197–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Bensalem, A. et al. Bile acid receptor TGR5 is critically involved in preference for dietary lipids and obesity. J. Nutr. Biochem. 76, 108298 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Briere, D. A. et al. Novel small molecule agonist of TGR5 possesses anti-diabetic effects but causes gallbladder filling in mice. PLoS One 10, e0136873 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zietak, M. & Kozak, L. P. Bile acids induce uncoupling protein 1-dependent thermogenesis and stimulate energy expenditure at thermoneutrality in mice. Am. J. Physiol. Endocrinol. Metab. 310, E346–E354 (2016).

    Article  PubMed  Google Scholar 

  62. Fromme, T. et al. Bile acid supplementation decreases body mass gain in C57BL/6J but not 129S6/SvEvTac mice without increasing energy expenditure. Sci. Rep. 9, 131 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Brufau, G. et al. Plasma bile acids are not associated with energy metabolism in humans. Nutr. Metab. (Lond.) 7, 73 (2010).

    Article  PubMed  Google Scholar 

  64. van Nierop, F. S. et al. Differential effects of a 40-hour fast and bile acid supplementation on human GLP-1 and FGF19 responses. Am. J. Physiol. Endocrinol. Metab. 317, E494–E502 (2019).

    Article  PubMed  Google Scholar 

  65. Ockenga, J. et al. Plasma bile acids are associated with energy expenditure and thyroid function in humans. J. Clin. Endocrinol. Metab. 97, 535–542 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Sasaki, T. et al. The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice. J. Biol. Chem. 293, 10322–10332 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sasaki, T. et al. Muscle-specific TGR5 overexpression improves glucose clearance in glucose-intolerant mice. J. Biol. Chem. 296, 100131 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Morville, T. et al. Divergent effects of resistance and endurance exercise on plasma bile acids, FGF19, and FGF21 in humans. JCI Insight 3, 122737 (2018).

    Article  PubMed  Google Scholar 

  69. Velazquez-Villegas, L. A. et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat. Commun. 9, 245 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Worthmann, A. et al. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat. Med. 23, 839–849 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Ziętak, M. et al. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab. 23, 1216–1223 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bray, G. A. & Gallagher, T. F. Jr Suppression of appetite by bile acids. Lancet 1, 1066–1067 (1968).

    Article  CAS  PubMed  Google Scholar 

  74. Perino, A. et al. Central anorexigenic actions of bile acids are mediated by TGR5. Nat. Metab. 3, 595–603 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Castellanos-Jankiewicz, A. et al. Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metab. 33, 1483–1492.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Watanabe, M. et al. Bile acid binding resin improves metabolic control through the induction of energy expenditure. PLoS One 7, e38286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, X. et al. Identification of miR-26a as a target gene of bile acid receptor GPBAR-1/TGR5. PLoS One 10, e0131294 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ding, L. et al. Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice. Hepatology 64, 760–773 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Jadhav, K. et al. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR. Mol. Metab. 9, 131–140 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thaler, J. P., Guyenet, S. J., Dorfman, M. D., Wisse, B. E. & Schwartz, M. W. Hypothalamic inflammation: marker or mechanism of obesity pathogenesis? Diabetes 62, 2629–2634 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Contreras, C. et al. Reduction of hypothalamic endoplasmic reticulum stress activates browning of white fat and ameliorates obesity. Diabetes 66, 87–99 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Fu, T. et al. FXR regulates intestinal cancer stem cell proliferation. Cell 176, 1098–1112.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sorrentino, G. et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology 159, 956–968.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Wu, X. et al. Satiety induced by bile acids is mediated via vagal afferent pathways. JCI Insight 5, e132400 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J. & Cone, R. D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Lund, M. L. et al. L-Cell differentiation is induced by bile acids through GPBAR1 and paracrine GLP-1 and serotonin signaling. Diabetes 69, 614–623 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Harach, T. et al. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci. Rep. 2, 430 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Brighton, C. A. et al. Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G protein-coupled bile acid receptors. Endocrinology 156, 3961–3970 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kuhre, R. E. et al. Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Mol. Metab. 11, 84–95 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gribble, F. M. & Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Prawitt, J. et al. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60, 1861–1871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, Y. et al. Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice. Mol. Endocrinol. 26, 272–280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li, F. et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat. Commun. 4, 2384 (2013).

    Article  PubMed  Google Scholar 

  94. Jiang, C. et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat. Commun. 6, 10166 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Xie, C. et al. An intestinal farnesoid X receptor-ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes 66, 613–626 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Fang, S. et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat. Med. 21, 159–165 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cariou, B. et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J. Biol. Chem. 281, 11039–11049 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Ma, Y., Huang, Y., Yan, L., Gao, M. & Liu, D. Synthetic FXR agonist GW4064 prevents diet-induced hepatic steatosis and insulin resistance. Pharm. Res. 30, 1447–1457 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Watanabe, M. et al. Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J. Biol. Chem. 286, 26913–26920 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Parséus, A. et al. Microbiota-induced obesity requires farnesoid X receptor. Gut 66, 429–437 (2017).

    Article  PubMed  Google Scholar 

  101. Pathak, P. et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 68, 1574–1588 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Pathak, P. et al. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism. J. Biol. Chem. 292, 11055–11069 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Huang, C. et al. Identification of functional farnesoid X receptors in brain neurons. FEBS Lett 590, 3233–3242 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Eggink, H. M. et al. Chronic infusion of taurolithocholate into the brain increases fat oxidation in mice. J. Endocrinol. 236, 85–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Hsuchou, H., Pan, W. & Kastin, A. J. Fibroblast growth factor 19 entry into brain. Fluids Barriers CNS 10, 32 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hultman, K. et al. The central fibroblast growth factor receptor/beta klotho system: Comprehensive mapping in Mus musculus and comparisons to nonhuman primate and human samples using an automated in situ hybridization platform. J. Comp. Neurol. 527, 2069–2085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lan, T. et al. FGF19, FGF21, and an FGFR1/β-klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab. 26, 709–718.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Marcelin, G. et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol. Metab. 3, 19–28 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ryan, K. K. et al. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology 154, 9–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Deckmyn, B. et al. Farnesoid X receptor activation in brain alters brown adipose tissue function via the sympathetic system. Front. Mol. Neurosci. 14, 808603 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chávez-Talavera, O., Haas, J., Grzych, G., Tailleux, A. & Staels, B. Bile acid alterations in nonalcoholic fatty liver disease, obesity, insulin resistance and type 2 diabetes: what do the human studies tell? Curr. Opin. Lipidol. 30, 244–254 (2019).

    Article  PubMed  Google Scholar 

  112. Chen, L. et al. Genetic and microbial associations to plasma and fecal bile acids in obesity relate to plasma lipids and liver fat content. Cell Rep. 33, 108212 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Wang, D. et al. Characterization of gut microbial structural variations as determinants of human bile acid metabolism. Cell Host Microbe. 29, 1802–1814.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Kemis, J. H. et al. Genetic determinants of gut microbiota composition and bile acid profiles in mice. PLoS Genet 15, e1008073 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Evers, S. S., Sandoval, D. A. & Seeley, R. J. The physiology and molecular underpinnings of the effects of bariatric surgery on obesity and diabetes. Annu. Rev. Physiol. 79, 313–334 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Patti, M. E. et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring) 17, 1671–1677 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Risstad, H. et al. Bile acid profiles over 5 years after gastric bypass and duodenal switch: results from a randomized clinical trial. Surg. Obes. Relat. Dis. 13, 1544–1553 (2017).

    Article  PubMed  Google Scholar 

  118. Nemati, R. et al. Increased bile acids and FGF19 after sleeve gastrectomy and Roux-en-Y gastric bypass correlate with improvement in type 2 diabetes in a randomized trial. Obes. Surg. 28, 2672–2686 (2018).

    Article  PubMed  Google Scholar 

  119. Jahansouz, C. et al. Bile acids increase independently from hypocaloric restriction after bariatric surgery. Ann. Surg. 264, 1022–1028 (2016).

    Article  PubMed  Google Scholar 

  120. Ryan, K. K. et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509, 183–188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ding, L. et al. Vertical sleeve gastrectomy confers metabolic improvements by reducing intestinal bile acids and lipid absorption in mice. Proc. Natl. Acad. Sci. USA 118, e2019388118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bozadjieva-Kramer, N. et al. Intestinal-derived FGF15 protects against deleterious effects of vertical sleeve gastrectomy in mice. Nat. Commun. 12, 4768 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Albaugh, V. L. et al. Role of bile acids and GLP-1 in mediating the metabolic improvements of bariatric surgery. Gastroenterology 156, 1041–1051.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Li, K. et al. Farnesoid X receptor contributes to body weight-independent improvements in glycemic control after Roux-en-Y gastric bypass surgery in diet-induced obese mice. Mol. Metab. 37, 100980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yang, H., Liu, H., Jiao, Y. & Qian, J. Roux-en-Y gastrointestinal bypass promotes activation of TGR5 and peptide YY. Endocr. Metab. Immune Disord. Drug Targets 20, 1262–1267 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Hao, Z. et al. Roux-en-Y gastric bypass surgery-induced weight loss and metabolic improvements are similar in TGR5-deficient and wildtype Mice. Obes. Surg. 28, 3227–3236 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ferrell, J. M., Boehme, S., Li, F. & Chiang, J. Y. L. Cholesterol 7α-hydroxylase-deficient mice are protected from high-fat/high-cholesterol diet-induced metabolic disorders. J. Lipid Res. 57, 1144–1154 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by the Swiss National Science Foundation (SNSF No. 310030_189178 and CRSII5_180317/1), the Kristian Gerhard Jebsen Foundation, the Ecole Polytechnique Fédérale de Lausanne (EPFL) (to K.S.), CAIXA (No. HR17-00601) (to K.S.) and a postdoctoral fellowship from AXA Research Fund (to A.P.).

Author information

Authors and Affiliations

Authors

Contributions

A.P. and K.S. wrote the article.

Corresponding author

Correspondence to Kristina Schoonjans.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks the anonymous reviewers for their contribution to the peer review of this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perino, A., Schoonjans, K. Metabolic Messengers: bile acids. Nat Metab 4, 416–423 (2022). https://doi.org/10.1038/s42255-022-00559-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-022-00559-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing