Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Metabolic Messengers
  • Published:

Metabolic Messengers: FGF21

Abstract

As a non-canonical fibroblast growth factor, fibroblast growth factor 21 (FGF21) functions as an endocrine hormone that signals to distinct targets throughout the body. Interest in therapeutic applications for FGF21 was initially sparked by its ability to correct metabolic dysfunction and decrease body weight associated with diabetes and obesity. More recently, new functions for FGF21 signalling have emerged, thus indicating that FGF21 is a dynamic molecule capable of regulating macronutrient preference and energy balance. Here, we highlight the major physiological and pharmacological effects of FGF21 related to nutrient and energy homeostasis and summarize current knowledge regarding FGF21’s pharmacodynamic properties. In addition, we provide new perspectives and highlight critical unanswered questions surrounding this unique metabolic messenger.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discovery of FGF21 as a metabolic messenger.
Fig. 2: Target tissues and metabolic activities of FGF21.
Fig. 3: FGF21 modulates signals, thus regulating energy and nutrient homeostasis.

References

  1. Beenken, A. & Mohammadi, M. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8, 235–253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beenken, A. & Mohammadi, M. The structural biology of the FGF19 subfamily. Adv. Exp. Med. Biol. 728, 1–24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. BonDurant, L. D. & Potthoff, M. J. Fibroblast growth factor 21: a versatile regulator of metabolic homeostasis. Annu. Rev. Nutr. 38, 173–196 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nishimura, T., Nakatake, Y., Konishi, M. & Itoh, N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim. Biophys. Acta 1492, 203–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Fon Tacer, K. et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol. 24, 2050–2064 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Markan, K. R. et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 63, 4057–4063 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hansen, J. S. et al. Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans. Mol. Metab. 4, 551–560 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Justesen, S., Haugegaard, K. V., Hansen, J. B., Hansen, H. S. & Andersen, B. The autocrine role of FGF21 in cultured adipocytes. Biochem. J. 477, 2477–2487 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Huang, Z. et al. The FGF21-CCL11 axis mediates beiging of white adipose tissues by coupling sympathetic nervous system to type 2 immunity. Cell Metab 26, 493–508.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Han, M. S. et al. A feed-forward regulatory loop in adipose tissue promotes signalling by the hepatokine FGF21. Genes Dev. 35, 133–146 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Izumiya, Y. et al. FGF21 is an Akt-regulated myokine. FEBS Lett 582, 3805–3810 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tezze, C. et al. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab 25, 1374–1389.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keipert, S. et al. Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. Am. J. Physiol. Endocrinol. Metab. 306, E469–E482 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Pereira, R. O. et al. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J. 36, 2126–2145 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keipert, S. et al. Genetic disruption of uncoupling protein 1 in mice renders brown adipose tissue a significant source of FGF21 secretion. Mol. Metab. 4, 537–542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Restelli, L. M. et al. Neuronal mitochondrial dysfunction activates the integrated stress response to induce fibroblast growth factor 21. Cell Rep. 24, 1407–1414 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morovat, A. et al. Use of FGF-21 as a biomarker of mitochondrial disease in clinical practice. J. Clin. Med. 6, E80 (2017).

    Article  Google Scholar 

  18. Lehtonen, J. M. et al. FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology 87, 2290–2299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lovadi, E. et al. Elevated FGF 21 in myotonic dystrophy type 1 and mitochondrial diseases. Muscle Nerve 55, 564–569 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Inagaki, T. et al. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab. 5, 415–425 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Badman, M. K. et al. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5, 426–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. von Holstein-Rathlou, S. et al. FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metab. 23, 335–343 (2016).

    Article  Google Scholar 

  23. Iizuka, K., Takeda, J. & Horikawa, Y. Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes. FEBS Lett. 583, 2882–2886 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Sánchez, J., Palou, A. & Picó, C. Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: striking effects on fibroblast growth factor-21 induction. Endocrinology 150, 5341–5350 (2009).

    Article  PubMed  Google Scholar 

  25. Iroz, A. et al. A specific ChREBP and PPARα cross-talk is required for the glucose-mediated FGF21 response. Cell Rep. 21, 403–416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laeger, T. et al. FGF21 is an endocrine signal of protein restriction. J. Clin. Invest. 124, 3913–3922 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Maida, A. et al. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution. J. Clin. Invest. 126, 3263–3278 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Solon-Biet, S. M. et al. Defining the nutritional and metabolic context of FGF21 using the geometric framework. Cell Metab. 24, 555–565 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Badman, M. K., Koester, A., Flier, J. S., Kharitonenkov, A. & Maratos-Flier, E. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 150, 4931–4940 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gälman, C. et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARα activation in man. Cell Metab. 8, 169–174 (2008).

    Article  PubMed  Google Scholar 

  31. Fazeli, P. K. et al. FGF21 and the late adaptive response to starvation in humans. J. Clin. Invest. 125, 4601–4611 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dushay, J. R. et al. Fructose ingestion acutely stimulates circulating FGF21 levels in humans. Mol. Metab. 4, 51–57 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lundsgaard, A. M. et al. Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates. Mol. Metab. 6, 22–29 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Christodoulides, C., Dyson, P., Sprecher, D., Tsintzas, K. & Karpe, F. Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man. J. Clin. Endocrinol. Metab. 94, 3594–3601 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Vienberg, S. G. et al. Impact of short-term high-fat feeding and insulin-stimulated FGF21 levels in subjects with low birth weight and controls. Eur. J. Endocrinol. 167, 49–57 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Kim, K. H. & Lee, M. S. FGF21 as a stress hormone: the roles of FGF21 in stress adaptation and the treatment of metabolic diseases. Diabetes Metab. J. 38, 245–251 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Satapati, S. et al. Partial resistance to peroxisome proliferator-activated receptor-alpha agonists in ZDF rats is associated with defective hepatic mitochondrial metabolism. Diabetes 57, 2012–2021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fisher, F. M. et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 59, 2781–2789 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, L. et al. YIPF6 controls sorting of FGF21 into COPII vesicles and promotes obesity. Proc. Natl Acad. Sci. USA 116, 15184–15193 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kharitonenkov, A. et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148, 774–781 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Xu, J. et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models: association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab. 297, E1105–E1114 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Dunshee, D. R. et al. Fibroblast activation protein cleaves and inactivates fibroblast growth factor 21. J. Biol. Chem. 291, 5986–5996 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhen, E. Y., Jin, Z., Ackermann, B. L., Thomas, M. K. & Gutierrez, J. A. Circulating FGF21 proteolytic processing mediated by fibroblast activation protein. Biochem. J. 473, 605–614 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Micanovic, R. et al. Different roles of N- and C- termini in the functional activity of FGF21. J. Cell. Physiol. 219, 227–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Yie, J. et al. FGF21 N- and C-termini play different roles in receptor interaction and activation. FEBS Lett. 583, 19–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Kurosu, H. et al. Tissue-specific expression of βKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem. 282, 26687–26695 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Suzuki, M. et al. βKlotho is required for fibroblast growth factor (FGF) 21 signalling through FGF receptor (FGFR) 1c and FGFR3c. Mol. Endocrinol. 22, 1006–1014 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jensen-Cody, S. O. et al. FGF21 signals to glutamatergic neurons in the ventromedial hypothalamus to suppress carbohydrate intake. Cell Metab. 32, 273–286.e276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bookout, A. L. et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 19, 1147–1152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liang, Q. et al. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes 63, 4064–4075 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Patel, V. et al. Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts. PLoS ONE 9, e87102 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Benoit, B. et al. Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nat. Med. 23, 990–996 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Ogawa, Y. et al. βKlotho is required for metabolic activity of fibroblast growth factor 21. Proc. Natl Acad. Sci. USA 104, 7432–7437 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, X. et al. Co-receptor requirements for fibroblast growth factor-19 signalling. J. Biol. Chem. 282, 29069–29072 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Adams, A. C., Cheng, C. C., Coskun, T. & Kharitonenkov, A. FGF21 requires βklotho to act in vivo. PLoS ONE 7, e49977 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ding, X. et al. βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab. 16, 387–393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, S. et al. Structures of β-klotho reveal a ‘zip code’-like mechanism for endocrine FGF signalling. Nature 553, 501–505 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kharitonenkov, A. et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115, 1627–1635 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yie, J. et al. Understanding the physical interactions in the FGF21/FGFR/β-Klotho complex: structural requirements and implications in FGF21 signalling. Chem. Biol. Drug Des. 79, 398–410 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Chau, M. D., Gao, J., Yang, Q., Wu, Z. & Gromada, J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1α pathway. Proc. Natl Acad. Sci. USA 107, 12553–12558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Markan, K. R. et al. FGF21 resistance is not mediated by downregulation of beta-klotho expression in white adipose tissue. Mol. Metab. 6, 602–610 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Potthoff, M. J. et al. FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl Acad. Sci. USA 106, 10853–10858 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Byun, S. et al. Fasting-induced FGF21 signalling activates hepatic autophagy and lipid degradation via JMJD3 histone demethylase. Nat. Commun. 11, 807 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, Y. et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife 1, e00065 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. BonDurant, L. D. et al. FGF21 regulates metabolism through adipose-dependent and -independent mechanisms. Cell Metab. 25, 935–944.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Berglund, E. D. et al. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology 150, 4084–4093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lan, T. et al. FGF19, FGF21, and an FGFR1/beta-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab. 26, 709–718.e703 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Turer, A. T. & Scherer, P. E. Adiponectin: mechanistic insights and clinical implications. Diabetologia 55, 2319–2326 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Holland, W. L. et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 17, 790–797 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lin, Z. et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 17, 779–789 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Kolumam, G. et al. Sustained brown fat stimulation and insulin sensitization by a humanized bispecific antibody agonist for fibroblast growth factor receptor 1/βKlotho complex. EBioMedicine 2, 730–743 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Arner, P. et al. FGF21 attenuates lipolysis in human adipocytes: a possible link to improved insulin sensitivity. FEBS Lett. 582, 1725–1730 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Bartelt, A. et al. Thermogenic adipocytes promote HDL turnover and reverse cholesterol transport. Nat. Commun. 8, 15010 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nedergaard, J., Bengtsson, T. & Cannon, B. New powers of brown fat: fighting the metabolic syndrome. Cell Metab 13, 238–240 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Challa, T. D. et al. A genetic model to study the contribution of brown and brite adipocytes to metabolism. Cell Rep. 30, 3424–3433.e3424 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Kwon, M. M., O’Dwyer, S. M., Baker, R. K., Covey, S. D. & Kieffer, T. J. FGF21-mediated improvements in glucose clearance require uncoupling protein 1. Cell Rep. 13, 1521–1527 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Coskun, T. et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149, 6018–6027 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Xu, J. et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58, 250–259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Youm, Y. H., Horvath, T. L., Mangelsdorf, D. J., Kliewer, S. A. & Dixit, V. D. Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution. Proc. Natl Acad. Sci. USA 113, 1026–1031 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Owen, B. M. et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 20, 670–677 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Talukdar, S. et al. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab. 23, 427–440 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Ameka, M. et al. Liver derived FGF21 maintains core body temperature during acute cold exposure. Sci. Rep. 9, 630 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hill, C. M. et al. FGF21 signals protein status to the brain and adaptively regulates food choice and metabolism. Cell Rep. 27, 2934–2947.e2933 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Flippo, K. H., Jensen-Cody, S. O., Claflin, K. E. & Potthoff, M. J. FGF21 signalling in glutamatergic neurons is required for weight loss associated with dietary protein dilution. Sci. Rep. 10, 19521 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen, M. Z. et al. FGF21 mimetic antibody stimulates UCP1-independent brown fat thermogenesis via FGFR1/βKlotho complex in non-adipocytes. Mol. Metab. 6, 1454–1467 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Murray, S. A. et al. Whole transcriptome analysis and validation of metabolic pathways in subcutaneous adipose tissues during FGF21-induced weight loss in non-human primates. Sci. Rep. 10, 7287 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gaich, G. et al. The effects of LY2405319, an FGF21 analogue, in obese human subjects with type 2 diabetes. Cell Metab. 18, 333–340 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Kaufman, A., Abuqayyas, L., Denney, W. S., Tillman, E. J. & Rolph, T. AKR-001, an Fc-FGF21 analog, showed sustained pharmacodynamic effects on insulin sensitivity and lipid metabolism in type 2 diabetes patients. Cell Rep. Med. 1, 100057 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sanyal, A. et al. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet 392, 2705–2717 (2019).

    Article  PubMed  Google Scholar 

  90. Charles, E. D. et al. Pegbelfermin (BMS-986036), PEGylated FGF21, in patients with obesity and type 2 diabetes: results from a randomized phase 2 study. Obesity (Silver Spring) 27, 41–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Harrison, S. A. et al. NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 391, 1174–1185 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Kim, A. M. et al. Once-weekly administration of a long-acting fibroblast growth factor 21 analogue modulates lipids, bone turnover markers, blood pressure and body weight differently in obese people with hypertriglyceridaemia and in non-human primates. Diabetes Obes. Metab. 19, 1762–1772 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Planavila, A., Redondo-Angulo, I. & Villarroya, F. FGF21 and cardiac physiopathology. Front. Endocrinol. (Lausanne) 6, 133 (2015).

    Article  PubMed  Google Scholar 

  94. Tanajak, P., Chattipakorn, S. C. & Chattipakorn, N. Effects of fibroblast growth factor 21 on the heart. J. Endocrinol. 227, R13–R30 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Geng, L., Lam, K. S. L. & Xu, A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat. Rev. Endocrinol. 16, 654–667 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Wei, W. et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc. Natl Acad. Sci. USA 109, 3143–3148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, X., Wei, W., Krzeszinski, J. Y., Wang, Y. & Wan, Y. A liver-bone endocrine relay by IGFBP1 promotes osteoclastogenesis and mediates FGF21-induced bone resorption. Cell Metab. 22, 811–824 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, X. et al. FGF21 is not a major mediator for bone homeostasis or metabolic actions of PPARα and PPARγ agonists. J. Bone Miner. Res. 32, 834–845 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Andersen, B. et al. FGF21 decreases body weight without reducing food intake or bone mineral density in high-fat fed obese rhesus macaque monkeys. Int. J. Obes. (Lond.) 42, 1151–1160 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, J. et al. Chronic over-expression of fibroblast growth factor 21 increases bile acid biosynthesis by opposing FGF15/19 action. EBioMedicine 15, 173–183 (2017).

    Article  PubMed  Google Scholar 

  101. Douris, N. et al. Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology 156, 2470–2481 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Véniant, M. M. et al. Pharmacologic effects of FGF21 are independent of the “browning” of white adipose tissue. Cell Metab. 21, 731–738 (2015).

    Article  PubMed  Google Scholar 

  103. Samms, R. J. et al. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep. 11, 991–999 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Jensen-Cody, S. O. & Potthoff, M. J. Hepatokines and metabolism: deciphering communication from the liver. Mol. Metab. 44, 101138 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Henriksson, E. & Andersen, B. FGF19 and FGF21 for the treatment of NASH-two sides of the same coin? Differential and overlapping effects of FGF19 and FGF21 from mice to human. Front. Endocrinol. (Lausanne) 11, 601349 (2020).

    Article  PubMed  Google Scholar 

  106. Marra, F. & Lotersztajn, S. Pathophysiology of NASH: perspectives for a targeted treatment. Curr. Pharm. Des. 19, 5250–5269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cohen, J. C., Horton, J. D. & Hobbs, H. H. Human fatty liver disease: old questions and new insights. Science 332, 1519–1523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schlein, C. et al. FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues. Cell Metab. 23, 441–453 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Ye, D. et al. Fibroblast growth factor 21 protects against acetaminophen-induced hepatotoxicity by potentiating peroxisome proliferator-activated receptor coactivator protein-1α-mediated antioxidant capacity in mice. Hepatology 60, 977–989 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Kim, S. H. et al. Fibroblast growth factor 21 participates in adaptation to endoplasmic reticulum stress and attenuates obesity-induced hepatic metabolic stress. Diabetologia 58, 809–818 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Fisher, F. M. et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 152, 2996–3004 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gong, Q. et al. Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1 in mice. Hepatology 64, 425–438 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Foltz, I. N. et al. Treating diabetes and obesity with an FGF21-mimetic antibody activating the βKlotho/FGFR1c receptor complex. Sci. Transl. Med. 4, 162ra153 (2012).

    Article  PubMed  Google Scholar 

  114. Kan, M., Wu, X., Wang, F. & McKeehan, W. L. Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase. J. Biol. Chem. 274, 15947–15952 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Huang, X. et al. Resident hepatocyte fibroblast growth factor receptor 4 limits hepatocarcinogenesis. Mol. Carcinog. 48, 553–562 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bao, L. et al. A long-acting FGF21 alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis partly through an FGF21-adiponectin-IL17A pathway. Br. J. Pharmacol. 175, 3379–3393 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chu, A. Y. et al. Novel locus including FGF21 is associated with dietary macronutrient intake. Hum. Mol. Genet. 22, 1895–1902 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tanaka, T. et al. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. Am. J. Clin. Nutr. 97, 1395–1402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Søberg, S. et al. FGF21 is a sugar-induced hormone associated with sweet intake and preference in humans. Cell Metab. 25, 1045–1053.e6 (2017).

    Article  PubMed  Google Scholar 

  120. Frayling, T. M. et al. A common allele in FGF21 associated with sugar intake is associated with body shape, lower total body-fat percentage, and higher blood pressure. Cell Rep. 23, 327–336 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fisher, F. M. et al. A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism. Mol. Metab. 6, 14–21 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Talukdar, S. et al. FGF21 regulates sweet and alcohol preference. Cell Metab. 23, 344–349 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Baruch, A. et al. Antibody-mediated activation of the FGFR1/Klothoβ complex corrects metabolic dysfunction and alters food preference in obese humans. Proc. Natl Acad. Sci. USA 117, 28992–29000 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Laeger, T. et al. Metabolic responses to dietary protein restriction require an increase in FGF21 that is delayed by the absence of GCN2. Cell Rep 16, 707–716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Simpson, S. J. & Raubenheimer, D. Obesity: the protein leverage hypothesis. Obes. Rev. 6, 133–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Sørensen, A., Mayntz, D., Raubenheimer, D. & Simpson, S. J. Protein-leverage in mice: the geometry of macronutrient balancing and consequences for fat deposition. Obesity (Silver Spring) 16, 566–571 (2008).

    Article  PubMed  Google Scholar 

  127. Raubenheimer, D. & Simpson, S. J. Protein leverage: theoretical foundations and ten points of clarification. Obesity (Silver Spring) 27, 1225–1238 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Martinez-Cordero, C. et al. Testing the Protein Leverage Hypothesis in a free-living human population. Appetite 59, 312–315 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Gosby, A. K., Conigrave, A. D., Raubenheimer, D. & Simpson, S. J. Protein leverage and energy intake. Obes. Rev. 15, 183–191 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Hale, C. et al. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology 153, 69–80 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Friedman, J. The long road to leptin. J. Clin. Invest. 126, 4727–4734 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Desai, B. N. et al. Fibroblast growth factor 21 (FGF21) is robustly induced by ethanol and has a protective role in ethanol associated liver injury. Mol. Metab. 6, 1395–1406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Søberg, S. et al. FGF21, a liver hormone that inhibits alcohol intake in mice, increases in human circulation after acute alcohol ingestion and sustained binge drinking at Oktoberfest. Mol. Metab. 11, 96–103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Schumann, G. et al. KLB is associated with alcohol drinking, and its gene product β-Klotho is necessary for FGF21 regulation of alcohol preference. Proc. Natl Acad. Sci. USA 113, 14372–14377 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by US National Institutes of Health (NIH) grants R01DK106104 (M.J.P.), R01AA027654 (M.J.P.), T32 DK112751 (K.H.F.) and T32 HL007121 (K.H.F.), and the Veterans Affairs Merit Review Program I01BX004634 (M.J.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Potthoff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Metabolism thanks Aimin Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Christoph Schmitt.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flippo, K.H., Potthoff, M.J. Metabolic Messengers: FGF21. Nat Metab 3, 309–317 (2021). https://doi.org/10.1038/s42255-021-00354-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-021-00354-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing