Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

white regulates proliferative homeostasis of intestinal stem cells during ageing in Drosophila

Abstract

Tissue integrity is contingent on maintaining stem cells. Intestinal stem cells (ISCs) over-proliferate during ageing, leading to tissue dysplasia in Drosophila melanogaster. Here we describe a role for white, encoding the evolutionarily conserved ATP-binding cassette transporter subfamily G, with a particularly well-characterized role in eye colour pigmentation, in ageing-induced ISC proliferation in the midgut. ISCs increase expression of white during ageing. ISC-specific inhibition of white suppresses ageing-induced ISC dysregulation and prolongs lifespan. Of the proteins that form heterodimers with White, Brown mediates ISC dysregulation during ageing. Metabolomics analyses reveal previously unappreciated, profound metabolic impacts of white inhibition on organismal metabolism. Among the metabolites affected by White, tetrahydrofolate is transported by White, is accumulated in ISCs during ageing and is indispensable for ageing-induced ISC over-proliferation. Since Thomas Morgan’s isolation of a white mutant as the first Drosophila mutant, white mutants have been used extensively as genetic systems and often as controls. Our findings provide insights into metabolic regulation of stem cells mediated by the classic gene white.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ISCs over-proliferate in both males and females in a white-dependent manner during ageing.
Fig. 2: White regulates ISC homeostasis cell autonomously during ageing.
Fig. 3: white has profound effects on metabolism.
Fig. 4: mini-white does not restore normal metabolism but has pleiotropic effects on ISC proliferation during ageing.
Fig. 5: brown is necessary for ageing-induced ISC over-proliferation.
Fig. 6: Folate metabolism regulates white-mediated ISC proliferation during ageing.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the findings are available within the paper.

References

  1. Micchelli, C. A. & Perrimon, N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439, 475–479 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Ohlstein, B. & Spradling, A. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439, 470–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Liang, J., Balachandra, S., Ngo, S. & O’Brien, L. E. Feedback regulation of steady-state epithelial turnover and organ size. Nature 548, 588–591 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Biteau, B., Hochmuth, C. E. & Jasper, H. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3, 442–455 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choi, N. H., Kim, J. G., Yang, D. J., Kim, Y. S. & Yoo, M. A. Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor. Aging Cell 7, 318–334 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Regan, J. C. et al. Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction. eLife 5, e10956 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Koehler, C. L., Perkins, G. A., Ellisman, M. H. & Jones, D. L. Pink1 and Parkin regulate Drosophila intestinal stem cell proliferation during stress and aging. J. Cell Biol. 216, 2315–2327 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang, H. et al. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137, 1343–1355 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hudry, B., Khadayate, S. & Miguel-Aliaga, I. The sexual identity of adult intestinal stem cells controls organ size and plasticity. Nature 530, 344–348 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morgan, T. H. Sex-limited inheritance in Drosophila. Science 32, 120–122 (1910).

    Article  CAS  PubMed  Google Scholar 

  11. Platts, A. E. et al. Massively parallel resequencing of the isogenic Drosophila melanogaster strain w1118; iso-2; iso-3 identifies hotspots for mutations in sensory perception genes. Fly 3, 192–203 (2009).

    Article  PubMed  Google Scholar 

  12. Bingham, P. M. The regulation of white locus expression: a dominant mutant allele at the white locus of Drosophila melanogaster. Genetics 95, 341–353 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hazelrigg, T., Levis, R. & Rubin, G. M. Transformation of white locus DNA in drosophila: dosage compensation, zeste interaction and position effects. Cell 36, 469–481 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. Ziehm, M., Piper, M. D. & Thornton, J. M. Analysing variation in Drosophila aging across independent experimental studies: a meta-analysis of survival data. Aging Cell 12, 917–922 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Lauwers, G. Y. & Riddell, R. H. Gastric epithelial dysplasia. Gut 45, 784–790 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tarr, P. T., Tarling, E. J., Bojanic, D. D., Edwards, P. A. & Baldan, A. Emerging new paradigms for ABCG transporters. Biochim. Biophys. Acta 1791, 584–593 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Theodoulou, F. L. & Kerr, I. D. ABC transporter research: going strong 40 years on. Biochem. Soc. Trans. 43, 1033–1040 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ewart, G. D. & Howells, A. J. ABC transporters involved in transport of eye pigment precursors in Drosophila melanogaster. Methods Enzymol. 292, 213–224 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Borycz, J., Borycz, J. A., Kubow, A., Lloyd, V. & Meinertzhagen, I. A. Drosophila ABC transporter mutants white, brown and scarlet have altered contents and distribution of biogenic amines in the brain. J. Exp. Biol. 211, 3454–3466 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Evans, J. M., Day, J. P., Cabrero, P., Dow, J. A. & Davies, S. A. A new role for a classical gene: white transports cyclic GMP. J. Exp. Biol. 211, 890–899 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Sitaraman, D. et al. Serotonin is necessary for place memory in Drosophila. Proc. Natl Acad. Sci. USA 105, 5579–5584 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sullivan, D. T., Bell, L. A., Paton, D. R. & Sullivan, M. C. Purine transport by malpighian tubules of pteridine-deficient eye color mutants of Drosophila melanogaster. Biochem. Genet. 17, 565–573 (1979).

    Article  CAS  PubMed  Google Scholar 

  23. Sullivan, D. T., Bell, L. A., Paton, D. R. & Sullivan, M. C. Genetic and functional analysis of tryptophan transport in Malpighian tubules of Drosophila. Biochem. Genet. 18, 1109–1130 (1980).

    Article  CAS  PubMed  Google Scholar 

  24. Sullivan, D. T. & Sullivan, M. C. Transport defects as the physiological basis for eye color mutants of Drosophila melanogaster. Biochem. Genet. 13, 603–613 (1975).

    Article  CAS  PubMed  Google Scholar 

  25. Tejeda-Guzman, C. et al. Biogenesis of zinc storage granules in Drosophila melanogaster. J. Exp. Biol. https://doi.org/10.1242/jeb.168419 (2018).

  26. Zeng, X., Chauhan, C. & Hou, S. X. Characterization of midgut stem cell- and enteroblast-specific Gal4 lines in drosophila. Genesis 48, 607–611 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miguel-Aliaga, I., Jasper, H. & Lemaitre, B. Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics 210, 357–396 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nicholson, L. et al. Spatial and temporal control of gene expression in drosophila using the inducible GeneSwitch GAL4 system. Screen for larval nervous system drivers. Genetics 178, 215–234 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Biteau, B. et al. Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet. https://doi.org/10.1371/journal.pgen.1001159 (2010).

  30. Mathur, D., Bost, A., Driver, I. & Ohlstein, B. A transient niche regulates the specification of Drosophila intestinal stem cells. Science 327, 210–213 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferreiro, M. J. et al. Drosophila melanogaster white mutant w1118 undergo retinal degeneration. Front. Neurosci. 11, 732 (2017).

    Article  PubMed  Google Scholar 

  32. Xiao, C. F., Qiu, S. & Robertson, M. The white gene controls copulation success in Drosophila melanogaster. Sci. Rep. https://doi.org/10.1038/s41598-017-08155-y (2017).

  33. Parkhitko, A. A. et al. Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1/dAhcyL2 extends health span and lifespan in Drosophila. Genes Dev. 30, 1409–1422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Silicheva, M. et al. Drosophila mini-white model system: new insights into positive position effects and the role of transcriptional terminators and gypsy insulator in transgene shielding. Nucleic Acids Res. 38, 39–47 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Tearle, R. Tissue specific effects of ommochrome pathway mutations in Drosophila melanogaster. Genet. Res. 57, 257–266 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Hochmuth, C. E., Biteau, B., Bohmann, D. & Jasper, H. Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell 8, 188–199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng, Y. & Cantley, L. C. Toward a better understanding of folate metabolism in health and disease. J. Exp. Med. 216, 253–266 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao, R., Diop-Bove, N., Visentin, M. & Goldman, I. D. Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev. Nutr. 31, 177–201 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Ifergan, I. & Assaraf, Y. G. Molecular mechanisms of adaptation to folate deficiency. Vitam. Horm. 79, 99–143 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Guo, L., Karpac, J., Tran, S. L. & Jasper, H. PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell 156, 109–122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Resnik-Docampo, M. et al. Tricellular junctions regulate intestinal stem cell behaviour to maintain homeostasis. Nat. Cell Biol. 19, 52–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Rera, M. et al. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab. 14, 623–634 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Enokizono, J., Kusuhara, H. & Sugiyama, Y. Regional expression and activity of breast cancer resistance protein (Bcrp/Abcg2) in mouse intestine: overlapping distribution with sulfotransferases. Drug Metab. Dispos. 35, 922–928 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Ding, X. W., Wu, J. H. & Jiang, C. P. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci. 86, 631–637 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Vijg, J. & Kennedy, B. K. The essence of aging. Gerontology 62, 381–385 (2016).

    Article  PubMed  Google Scholar 

  46. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Redhai, S. et al. An intestinal zinc sensor regulates food intake and developmental growth. Nature 580, 263–268 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ebisch, I. M., Thomas, C. M., Peters, W. H., Braat, D. D. & Steegers-Theunissen, R. P. The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum. Reprod. Update 13, 163–174 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Yoo, S. K. et al. Plexins function in epithelial repair in both Drosophila and zebrafish. Nat. Commun. 7, 12282 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamada, T. et al. The role of glycogen in development and adult fitness in Drosophila. Development https://doi.org/10.1242/dev.176149 (2019).

  51. Xia, J., Psychogios, N., Young, N. & Wishart, D. S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 37, W652–W660 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Jasper, K. Akagi, L. Partridge, N. Perrimon, S. Hou, I. Hariharan, E. Kuranaga, S. Hayashi and S. Davies, and TRiP at Harvard Medical School, the Bloomington Stock Center and the Kyoto Stock Center for transgenic fly stocks. We thank the members of the Yoo laboratory, L. Yang and Y.-C. Wang for helpful comments on the manuscript. This work was supported by AMED-PRIME (17939907) and JSPS KAKENHI (JP16H06220) to S.K.Y. and JSPS KAKENHI (JP17H03658) to T.N.

Author information

Authors and Affiliations

Authors

Contributions

S.K.Y. conceived and oversaw the project. A.S., T.N., T.T., S.N. and S.K.Y. executed the experiments. A.S., T.T., S.N. and S.K.Y. contributed expertise in ISC regulation and ageing. T.T. and T.N. contributed expertise in metabolic analysis. S.K.Y. wrote the paper with input from all authors.

Corresponding author

Correspondence to Sa Kan Yoo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Metabolism thanks Bart Deplancke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Pooja Jha; Isabella Samuelson.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 ISCs overproliferate in both males and females in a white-dependent manner during ageing.

a, ISC proliferation during ageing in males. b, ISC proliferation during ageing in females. Note that ISCs in females proliferate more than those in males regardless of age and genetic background. c, Females have more mitotic ISCs per gut (left), bigger guts (middle) and more mitotic ISCs per unit area (right) than males regardless of age. Progeny from crosses between female Oregon R and male w1118 were used for this analysis. d, Male progeny from crosses between Oregon R and w1118 have the same autosomes but different sex chromosomes. e, The male progeny with endogenous white exhibit ageing-induced ISC proliferation but those without white do not. f, Male progeny from crosses between Oregon R and w1 were used to examine ISC proliferation during ageing. g, w1 Oregon R flies do not demonstrate ISC dysregulation during ageing. h, Paraquat or DSS induces comparable ISC proliferation in Oregon R and wOregon R flies. Statistical significance was determined using two-tailed unpaired t-test (a, b, e, f, g), two-tailed Mann Whitney test (c) and one-way ANOVA with Dunnett’s post-test (h).

Extended Data Fig. 2 white regulates ISC homeostasis cell autonomously during ageing.

a, RT-qPCR of white transcript from Oregon R and w1118 demonstrates specificity of the designed primers for white. b, RT-qPCR of white transcript in the midgut of Oregon R shows that white transcription is not induced by paraquat treatment. c, Ubiquitous knockdown of white using act-Gal4, UAS-white RNAis shows that only one RNAi (BL33623) among 9 RNAi examined makes the eyes white, demonstrating an efficient knockdown of white. This effective RNAi (BL33623) was used to knockdown white throughout this paper. d, white knockdown in ISCs/EBs suppresses the ageing-induced increase of the number of ISCs. e, Representative pictures of esg>GFP positive cells (ISCs and EBs) in the midgut. Scale bar, 50 um. f, Ectopic expression of white does not promote ISC proliferation in young flies. g, Lifespan of Oregon R and wOregon R. In contrast to the effect of ISC-specific white knockdown (Fig. 2i), white knockout in the whole body does not extend lifespan. h, Lifespan of flies with ubiquitous knockdown of white. Consistent with the knockout phenotype, ubiquitous knockdown of white does not extend lifespan. Statistical significance was determined using two-tailed unpaired t-test (a, b, d) and Log-rank (Mantel-Cox) test (g, h). The experiments were repeated independently at least twice with similar results (e).

Extended Data Fig. 3 white has profound effects on metabolism.

a, Two-way ANOVA analyses of the data in Fig. 3d and Extended Data Fig. 3b. b, The amount of methylhistidine decreases during ageing regardless of genetic background.

Extended Data Fig. 4 Metabolomics of the carcass and the midgut.

a, Principal component (PC) analysis of water-soluble metabolites from the carcass (whole body without the gut) and the gut of Oregon R and wOregon R. The age of young (YG) and old male flies are 7 days and 1.5 months old, respectively. Ellipses of clusters show the 95% confidence regions for each sample group. b, Representative white-related metabolites are presented.

Source data

Extended Data Fig. 5 brown affects ISC homeostasis during ageing.

a, In contrast to Oregon R and st1, bw1 mutants do not exhibit ageing-induced ISC proliferation. b, RU486 extends lifespan of flies with 5961-GS, UAS-brown RNAi. Statistical significance was determined using two-tailed unpaired t-test (a) and Log-rank (Mantel-Cox) test (b).

Extended Data Fig. 6 Purine metabolism does not affect ISC homeostasis.

a, Purine catabolism pathway. Hydrogen peroxide is generated during conversion of hypoxanthine to xanthine and xanthine to uric acid. b, ISCs proliferate during ageing in rosy mutant rosy506 flies. c, Feeding xanthine or guanosine does not promote ISC proliferation in young flies. Statistical significance was determined using two-tailed unpaired t-test (b) and one-way ANOVA with Dunnett’s post-test (c).

Extended Data Fig. 7 Folate metabolism regulates white-mediated ISC proliferation during ageing.

a, Yeast depletion through feeding only sucrose lowers THF signals in the gut while feeding exogenous THF increases them. b, Quantification of THF signals in the gut of flies fed with normal food (yeast food), yeast depletion (sucrose only) and exogenous THF (sucrose + THF). c, LC-MS-based measurement of THF shows that Oregon R maintains the THF amount in the gut during ageing, but wOregon R does not. d, Feeding folates does not promote ISC proliferation in young Oregon R. e, Feeding THF promotes ISC proliferation in old wOregon R flies. f, Endogenous expression of White using GFP knock-in flies. White shows vesicular localization in principal cells of the Malpighian tubules. g, RT-qPCR of white or brown transcript from the carcass of Oregon R shows that there is no transcriptional change of these genes during ageing. Statistical significance was determined using one-way ANOVA with Dunnett’s post-test (b, d) and two-tailed unpaired t-test (c, e). The experiments were repeated independently at least twice with similar results (a, f). Scale bars, 10 μm.

Supplementary information

Reporting Summary

Supplementary Table 1

Drosophila stocks used in this study.

Source data

Source Data Fig. 3

Metabolomics data for Fig. 3a,b.

Source Data Fig. 4

Metabolomics data for Fig. 4f,g.

Source Data Fig. 5

Metabolomics data for Fig. 5e.

Source Data Extended Data Fig. 4

Metabolomics data for Extended Data Fig. 4a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, A., Nishimura, T., Takano, T. et al. white regulates proliferative homeostasis of intestinal stem cells during ageing in Drosophila. Nat Metab 3, 546–557 (2021). https://doi.org/10.1038/s42255-021-00375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-021-00375-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer