Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Leptin brain entry via a tanycytic LepR–EGFR shuttle controls lipid metabolism and pancreas function

Abstract

Metabolic health depends on the brain’s ability to control food intake and nutrient use versus storage, processes that require peripheral signals such as the adipocyte-derived hormone, leptin, to cross brain barriers and mobilize regulatory circuits. We have previously shown that hypothalamic tanycytes shuttle leptin into the brain to reach target neurons. Here, using multiple complementary models, we show that tanycytes express functional leptin receptor (LepR), respond to leptin by triggering Ca2+ waves and target protein phosphorylation, and that their transcytotic transport of leptin requires the activation of a LepR–EGFR complex by leptin and EGF sequentially. Selective deletion of LepR in tanycytes blocks leptin entry into the brain, inducing not only increased food intake and lipogenesis but also glucose intolerance through attenuated insulin secretion by pancreatic β-cells, possibly via altered sympathetic nervous tone. Tanycytic LepRb–EGFR-mediated transport of leptin could thus be crucial to the pathophysiology of diabetes in addition to obesity, with therapeutic implications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Tanycytes of the ME express functional leptin receptors.
Fig. 2: Tanycytic EGFR physically interacts with LepR in vivo and plays a role in leptin trancytosis in vitro.
Fig. 3: Selective LepR deletion in tanycytes causes food-intake-independent body weight gain and increased adiposity.
Fig. 4: Defective LepR and EGFR signalling in tanycytes causes hypothalamic resistance to circulating leptin.
Fig. 5: Selective LepR deletion in tanycytes causes hyperlipidaemia and steatosis.
Fig. 6: Loss of LepR expression in ME tanycytes causes severe pancreatic β-cell dysfunction, possibly due to defective noradrenaline activity.
Fig. 7: Loss of LepR expression in ME tanycytes alters adrenergic receptor expression in the pancreas and impairs cold-mediated increases in noradrenaline.

Data availability

The Human Protein Reference Database (http://www.hprd.org) was used to identify upstream kinases in the PamGene assay. Uncropped immunoblots and source data files for PamGene analyses are provided as Extended data. Source data are provided with this paper. Additional data that support the findings of this study are available from the corresponding author upon request.

References

  1. 1.

    Swinburn, B. A. et al. The global syndemic of obesity, undernutrition, and climate change: The Lancet Commission Report. Lancet 393, 791–846 (2019).

    Article  Google Scholar 

  2. 2.

    Yoon, K. H. et al. Epidemic obesity and type 2 diabetes in Asia. Lancet 368, 1681–1688 (2006).

    PubMed  Article  Google Scholar 

  3. 3.

    Ohn, J. H. et al. 10-year trajectory of beta-cell function and insulin sensitivity in the development of type 2 diabetes: a community-based prospective cohort study. Lancet Diabetes Endocrinol. 4, 27–34 (2016).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Ahima, R. S. & Flier, J. S. Leptin. Annu. Rev. Physiol. 62, 413–437 (2000).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    de Luca, C. et al. Complete rescue of obesity, diabetes, and infertility in db/db mice by neuron-specific LEPR-B transgenes. J. Clin. Invest. 115, 3484–3493 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. 6.

    Cohen, P. et al. Selective deletion of leptin receptor in neurons leads to obesity. J. Clin. Invest 108, 1113–1121 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Caron, A., Lee, S., Elmquist, J. K. & Gautron, L. Leptin and brain-adipose crosstalks. Nat. Rev. Neurosci. 19, 153–165 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Pan, W. W. & Myers, M. G. Jr. Leptin and the maintenance of elevated body weight. Nat. Rev. Neurosci. 19, 95–105 (2018).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Friedman, J. M. Leptin and the endocrine control of energy balance. Nat. Metab. 1, 754–764 (2019).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Kamohara, S., Burcelin, R., Halaas, J. L., Friedman, J. M. & Charron, M. J. Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 389, 374–377 (1997).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Coppari, R. et al. The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab. 1, 63–72 (2005).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Buettner, C. et al. Critical role of STAT3 in leptin’s metabolic actions. Cell Metab. 4, 49–60 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Buettner, C. et al. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat. Med. 14, 667–675 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Prevot, V. et al. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 39, 333–368 (2018).

    PubMed  Article  Google Scholar 

  15. 15.

    Garcia-Caceres, C. et al. Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat. Neurosci. 22, 7–14 (2019).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Banks, W. A. The blood–brain barrier as an endocrine tissue. Nat. Rev. Endocrinol. 15, 444–455 (2019).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Schaeffer, M. et al. Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proc. Natl Acad. Sci. USA 110, 1512–1517 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Ciofi, P. et al. Brain-endocrine interactions: a microvascular route in the mediobasal hypothalamus. Endocrinology 150, 5509–5519 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Yulyaningsih, E. et al. Acute lesioning and rapid repair of hypothalamic neurons outside the blood–brain barrier. Cell Rep. 19, 2257–2271 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Djogo, T. et al. Adult NG2-glia are required for median eminence-mediated leptin sensing and body weight control. Cell Metab. 23, 797–810 (2016).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Mullier, A., Bouret, S. G., Prevot, V. & Dehouck, B. Differential distribution of tight junction proteins suggests a role for tanycytes in blood–hypothalamus barrier regulation in the adult mouse brain. J. Comp. Neurol. 518, 943–962 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Langlet, F. et al. Tanycytic VEGF-A boosts blood–hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 17, 607–617 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Balland, E. et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 19, 293–301 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Yuan, X., Caron, A., Wu, H. & Gautron, L. Leptin receptor expression in mouse intracranial perivascular cells. Front. Neuroanat. 12, 4 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Yoo, S., Cha, D., Kim, D. W., Hoang, T. V. & Blackshaw, S. Tanycyte-independent control of hypothalamic leptin signaling. Front. Neurosci. 13, 240 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Bhaskar, V. et al. An allosteric antibody to the leptin receptor reduces body weight and reverses the diabetic phenotype in the Lep(ob) /Lep(ob) mouse. Obesity (Silver Spring) 24, 1687–1694 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Jo, Y. H., Chen, Y. J., Chua, S. C. Jr., Talmage, D. A. & Role, L. W. Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit. Neuron 48, 1055–1066 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Irani, B. G., Le Foll, C., Dunn-Meynell, A. & Levin, B. E. Effects of leptin on rat ventromedial hypothalamic neurons. Endocrinology 149, 5146–5154 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Kusumakshi, S. et al. A binary genetic approach to characterize TRPM5 cells in mice. Chem. Senses 40, 413–425 (2015).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Niv-Spector, L. et al. Identification of the hydrophobic strand in the A–B loop of leptin as major binding site III: implications for large-scale preparation of potent recombinant human and ovine leptin antagonists. Biochem. J. 391, 221–230 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Muller-Fielitz, H. et al. Tanycytes control the hormonal output of the hypothalamic-pituitary-thyroid axis. Nat. Commun. 8, 484 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Frayling, C., Britton, R. & Dale, N. ATP-mediated glucosensing by hypothalamic tanycytes. J. Physiol. 589, 2275–2286 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Auriau, J. et al. Gain of affinity for VEGF165 binding within the VEGFR2/NRP1 cellular complex detected by an HTRF-based binding assay. Biochem. Pharmacol. 158, 45–59 (2018).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Vauthier, V. et al. Design and validation of a homogeneous time-resolved fluorescence-based leptin receptor binding assay. Anal. Biochem. 436, 1–9 (2013).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Langlet, F., Mullier, A., Bouret, S. G., Prevot, V. & Dehouck, B. Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J. Comp. Neurol. 521, 3389–3405 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Howard, J. K. & Flier, J. S. Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol. Metab. 17, 365–371 (2006).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Chmielewski, A. et al. Preclinical assessment of leptin transport into the cerebrospinal fluid in diet-induced obese minipigs. Obesity (Silver Spring) 27, 950–956 (2019).

    CAS  Article  Google Scholar 

  38. 38.

    Balland, E., Chen, W., Tiganis, T. & Cowley, M. A. Persistent leptin signalling in the arcuate nucleus impairs hypothalamic insulin signalling and glucose homeostasis in obese mice. Neuroendocrinology 109, 374–390 (2019).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Sukumaran, S., Xue, B., Jusko, W. J., Dubois, D. C. & Almon, R. R. Circadian variations in gene expression in rat abdominal adipose tissue and relationship to physiology. Physiol. Genomics 42A, 141–152 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Tschop, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Schwartz, M. W. et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes 45, 531–535 (1996).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Pelleymounter, M. A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Berglund, E. D. et al. Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. J. Clin. Invest. 122, 1000–1009 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Back, S. H. & Kaufman, R. J. Endoplasmic reticulum stress and type 2 diabetes. Annu. Rev. Biochem. 81, 767–793 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Sohn, J. W. et al. Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell 152, 612–619 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Muzumdar, R. et al. Physiologic effect of leptin on insulin secretion is mediated mainly through central mechanisms. FASEB J. 17, 1130–1132 (2003).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Fagerholm, V., Haaparanta, M. & Scheinin, M. Alpha2-adrenoceptor regulation of blood glucose homeostasis. Basic Clin. Pharmacol. Toxicol. 108, 365–370 (2011).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Rosengren, A. H. et al. Overexpression of alpha2A-adrenergic receptors contributes to type 2 diabetes. Science 327, 217–220 (2010).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Wang, P. et al. A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue. Nature 583, 839–844 (2020).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Zhou, Y. et al. Temporal dynamic reorganization of 3D chromatin architecture in hormone-induced breast cancer and endocrine resistance. Nat. Commun. 10, 1522 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Liu, Z. et al. Short-term tamoxifen treatment has long-term effects on metabolism in high-fat diet-fed mice with involvement of Nmnat2 in POMC neurons. FEBS Lett. 592, 3305–3316 (2018).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Shida, D., Kitayama, J., Mori, K., Watanabe, T. & Nagawa, H. Transactivation of epidermal growth factor receptor is involved in leptin-induced activation of janus-activated kinase 2 and extracellular signal-regulated kinase 1/2 in human gastric cancer cells. Cancer Res. 65, 9159–9163 (2005).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Prevot, V., Cornea, A., Mungenast, A., Smiley, G. & Ojeda, S. R. Activation of erbB-1 signaling in tanycytes of the median eminence stimulates transforming growth factor beta1 release via prostaglandin E2 production and induces cell plasticity. J. Neurosci. 23, 10622–10632 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Lomniczi, A., Cornea, A., Costa, M. E. & Ojeda, S. R. Hypothalamic tumor necrosis factor-alpha converting enzyme mediates excitatory amino acid-dependent neuron-to-glia signaling in the neuroendocrine brain. J. Neurosci. 26, 51–62 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42, 983–991 (2004).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    van de Wall, E. et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149, 1773–1785 (2008).

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Vauthier, V. et al. Endospanin1 affects oppositely body weight regulation and glucose homeostasis by differentially regulating central leptin signaling. Mol. Metab. 6, 159–172 (2017).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Obici, S. et al. Central melanocortin receptors regulate insulin action. J. Clin. Invest. 108, 1079–1085 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Fan, W. et al. The central melanocortin system can directly regulate serum insulin levels. Endocrinology 141, 3072–3079 (2000).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 13, 195–204 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Coppari, R. & Bjorbaek, C. Leptin revisited: its mechanism of action and potential for treating diabetes. Nat. Rev. Drug Discov. 11, 692–708 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Colberg, S. R., Simoneau, J. A., Thaete, F. L. & Kelley, D. E. Skeletal muscle utilization of free fatty acids in women with visceral obesity. J. Clin. Invest. 95, 1846–1853 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Beaufrere, B. & Morio, B. Fat and protein redistribution with aging: metabolic considerations. Eur. J. Clin. Nutr. 54, S48–S53 (2000).

    PubMed  Article  Google Scholar 

  65. 65.

    Zamboni, M., Mazzali, G., Fantin, F., Rossi, A. & Di Francesco, V. Sarcopenic obesity: a new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 18, 388–395 (2008).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Parr, E. B., Coffey, V. G. & Hawley, J. A. ‘Sarcobesity’: a metabolic conundrum. Maturitas 74, 109–113 (2013).

    PubMed  Article  Google Scholar 

  67. 67.

    Tian, S. & Xu, Y. Association of sarcopenic obesity with the risk of all-cause mortality: a meta-analysis of prospective cohort studies. Geriatr. Gerontol. Int. 16, 155–166 (2016).

    PubMed  Article  Google Scholar 

  68. 68.

    Okun, J. G. et al. Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes. Nat. Metab. 3, 394–409 (2021).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Prentki, M. & Nolan, C. J. Islet beta cell failure in type 2 diabetes. J. Clin. Invest. 116, 1802–1812 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Steil, G. M. et al. Adaptation of beta-cell mass to substrate oversupply: enhanced function with normal gene expression. Am. J. Physiol. Endocrinol. Metab. 280, E788–E796 (2001).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Tuomi, T. et al. The many faces of diabetes: a disease with increasing heterogeneity. Lancet 383, 1084–1094 (2014).

    PubMed  Article  Google Scholar 

  72. 72.

    Morimoto, A. et al. Impact of impaired insulin secretion and insulin resistance on the incidence of type 2 diabetes mellitus in a Japanese population: the Saku study. Diabetologia 56, 1671–1679 (2013).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Peitz, M., Pfannkuche, K., Rajewsky, K. & Edenhofer, F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc. Natl Acad. Sci. USA 99, 4489–4494 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Folgueira, C. et al. Hypothalamic dopamine signaling regulates brown fat thermogenesis. Nat. Metab. 1, 811–829 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Quinones, M. et al. Sirt3 in POMC neurons controls energy balance in a sex- and diet-dependent manner. Redox Biol. 41, 101945 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Bruss, M. D., Khambatta, C. F., Ruby, M. A., Aggarwal, I. & Hellerstein, M. K. Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am. J. Physiol. Endocrinol. Metab. 298, E108–E116 (2010).

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Imbernon, M. et al. Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways. Gastroenterology 144, 636–649 (2013).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Nogueiras, R. et al. The central melanocortin system directly controls peripheral lipid metabolism. J. Clin. Invest. 117, 3475–3488 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Golde, W. T., Gollobin, P. & Rodriguez, L. L. A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab. Anim. 34, 39–43 (2005).

    Article  Google Scholar 

  80. 80.

    Clasadonte, J., Scemes, E., Wang, Z., Boison, D. & Haydon, P. G. Connexin 43-mediated astroglial metabolic networks contribute to the regulation of the sleep–wake cycle. Neuron 95, 1365–1380 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Bouret, S. G., Bates, S. H., Chen, S., Myers, M. G. & Simerly, R. B. Distinct roles for specific leptin receptor signals in the development of hypothalamic feeding circuits. J. Neurosci. 32, 1244–1252 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Annicotte, J. S. et al. The CDK4-pRB-E2F1 pathway controls insulin secretion. Nat. Cell Biol. 11, 1017–1023 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Blanchet, E. et al. E2F transcription factor-1 regulates oxidative metabolism. Nat. Cell Biol. 13, 1146–1152 (2011).

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    de Seranno, S. et al. Role of estradiol in the dynamic control of tanycyte plasticity mediated by vascular endothelial cells in the median eminence. Endocrinology 151, 1760–1772 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. 85.

    Rabhi, N. et al. Cdkn2a deficiency promotes adipose tissue browning. Mol. Metab. 8, 65–76 (2018).

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Dhillon, S. S. & Belsham, D. D. Leptin differentially regulates NPY secretion in hypothalamic cell lines through distinct intracellular signal transduction pathways. Regul. Pept. 167, 192–200 (2011).

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Zabeau, L. et al. Selection of non-competitive leptin antagonists using a random nanobody-based approach. Biochem. J. 441, 425–434 (2012).

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Student. The probable error of a mean. Biometrika 6, 1–25 (1908).

  89. 89.

    Fay, D. S. & Gerow, K. A biologist’s guide to statistical thinking and analysis. Wormbook http://www.wormbook.org/chapters/www_statisticalanalysis/statisticalanalysis.html (2013).

  90. 90.

    Charan, J. & Biswas, T. How to calculate sample size for different study designs in medical research? Indian J. Psychol. Med. 35, 121–126 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Agence National de la Recherche (no. ANR-15-CE14-0025 to V.P., R.J. and S.G. and no. ANR-17-CE14-0034 to J.S.A.), the European Research Council (ERC Synergy Grant WATCH no. 810331 to V.P., R.N. and M.S.), the National Institutes of Health (NIH grant no. R01DK123002 to Y.-B.K. and V.P.), the European Genomic Institute for Diabetes (EGID, no. ANR-10-LABX-0046 to J.-S.A. and V.P.), DISTALZ (no. ANR-11-LABX-0009 to V.P.), I-SITE ULNE (no. ANR-16-IDEX-0004), ‘Who am I?’ (no. ANR-11-LABX-0071 to J.D.), DHU Autoimmune and Hormonal Diseases (Authors) (to J.D.), European Foundation for the Study of Diabetes (to J.-S.A.), Université de Lille (to M.D., C.B. and J.-S.A.), Fondation pour la Recherche Médicale (to M.D.) and the H2020-MSCA-IF-2016 grant GLUCOTANYCYTES (no. 748134 to M.I.). We thank L. Rolland for excellent technical help with immunofluorescence analysis of pancreatic sections, and R. Boutry and the UMR 8199 LIGAN-PM Genomic platform (EGID, no. ANR-10-EQPX-07-01) for Kinome assays. We thank UMS2014-US41 for technical support.

Author information

Affiliations

Authors

Contributions

M.D., C.F., C.B., M. Millet, A.S., J.C., M.I., D.F., I.M.-C., S.K., E.C., E.D., N.J., A.O. and S.O. carried out the experiments. M. Mazzone, J.T., E.T., M.S., S.K. and U.B. generated tools, vectors and animal models. Y.-B.K., R.J., M.S., U.B., R.N., J.-S.A., S.G., J.D. and V.P. designed and planned the study. All authors discussed the results, and M.D., S.R., S.G., J.D. and V.P. wrote the manuscript.

Corresponding author

Correspondence to Vincent Prévot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Metabolism thanks Marcelo Dietrich, John-Olov Jansson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Isabella Samuelson; Elena Bellafante.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, and Tables 1 and 2

Reporting Summary

Source data

Source Data Fig. 1

Uncropped immunoblot images.

Source Data Fig. 2

Uncropped immunoblot images.

Source Data Fig. 2

List of upstream activated tyrosine kinases and differential phosphorylated peptides in tanycytes treated with PBS or leptin for 2 min. Related to Fig. 2f.

Source Data Fig. 5

Uncropped immunoblot images.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duquenne, M., Folgueira, C., Bourouh, C. et al. Leptin brain entry via a tanycytic LepR–EGFR shuttle controls lipid metabolism and pancreas function. Nat Metab 3, 1071–1090 (2021). https://doi.org/10.1038/s42255-021-00432-5

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing