Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metabolome modulation of the host adaptive immunity in human malaria

Abstract

Host responses to infection with the malaria parasite Plasmodium falciparum vary among individuals for reasons that are poorly understood. Here we reveal metabolic perturbations as a consequence of malaria infection in children and identify an immunosuppressive role of endogenous steroid production in the context of P. falciparum infection. We perform metabolomics on matched samples from children from two ethnic groups in West Africa, before and after infection with seasonal malaria. Analysing 306 global metabolomes, we identify 92 parasitaemia-associated metabolites with impact on the host adaptive immune response. Integrative metabolomic and transcriptomic analyses, and causal mediation and moderation analyses, reveal an infection-driven immunosuppressive role of parasitaemia-associated pregnenolone steroids on lymphocyte function and the expression of key immunoregulatory lymphocyte genes in the Gouin ethnic group. In children from the less malaria-susceptible Fulani ethnic group, we observe opposing responses following infection, consistent with the immunosuppressive role of endogenous steroids in malaria. These findings advance our understanding of P. falciparum pathogenesis in humans and identify potential new targets for antimalarial therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design and global impact of P. falciparum malaria on the metabolome.
Fig. 2: Metabolite set enrichment analysis of infection and parasitaemia-associated metabolites.
Fig. 3: Major changes in lipid metabolism and their association with blood cell counts.
Fig. 4: Integrative steroid–transcript analysis.
Fig. 5: Signalling and metabolic pathway analysis of steroid-associated transcripts.
Fig. 6: Causal mediation and moderation analysis of the effect of pregnenolone sulfate on gene expression in lymphocytes.
Fig. 7: In vitro inhibition of T cell proliferation.
Fig. 8: Comparative analysis of infection-associated steroids between Fulani and Gouin children.

Similar content being viewed by others

Data availability

Metabolomic data for the Gouin and Fulani cohorts are available at the National Institutes of Health Common Fund National Metabolomics Data Repository website (Metabolomics Workbench81; https://www.metabolomicsworkbench.org/), under project ID PR000960 and accession nos. ST001516 and ST001517. Gene expression data is deposited in the Gene Expression Omnibus database under accession no. GSE156791. The HMDB and KEGG databases are publicly available. Source data are provided with this paper.

References

  1. World Health Organization. World Malaria Report 2019 (World Health Organization, 2019).

  2. van der Meer-Janssen, Y. P. M., van Galen, J., Batenburg, J. J. & Helms, J. B. Lipids in host–pathogen interactions: pathogens exploit the complexity of the host cell lipidome. Prog. Lipid Res. 49, 1–26 (2010).

    Article  PubMed  CAS  Google Scholar 

  3. Ginsburg, H., Krugliak, M., Eidelman, O. & Ioav Cabantchik, Z. New permeability pathways induced in membranes of Plasmodium falciparum-infected erythrocytes. Mol. Biochem. Parasitol. https://doi.org/10.1016/0166-6851(83)90008-7 (1983).

  4. Beri, D. et al. Insights into physiological roles of unique metabolites released from Plasmodium-infected RBCs and their potential as clinical biomarkers for malaria. Sci. Rep. 9, 2875 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Park, Y. H. et al. High-resolution metabolomics to discover potential parasite-specific biomarkers in a Plasmodium falciparum erythrocytic stage culture system. Malar. J. 14, 122 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ekland, E. H., Akabas, M. H. & Fidock, D. A. Taking charge: feeding malaria via anion channels. Cell 145, 645–647 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Surowiec, I. et al. Metabolic signature profiling as a diagnostic and prognostic tool in pediatric Plasmodium falciparum malaria. Open Forum Infect. Dis. 2, ofv062 (2016).

  8. Moore, L. R. Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis. FASEB J. 20, 747–749 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Olszewski, K. L. et al. Host–parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe 5, 191–199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salinas, J. L., Kissinger, J. C., Jones, D. P. & Galinski, M. R. Metabolomics in the fight against malaria. Mem. Inst. Oswaldo Cruz 109, 589–597 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Joice Cordy, R. Mining the human host metabolome toward an improved understanding of malaria transmission. Front. Microbiol. 11, 164 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Daily, J. P. et al. Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature 450, 1091–1095 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Finney, C. A. M. et al. S1P is associated with protection in human and experimental cerebral malaria. Mol. Med. 17, 717–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Orikiiriza, J. et al. Lipid response patterns in acute phase paediatric Plasmodium falciparum malaria. Metabolomics 13, 1–13 (2017).

    Article  CAS  Google Scholar 

  15. Sengupta, A. et al. Host metabolic responses to Plasmodium falciparum infections evaluated by 1H NMR metabolomics. Mol. Biosyst. 12, 3324–3332 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Cordy, R. J. et al. Distinct amino acid and lipid perturbations characterize acute versus chronic malaria. JCI Insight 4, e125156 (2019).

    Article  PubMed Central  Google Scholar 

  17. Gardinassi, L. G. et al. Integrative metabolomics and transcriptomics signatures of clinical tolerance to Plasmodium vivax reveal activation of innate cell immunity and T cell signaling. Redox Biol. 17, 158–170 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ayres, J. S. A metabolic handbook for the COVID-19 pandemic. Nat. Metab. 2, 572–585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ayres, J. S. Immunometabolism of infections. Nat. Rev. Immunol. 20, 79–80 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Troha, K. & Ayres, J. S. Metabolic adaptations to infections at the organismal level. Trends Immunol. 41, 113–125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Keita, S. Letter to the editor: commentary on the Fulani-history, genetics, and linguistics, an adjunct to Hassan et al., 2008. Am. J. Phys. Anthropol. 141, 665–667 (2010).

    PubMed  Google Scholar 

  22. Ouédraogo, A. et al. Malaria morbidity in high and seasonal malaria transmission area of burkina faso. PLoS ONE 8, e50036 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yaro, J. B. et al. A cohort study to identify risk factors for plasmodium falciparum infection in burkinabe children: implications for other high burden high impact countries. Malar. J. 19, 371 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Modiano, D. et al. Different response to Plasmodium falciparum malaria in West African sympatric ethnic groups. Proc. Natl Acad. Sci. USA 93, 13206–13211 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dolo, A. et al. Difference in susceptibility to malaria between two sympatric ethnic groups in Mali. Am. J. Trop. Med. Hyg. 72, 243–248 (2005).

    Article  PubMed  Google Scholar 

  26. McCall, M. B. B. et al. Early interferon‐γ response against Plasmodium falciparum correlates with interethnic differences in susceptibility to parasitemia between sympatric Fulani and Dogon in Mali. J. Infect. Dis. 201, 142–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Portugal, S. et al. B cell analysis of ethnic groups in Mali with differential susceptibility to malaria. Malar. J. 11, 162 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Quin, J. E. et al. Major transcriptional changes observed in the Fulani, an ethnic group less susceptible to malaria. eLife 6, 1–19 (2017).

    Article  Google Scholar 

  29. Boström, S. et al. Changes in the levels of cytokines, chemokines and malaria-specific antibodies in response to Plasmodium falciparum infection in children living in sympatry in Mali. Malar. J. 11, 109 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Torcia, M. G. et al. Functional deficit of T regulatory cells in Fulani, an ethnic group with low susceptibility to Plasmodium falciparum malaria. Proc. Natl Acad. Sci. USA 105, 646–651 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prusty, D. et al. Nicotinamide inhibits Plasmodium falciparum Sir2 activity in vitro and parasite growth. FEMS Microbiol. Lett. 282, 266–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Lian, L.-Y. et al. Glycerol: an unexpected major metabolite of energy metabolism by the human malaria parasite. Malar. J. 8, 38 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Medana, I. M. et al. Metabolites of the kynurenine pathway of tryptophan metabolism in the cerebrospinal fluid of malawian children with malaria. J. Infect. Dis. 188, 844–849 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Libert, C. & Dejager, L. How steroids steer T cells. Cell Rep. 7, 938–939 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Bindea, G. et al. ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mahata, B. et al. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep. 7, 1130–1142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanou, G. S. et al. Haematological parameters, natural regulatory CD4+ CD25+ FOXP3+ T cells and T cells among two sympatric ethnic groups having different susceptibility to malaria in Burkina Faso. BMC Res. Notes 5, 1–12 (2012).

    Article  CAS  Google Scholar 

  38. Mege, J. L., Meghari, S., Honstettre, A., Capo, C. & Raoult, D. The two faces of interleukin-10 in human infectious diseases. Lancet Infect. Dis. 6, 557–569 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Weidanz, W. P. et al. Plasmodium chabaudi adami: use of the B cell-deficient mouse to define possible mechanisms modulating parasitemia of chronic malaria. Exp. Parasitol. 111, 97–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, G. et al. Interleukin-10 (IL-10) polymorphisms are associated with IL-10: production and clinical malaria in young children. Infect. Immun. 80, 2316–2322 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wills-Karp, M. & Finkelman, F. D. Untangling the complex web of IL-4- and IL-13-mediated signaling pathways. Sci. Signal. 1, pe55 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Luoni, G. et al. Antimalarial antibody levels and IL4 polymorphism in the Fulani of West Africa. Genes Immun. 2, 411–414 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, X. et al. IL-4 treatment mitigates experimental cerebral malaria by reducing parasitemia, dampening inflammation, and lessening the cytotoxicity of T cells. J. Immunol. 206, 118–131 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Gulati, S. et al. Profiling the essential nature of lipid metabolism in asexual blood and gametocyte stages of Plasmodium falciparum correspondence. Cell Host Microbe 18, 371–381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mi-Ichi, F., Kita, K. & Mitamura, T. Intraerythrocytic Plasmodium falciparum utilize a broad range of serum-derived fatty acids with limited modification for their growth. Parasitology https://doi.org/10.1017/S0031182006000540 (2006).

  46. Palacpac, N. M. Q. et al. Developmental-stage-specific triacylglycerol biosynthesis, degradation and trafficking as lipid bodies in Plasmodium falciparum-infected erythrocytes. J. Cell Sci. 117, 1469–1480 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Palacpac, N. M. Q. et al. Evidence that Plasmodium falciparum diacylglycerol acyltransferase is essential for intraerythrocytic proliferation. Biochem. Biophys. Res. Commun. 321, 1062–1068 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Schooneman, M. G., Vaz, F. M., Houten, S. M. & Soeters, M. R. Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes 62, 1–8 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Gardinassi, L. G. et al. Metabolome-wide association study of peripheral parasitemia in Plasmodium vivax malaria. Int. J. Med. Microbiol. 307, 533–541 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. O’Neill, L. A. J., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wassif, W. S. & Ross, A. R. Steroid metabolism and excretion in anorexia nervosa. Anorexia 92, 125–140 (2013).

    Article  CAS  Google Scholar 

  52. Miller, W. L. & Bose, H. S. Early steps in steroidogenesis: intracellular cholesterol trafficking. J. Lipid Res. 52, 2111–2135 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Murugan, S., Jakka, P., Namani, S., Mujumdar, V. & Radhakrishnan, G. The neurosteroid, pregnenolone promotes degradation of key proteins in the innate immune signalling to suppress inflammation. J. Biol. Chem. https://doi.org/10.1074/jbc.RA118.005543 (2019).

  54. Pearce, E. J. et al. TH2 response polarization during infection with die helminth parasite Schistosoma mansoni. Immunol. Rev. 201, 117–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Mahata, B. et al. Tumors induce de novo steroid biosynthesis in T cells to evade immunity. Nat. Commun. 11, 1–15 (2020).

    Article  CAS  Google Scholar 

  56. Gupta, S. et al. Extensive alterations of blood metabolites in pediatric cerebral malaria. PLoS ONE https://doi.org/10.1371/journal.pone.0175686 (2017).

  57. Han, Y., Liu, D. & Li, L. PD-1–PD-L1 pathway: current researches in cancer. Am. J. Cancer Res. 10, 727–742 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ohno, H. et al. Developmental and functional impairment of T cells in mice lacking CD3ζ chains. EMBO J. 12, 4357–4366 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sommers, C. L. et al. Function of CD3ε-mediated signals in T cell development. J. Exp. Med. 192, 913–919 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Buferne, M. et al. Role of CD3 delta in surface expression of the TCR–CD3 complex and in activation for killing analyzed with a CD3 delta-negative cytotoxic T lymphocyte variant. J. Immunol. 148, 657–664 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Bal, N. V. et al. Upstream open reading frames located in the leader of protein kinase Mζ mRNA regulate its translation. Front. Mol. Neurosci. 9, 103 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. King, C. L., Stupi, R. J., Craighead, N., June, C. H. & Thyphronitis, G. CD28 activation promotes TH2 subset differentiation by human CD4+ cells. Eur. J. Immunol. 25, 587–595 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Modiano, D. et al. The lower susceptibility to Plasmodium falciparum malaria of Fulani of Burkina Faso (West Africa) is associated with low frequencies of classic malaria-resistance genes. Trans. R. Soc. Trop. Med. Hyg. 95, 149–152 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Dieng, M. M. et al. Integrative genomic analysis reveals mechanisms of immune evasion in P. falciparum malaria. Nat. Commun. 11, 5093 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tiono, A. B. et al. Lessons learned from the use of HRP-2-based rapid diagnostic test in community-wide screening and treatment of asymptomatic carriers of Plasmodium falciparum in Burkina Faso. Malar. J. 13, 30 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kangoye, D. T. et al. Plasmodium falciparum malaria in children aged 0-2 years: the role of foetal haemoglobin and maternal antibodies to two asexual malaria vaccine candidates (MSP3 and GLURP). PLoS ONE 9, e107965 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Aidoo, M. et al. Protective effects of the sickle cell gene against malaria morbidity and mortality. Lancet 359, 1311–1312 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Snounou, G. et al. The importance of sensitive detection of malaria parasites in the human and insect hosts in epidemiological studies, as shown by the analysis of field samples from Guinea Bissau. Trans. R. Soc. Trop. Med. Hyg. https://academic.oup.com/trstmh/article-abstract/87/6/649/1931173 (1993).

  69. Evans, A. M., DeHaven, C. D., Barrett, T., Mitchell, M. & Milgram, E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal. Chem. 81, 6656–6667 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Dehaven, C. D., Evans, A. M., Dai, H. & Lawton, K. A. Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J. Cheminform. 2, 9 (2010).

  71. Ford, L. et al. Precision of a clinical metabolomics profiling platform for use in the identification of inborn errors of metabolism. J. Appl. Lab. Med. 5, 342–356 (2020).

    Article  PubMed  Google Scholar 

  72. Wishart, D. S. et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603-D610 (2009).

    Article  CAS  Google Scholar 

  73. Chong, J., Wishart, D. S. & Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinformatics 68, 1–128 (2019).

    Article  Google Scholar 

  74. Xia, J. & Wishart, D. S. Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Curr. Protoc. Bioinformatics https://doi.org/10.1002/0471250953.bi1410s34 (2011).

  75. Dunn, O. J. Multiple comparisons among means. J. Am. Stat. Assoc. 56, 52–64 (1961).

    Article  Google Scholar 

  76. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Tingley, D. mediation: R package for causal mediation analysis. J. Stat. Softw. 59, 5 (2014).

  79. Hayes, A. PROCESS: a versatile computational tool for observed variable mediation, moderationa and conditional process modeling. http://www.afhayes.com/public/process2012.pdf (2012).

  80. Hayes, A. F. & Preacher, K. J. Statistical mediation analysis with a multicategorical independent variable. Br. J. Math. Stat. Psychol. 67, 451–470 (2014).

    Article  PubMed  Google Scholar 

  81. Sud, M. et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 44, D463–D470 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our appreciation to all the children who participated in the study and their families. We thank the staff of the Centre National de Recherche et de Formation sur le Paludisme (T. B. Alfred, C. S. Aboubacar, A. Barry, A. Ouédraogo and N. Ouédraogo), and of the Groupe de Recherche Action en Santé (S. B. Sodiomon, A. Diarra and S. Benjamin) for facilitating sample collection and clinical work in Burkina Faso. We thank members of the laboratory of Y.I. for assistance with various aspects of the project. We thank the Center for Genomics and Systems Biology, NYUAD Core Bioinformatics and Technology Platforms (K. Gunsalus, N. Drou, M. Arnoux and M. Sultana), J. Teo and J. Sapudom for assistance with technical work. We thank Metabolon for conducting the metabolomics measurements. We also thank the PhD committee of W.A. (J. Carlton, S. Boissinot, N. Sanjana and J. Ayroles) and G. Gibson and D. Scicchitano for helpful discussions. W.A. is supported by an NYUAD global PhD fellowship. This work is funded by NYUAD grants ADHPG AD105 and ADHPG-RE105 to Y.I.

Author information

Authors and Affiliations

Authors

Contributions

Y.I. conceptualized and supervised the project. I.S. supervised fieldwork. W.A., I.S., M.M.D. and A.D. coordinated the study. W.A., M.M.D., A.D., D.A., S.S.S., S.S., H.N. and D.K. performed fieldwork, data collection and sample processing. W.A and M.M.D. performed laboratory experiments. V.M. performed bioinformatic analysis of RNA-seq data. W.A. performed statistical analysis. W.A. and Y.I. interpreted the results and wrote the manuscript with input from M.M.D. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Youssef Idaghdour.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Metabolism thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Christoph Schmitt.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Distribution analysis of normalized metabolomic data.

Distribution analysis of interquartile-normalized metabolomics data for the Gouin dataset analyzed alone (a, n = 199) and the Gouin/Fulani merged datasets analyzed combined (b, n = 305).

Source data

Extended Data Fig. 2 Effect of hemoglobin genotype and 2-way hierarchical clustering of the full Gouin metabolomic dataset.

a–c, Impact of hemoglobin genotype on the serum metabolomes. PCA plots show the clustering patterns of 15 children with non-AA hemoglobin genotype (AC, triangles, n = 10; AS, diamonds, n = 4; and SC stars, n = 1) in principal component analysis of the Gouin children metabolomic dataset before infection (a), during infection (b) and in the combined dataset (c). d, Two-way hierarchical clustering of the full 667 metabolites dataset (rows) in Gouin children (columns) before (n = 99 samples) and during (n = 100) infection. The bar to the left shows children’s infection status (before infection; blue, during infection; red). Clustering was done using Ward’s method. e, Principal variance component analysis of the full Gouin metabolomic dataset showing the proportion of variance of the first three principal components explained by infection status, age, metabolomic experiment run day, sex, hemoglobin level, ratio of lymphocytes to neutrophils and individual effect (left). The bar graph (right) shows the weighted average proportion of variance of the first three principal components explained by each indicated variable.

Source data

Extended Data Fig. 3 Association between pregnenolone sulfate levels and expression levels of Th cell master regulators.

Pearson correlation between the levels of pregnenolone sulfate and the expression levels of GATA3, TBX21 and BCL6 before (blue) and during (red) infection measured using RNASeq (top panel, n = 36 children) or RT-qPCR (bottom panel, n = 23 children).

Source data

Extended Data Fig. 4 RT-qPCR validation of RNA sequencing data.

a, Box plots show matched relative expression of levels of 19 T cell transcription factors, ligands and receptors before (blue) and during (red) infection quantified using RNASeq (n = 36 children) and RT-qPCR (n = 23 children). Bar and whiskers represent mean ± SD. Differences in RNASeq and qPCR data were assessed using paired two-tailed Student’s t-test and Wilcoxon test, respectively (****P <0.0001). b, Bar plot shows the log2 fold change of expression levels for each of the 19 genes between before and during infection stages using RNASeq (blue) and RT-qPCR (orange) data. c, Correlation plots showing the moderation effect of infection on the association between pregnenolone sulfate and lymphocytes percentage (left panel) through the expression of CD274 (right panel) quantified in 23 individuals before infection (blue) and during infection (red) using RT-qPCR.

Source data

Extended Data Fig. 5 Effect of pregnenolone sulfate on T cell proliferation.

a, Experimental design of the T cell proliferation assay (created with biorender.com). CFSE-labelled PBMCs (1.5 × 105) from 10 healthy donors were cultured with or without anti-CD3/anti-CD28 stimulation in the presence or absence of 400 µM pregnenolone sulfate. T cell proliferation was assessed using flow cytometry after five days of culturing. b, Bar plots showing the division (right) and expansion (left) indices in the four experimental conditions for PBMCs from the 10 individuals. Proliferation and replication indices are shown in Fig. 6. c, Flow cytometry plots of CFSE-stained PBMCs derived from gated T cells for each of the 10 individuals under the indicated unstimulated untreated (blue), unstimulated pregnenolone sulfate-treated (purple), stimulated untreated (green), and stimulated pregnenolone sulfate-treated (red) conditions. d, Bar plots showing log2 mean fluorescence intensities (log2 MFI) of IL-2 and IL-4 cytokines quantified in culture supernatants of unstimulated untreated (n = 4, blue), unstimulated pregnenolone sulfate-treated (n = 4, purple), stimulated untreated (n = 10, green), and stimulated pregnenolone sulfate-treated (n = 10, red) PBMCs using flow cytometry. Cytokines that show statistically significant differences between stimulated pregnenolone sulfate-treated/untreated conditions are shown in Fig. 6. Differences between the groups presented in b. and d. were assessed using a paired two-tailed Student’s t-test. Bar and whiskers represent mean ± SD. The grey lines in bar plots connect matched samples. (e) Flow cytometric plots showing the gating strategy used in the T cell proliferation assay shown in Fig. 7. Lymphocytes were gated according to FS-A and SS-A. CD3+ live cells were gated according to 7-AAD and PE-A, and CFSE stained CD3+ cells were detected using FITC-A.

Source data

Extended Data Fig. 6 One-way hierarchical clustering heatmap of metabolite levels of 12 infection-associated steroids in the Gouin-Fulani merged dataset.

Metabolite data for the Gouin (a, 99 samples before infection and 100 samples during infection) and Fulani (b, 53 samples before infection and 53 samples during infection) is shown. The children (columns) are labeled based on their infection state (before infection; blue, and during infection; red).

Source data

Supplementary information

Reporting Summary

Supplementary Tables 1–12

Supplementary Table 1 Demographic and haematological information of the Gouin study participants. Supplementary Table 2 Global metabolomics data of the Gouin cohort and list of differentially abundant metabolites (log transformed and IQR normalized). Supplementary Table 3 Results of metabolomic quantitative pathway enrichment analysis. Supplementary Table 4 Results of linear regression analysis between steroid levels and lymphocyte fraction values adjusting for age and sex. Supplementary Table 5 Cross-correlation of steroids and transcripts in the Gouin cohort. Supplementary Table 6 IPA and CluoGO enrichment analysis of genes whose expression levels were significantly correlated with infection-associated steroids. Supplementary Table 7 Transcriptomic data of the Gouin participants. Supplementary Table 8 Results of causal mediation and moderated mediation analysis input data and analyses. Supplementary Table 9 RT–qPCR validation data of the RNA-seq data for 19 T cell transcription factors, ligands and receptors. Supplementary Table 10 Flow cytometry and cytokine data of the T cell proliferation assay. Supplementary Table 11 Demographic and haematological information of the Fulani study participants and merged global metabolomic data of the Gouin and Fulani cohorts (log transformed and IQR normalized). Supplementary Table 12 Blood serum cytokine (IL-2, IL-4, IL-10, IL-13, TNF and INF-γ) data from Gouin and Fulani children before and during infection.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdrabou, W., Dieng, M.M., Diawara, A. et al. Metabolome modulation of the host adaptive immunity in human malaria. Nat Metab 3, 1001–1016 (2021). https://doi.org/10.1038/s42255-021-00404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-021-00404-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research