Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

METABOLIC HOMEOSTASIS

Metabolic balance—a masterclass in mass action

Circulating metabolite levels are our window into physiological homeostasis. Beyond glucose, our understanding of how homeostasis is maintained for other major metabolites is less developed. Li et al. demonstrate that for most major circulating metabolites, there is a linear relationship between breakdown in the TCA cycle and systemic levels, and thus mass-action-driven oxidation is a major regulator of systemic metabolite levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mass action maintains circulating metabolite homeostasis via increased tricarboxylic acid consumption.

References

  1. Schoenheimer, R. & Rittenberg, D. J. Biol. Chem. 111, 175–181 (1935).

    Article  Google Scholar 

  2. Rennie, M. J. et al. Clin. Sci. (Lond.) 63, 519–523 (1982).

    Article  CAS  Google Scholar 

  3. Wilkinson, D. J., Brook, M. S. & Smith, K. Clin. Nutr. Open Sci. 36, 111–125 (2021).

    Article  Google Scholar 

  4. Davidson, S. M. et al. Cell Metab. 23, 517–528 (2016).

    Article  CAS  Google Scholar 

  5. Hui, S. et al. Cell Metab. 32, 676–688.e4 (2020).

    Article  CAS  Google Scholar 

  6. Li, X. et al. Nat. Metab. https://doi.org/10.1038/s42255-021-00517-1 (2022).

    Article  PubMed  Google Scholar 

  7. Jamshidi, N. & Palsson, B. O. Biophys. J. 98, 175–185 (2010).

    Article  CAS  Google Scholar 

  8. Wallace, M. et al. Nat. Chem. Biol. 14, 1021–1031 (2018).

    Article  CAS  Google Scholar 

  9. Green, C. R. et al. Nat. Chem. Biol. 12, 15–21 (2016).

    Article  CAS  Google Scholar 

  10. Nakajima, Y. et al. Anesthesiology 100, 634–639 (2004).

    Article  CAS  Google Scholar 

  11. Westerterp, K. R. Nutr. Metab. (Lond.) 1, 5 (2004).

    Article  CAS  Google Scholar 

  12. Abreu-Vieira, G., Xiao, C., Gavrilova, O. & Reitman, M. L. Mol. Metab. 4, 461–470 (2015).

    Article  CAS  Google Scholar 

  13. Demetrius, L. EMBO Rep. 6, S39–S44 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Wallace.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallace, M. Metabolic balance—a masterclass in mass action. Nat Metab 4, 17–18 (2022). https://doi.org/10.1038/s42255-021-00522-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-021-00522-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research