Exercise and cardiac health: physiological and molecular insights

Abstract

The cardiac benefits of exercise have been recognized for centuries. Studies have undisputedly shown that regular exercise is beneficial for the cardiovascular system in young, old, healthy and diseased populations. For these reasons, physical activity has been recommended worldwide for cardiovascular disease prevention and treatment. Although the benefits of exercise are clear, understanding of the molecular triggers that orchestrate these effects remains incomplete and has been a topic of intense research in recent years. Here, we provide a comprehensive review of the cardiac effects of physical activity, beginning with a brief history of exercise in cardiovascular medicine and then discussing seminal work on the physiological effects of exercise in healthy, diseased and aged hearts. Later, we revisit pioneering work on the molecular mechanisms underlying the cardiac benefits of exercise, and we conclude with our view on the translational potential of this knowledge as a powerful platform for cardiovascular disease drug discovery.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Physiological effects of aerobic exercise training in healthy hearts.
Fig. 2: Effects of aerobic exercise training in diseased and aged hearts.
Fig. 3: Summary of molecular mechanisms underlying the long-term cardiac benefits of aerobic exercise training.
Fig. 4: Exercise decreases cardiac ischaemic injury.
Fig. 5: Exercise as a potential platform for cardiovascular-drug discovery.

References

  1. 1.

    Ross, R. et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation 134, e653–e699 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Laukkanen, J. A. et al. Cardiovascular fitness as a predictor of mortality in men. Arch. Intern. Med. 161, 825–831 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Lavie, C. J. & Milani, R. V. Effects of cardiac rehabilitation, exercise training, and weight reduction on exercise capacity, coronary risk factors, behavioral characteristics, and quality of life in obese coronary patients. Am. J. Cardiol. 79, 397–401 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Marchionni, N. et al. Improved exercise tolerance and quality of life with cardiac rehabilitation of older patients after myocardial infarction: results of a randomized, controlled trial. Circulation 107, 2201–2206 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Roh, J., Rhee, J., Chaudhari, V. & Rosenzweig, A. The role of exercise in cardiac aging: from physiology to molecular mechanisms. Circ. Res. 118, 279–295 (2016).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  6. 6.

    Wisløff, U., Helgerud, J., Kemi, O. J. & Ellingsen, O. Intensity-controlled treadmill running in rats: VO2 max and cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 280, H1301–H1310 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Wisløff, U. et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115, 3086–3094 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Ramazzini, B. De morbis artificum diatriba [Diseases of workers]. 1713. Am. J. Public Health 91, 1380–1382 (2001).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  9. 9.

    Hartley, P. H. & Llewellyn, G. F. Longevity of oarsmen. BMJ 1, 657–662 (1939).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Morris, J. N., Heady, J. A., Raffle, P. A., Roberts, C. G. & Parks, J. W. Coronary heart-disease and physical activity of work. Lancet 262, 1053–1057 (1953).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Blair, S. N., Cheng, Y. & Holder, J. S. Is physical activity or physical fitness more important in defining health benefits? Med. Sci. Sports Exerc. 33, S379–399 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Dunn, A. L. et al. Comparison of lifestyle and structured interventions to increase physical activity and cardiorespiratory fitness: a randomized trial. J. Am. Med. Assoc. 281, 327–334 (1999).

    CAS  Article  Google Scholar 

  13. 13.

    Blair, S. N. et al. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. J. Am. Med. Assoc. 276, 205–210 (1996).

    CAS  Article  Google Scholar 

  14. 14.

    Lee, D. C. et al. Leisure-time running reduces all-cause and cardiovascular mortality risk. J. Am. Coll. Cardiol. 64, 472–481 (2014).

    PubMed Central  Article  PubMed  Google Scholar 

  15. 15.

    Ortega, F. B., Ruiz, J. R., Castillo, M. J. & Sjostrom, M. Physical fitness in childhood and adolescence: a powerful marker of health. Int. J. Obes. 32, 1–11 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    Lee, I. M., Hsieh, C. C. & Paffenbarger, R. S. Jr. Exercise intensity and longevity in men: The Harvard Alumni Health Study. J. Am. Med. Assoc. 273, 1179–1184 (1995).

    CAS  Article  Google Scholar 

  17. 17.

    Wei, M. et al. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. J. Am. Med. Assoc. 282, 1547–1553 (1999).

    CAS  Article  Google Scholar 

  18. 18.

    Saltin, B. et al. Response to exercise after bed rest and after training. Circulation 38, 1–78 (1968). The article describes changes in VO2 max and cardiac variables as a result of 20 days of bed rest followed by 8 weeks of exercise training.

    Article  Google Scholar 

  19. 19.

    Shephard, R. J. et al. The maximum oxygen intake: an international reference standard of cardiorespiratory fitness. Bull. World Health Organ. 38, 757–764 (1968).

    CAS  PubMed Central  PubMed  Google Scholar 

  20. 20.

    Wagner, P. D. Determinants of maximal oxygen transport and utilization. Annu. Rev. Physiol. 58, 21–50 (1996).

    CAS  Article  Google Scholar 

  21. 21.

    Arbab-Zadeh, A. et al. Cardiac remodeling in response to 1 year of intensive endurance training. Circulation 130, 2152–2161 (2014).

    PubMed Central  Article  PubMed  Google Scholar 

  22. 22.

    Zavorsky, G. S. Evidence and possible mechanisms of altered maximum heart rate with endurance training and tapering. Sports Med. 29, 13–26 (2000).

    CAS  Article  Google Scholar 

  23. 23.

    Pombo, J. F., Troy, B. L. & Russell, R. O. Jr. Left ventricular volumes and ejection fraction by echocardiography. Circulation 43, 480–490 (1971).

    CAS  Article  Google Scholar 

  24. 24.

    Morganroth, J., Maron, B. J., Henry, W. L. & Epstein, S. E. Comparative left ventricular dimensions in trained athletes. Ann. Intern. Med. 82, 521–524 (1975).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Fagard, R. H. Athlete’s heart: a meta-analysis of the echocardiographic experience. Int. J. Sports Med. 17 (Suppl. 3), S140–S144 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Spence, A. L. et al. A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans. J. Physiol. (Lond.) 589, 5443–5452 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    McMullen, J. R. & Jennings, G. L. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin. Exp. Pharmacol. Physiol. 34, 255–262 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Lovic, D. et al. Left ventricular hypertrophy in athletes and hypertensive patients. J. Clin. Hypertens. (Greenwich) 19, 413–417 (2017).

    Article  Google Scholar 

  29. 29.

    Iwasaki, K., Zhang, R., Zuckerman, J. H. & Levine, B. D. Dose-response relationship of the cardiovascular adaptation to endurance training in healthy adults: how much training for what benefit? J. Appl. Physiol. 95, 1575–1583 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Carter, J. B., Banister, E. W. & Blaber, A. P. Effect of endurance exercise on autonomic control of heart rate. Sports Med. 33, 33–46 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Sidhu, S. & Marine, J. E. Evaluating and managing bradycardia. Trends Cardiovasc. Med. 30, 265–272 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Saito, Y. et al. HCN4-overexpressing mouse embryonic stem cell-derived cardiomyocytes generate a new rapid rhythm in rats with bradycardia. Int. Heart J. 59, 601–606 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Nof, E., Antzelevitch, C. & Glikson, M. The contribution of HCN4 to normal sinus node function in humans and animal models. Pacing Clin. Electrophysiol. 33, 100–106 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Sneddon, J. F. & Camm, A. J. Sinus node disease: current concepts in diagnosis and therapy. Drugs 44, 728–737 (1992).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Levy, W. C. et al. Effect of endurance exercise training on heart rate variability at rest in healthy young and older men. Am. J. Cardiol. 82, 1236–1241 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Melanson, E. L. & Freedson, P. S. The effect of endurance training on resting heart rate variability in sedentary adult males. Eur. J. Appl. Physiol. 85, 442–449 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Carter, J. B., Banister, E. W. & Blaber, A. P. The effect of age and gender on heart rate variability after endurance training. Med. Sci. Sports Exerc. 35, 1333–1340 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Zingman, L. V. et al. Exercise-induced expression of cardiac ATP-sensitive potassium channels promotes action potential shortening and energy conservation. J. Mol. Cell. Cardiol. 51, 72–81 (2011).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  39. 39.

    Fletcher, P. J., Pfeffer, J. M., Pfeffer, M. A. & Braunwald, E. Left ventricular diastolic pressure-volume relations in rats with healed myocardial infarction: effects on systolic function. Circ. Res. 49, 618–626 (1981).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Matsuda, Y. et al. Importance of left atrial function in patients with myocardial infarction. Circulation 67, 566–571 (1983).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Tanaka, M. et al. Quantitative analysis of myocardial fibrosis in normals, hypertensive hearts, and hypertrophic cardiomyopathy. Br. Heart J. 55, 575–581 (1986).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  42. 42.

    Konhilas, J. P. et al. Exercise can prevent and reverse the severity of hypertrophic cardiomyopathy. Circ. Res. 98, 540–548 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    De Angelis, K. et al. Exercise training changes autonomic cardiovascular balance in mice. J. Appl. Physiol. 96, 2174–2178 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wisløff, U., Loennechen, J. P., Currie, S., Smith, G. L. & Ellingsen, Ø. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc. Res. 54, 162–174 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Kemi, O. J. et al. Exercise training corrects control of spontaneous calcium waves in hearts from myocardial infarction heart failure rats. J. Cell. Physiol. 227, 20–26 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Qin, R. et al. Exercise training reduces ventricular arrhythmias through restoring calcium handling and sympathetic tone in myocardial infarction mice. Physiol. Rep. 7, e13972 (2019).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  47. 47.

    Malmo, V. et al. Aerobic interval training reduces the burden of atrial fibrillation in the short term: a randomized trial. Circulation 133, 466–473 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Tjønna, A. E. et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 118, 346–354 (2008).

    PubMed Central  Article  PubMed  Google Scholar 

  49. 49.

    Hollekim-Strand, S. M. et al. High-intensity interval exercise effectively improves cardiac function in patients with type 2 diabetes mellitus and diastolic dysfunction: a randomized controlled trial. J. Am. Coll. Cardiol. 64, 1758–1760 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Kong, P., Christia, P. & Frangogiannis, N. G. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci. 71, 549–574 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Weeks, K. L. et al. Phosphoinositide 3-kinase p110α is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction. Circ. Heart Fail 5, 523–534 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Ma, X. et al. Cardiac fibrosis alleviated by exercise training is AMPK-dependent. PLoS ONE 10, e0129971 (2015).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  53. 53.

    Puhl, S. L. et al. Exercise attenuates inflammation and limits scar thinning after myocardial infarction in mice. Am. J. Physiol. Heart Circ. Physiol. 309, H345–H359 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Wilhelm, M. J. Long-term outcome following heart transplantation: current perspective. J. Thorac. Dis. 7, 549–551 (2015).

    PubMed Central  PubMed  Google Scholar 

  55. 55.

    Squires, R. W. Exercise training after cardiac transplantation. Med. Sci. Sports Exerc. 23, 686–694 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Tegtbur, U., Busse, M. W., Jung, K., Pethig, K. & Haverich, A. Time course of physical reconditioning during exercise rehabilitation late after heart transplantation. J. Heart Lung Transplant. 24, 270–274 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Karapolat, H. et al. Comparison of hospital-supervised exercise versus home-based exercise in patients after orthotopic heart transplantation: effects on functional capacity, quality of life, and psychological symptoms. Transplant. Proc. 39, 1586–1588 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Squires, R. W. et al. Partial normalization of the heart rate response to exercise after cardiac transplantation: frequency and relationship to exercise capacity. Mayo Clin. Proc. 77, 1295–1300 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Bowles, D. K. & Starnes, J. W. Exercise training improves metabolic response after ischemia in isolated working rat heart. J. Appl. Physiol. 76, 1608–1614 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    French, J. P. et al. Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain. FASEB J. 22, 2862–2871 (2008).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  61. 61.

    Powers, S. K. et al. Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Am. J. Physiol. 275, R1468–R1477 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Yamashita, N. et al. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J. Exp. Med. 189, 1699–1706 (1999).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  63. 63.

    Ejlersen, H. et al. Prognostic impact of physical activity prior to myocardial infarction: Case fatality and subsequent risk of heart failure and death. Eur. J. Prev. Cardiol. 24, 1112–1119 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Peytz, N. C. et al. Physical activity and risk of instant and 28-day case-fatality in myocardial infarction. PLoS ONE 14, e0217398 (2019).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  65. 65.

    Brandfonbrener, M., Landowne, M. & Shock, N. W. Changes in cardiac output with age. Circulation 12, 557–566 (1955).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Lauer, M. S. et al. Impaired chronotropic response to exercise stress testing as a predictor of mortality. J. Am. Med. Assoc. 281, 524–529 (1999).

    CAS  Article  Google Scholar 

  67. 67.

    Leier, C. V., Heban, P. T., Huss, P., Bush, C. A. & Lewis, R. P. Comparative systemic and regional hemodynamic effects of dopamine and dobutamine in patients with cardiomyopathic heart failure. Circulation 58, 466–475 (1978).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Kappagoda, T. & Amsterdam, E. A. Exercise and heart failure in the elderly. Heart Fail. Rev. 17, 635–662 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Guarnieri, T., Filburn, C. R., Zitnik, G., Roth, G. S. & Lakatta, E. G. Contractile and biochemical correlates of beta-adrenergic stimulation of the aged heart. Am. J. Physiol. 239, H501–H508 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Zwiren, L. D., Freedson, P. S., Ward, A., Wilke, S. & Rippe, J. M. Estimation of VO2max: a comparative analysis of five exercise tests. Res. Q. Exerc. Sport 62, 73–78 (1991).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Lambert, M. I. & Noakes, T. D. Spontaneous running increases VO2max and running performance in rats. J. Appl. Phyisiol. 68, 400–403 (1990).

    CAS  Article  Google Scholar 

  72. 72.

    Leosco, D. et al. Exercise training and beta-blocker treatment ameliorate age-dependent impairment of beta-adrenergic receptor signaling and enhance cardiac responsiveness to adrenergic stimulation. Am. J. Physiol. Heart Circ. Physiol. 293, H1596–H1603 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Böhm, M. et al. Effects of exercise on myocardial adenylate cyclase and Gi alpha expression in senescence. Am. J. Physiol. 264, H805–H814 (1993).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Scarpace, P. J., Shu, Y. & Tumer, N. Influence of exercise training on myocardial beta-adrenergic signal transduction: differential regulation with age. J. Appl. Phyisiol. 77, 737–741 (1994).

    CAS  Article  Google Scholar 

  75. 75.

    Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

    CAS  Article  Google Scholar 

  76. 76.

    Lim, C. C., Apstein, C. S., Colucci, W. S. & Liao, R. Impaired cell shortening and relengthening with increased pacing frequency are intrinsic to the senescent mouse cardiomyocyte. J. Mol. Cell. Cardiol. 32, 2075–2082 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Isenberg, G., Borschke, B. & Rueckschloss, U. Ca2+ transients of cardiomyocytes from senescent mice peak late and decay slowly. Cell Calcium 34, 271–280 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Hamilton, S. & Terentyev, D. Altered intracellular calcium homeostasis and arrhythmogenesis in the aged heart. Int. J. Mol. Sci. 20, E2386 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Schmidt, U. et al. Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca2+-ATPase. Circulation 101, 790–796 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Tate, C. A. et al. SERCA2a and mitochondrial cytochrome oxidase expression are increased in hearts of exercise-trained old rats. Am. J. Physiol. 271, H68–H72 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Iemitsu, M. et al. Exercise training improves cardiac function-related gene levels through thyroid hormone receptor signaling in aged rats. Am. J. Physiol. Heart Circ. Physiol. 286, H1696–H1705 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Biernacka, A. & Frangogiannis, N. G. Aging and cardiac fibrosis. Aging Dis. 2, 158–173 (2011).

    PubMed Central  PubMed  Google Scholar 

  83. 83.

    Olivetti, G., Melissari, M., Capasso, J. M. & Anversa, P. Cardiomyopathy of the aging human heart: myocyte loss and reactive cellular hypertrophy. Circ. Res. 68, 1560–1568 (1991).

    CAS  Article  Google Scholar 

  84. 84.

    Kwak, H. B. et al. Exercise training reduces fibrosis and matrix metalloproteinase dysregulation in the aging rat heart. FASEB J. 25, 1106–1117 (2011).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  85. 85.

    Thomas, D. P., Cotter, T. A., Li, X., McCormick, R. J. & Gosselin, L. E. Exercise training attenuates aging-associated increases in collagen and collagen crosslinking of the left but not the right ventricle in the rat. Eur. J. Appl. Physiol. 85, 164–169 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Arbab-Zadeh, A. et al. Effect of aging and physical activity on left ventricular compliance. Circulation 110, 1799–1805 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Bernardo, B. C., Weeks, K. L., Pretorius, L. & McMullen, J. R. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol. Ther. 128, 191–227 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Chesky, J. A., LaFollette, S., Travis, M. & Fortado, C. Effect of physical training on myocardial enzyme activities in aging rats. J. Appl. Physiol. 55, 1349–1353 (1983).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Short, K. R. et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc. Natl Acad. Sci. USA 102, 5618–5623 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Ames, B. N., Shigenaga, M. K. & Hagen, T. M. Mitochondrial decay in aging. Biochim. Biophys. Acta 1271, 165–170 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Escobales, N. et al. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats. J. Mol. Cell. Cardiol. 77, 136–146 (2014).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  92. 92.

    Hosseini, L., Vafaee, M. S. & Badalzadeh, R. Melatonin and nicotinamide mononucleotide attenuate myocardial ischemia/reperfusion injury via modulation of mitochondrial function and hemodynamic parameters in aged rats. J. Cardiovasc. Pharmacol. Ther. 25, 240–250 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Boengler, K., Kosiol, M., Mayr, M., Schulz, R. & Rohrbach, S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J. Cachexia Sarcopenia Muscle 8, 349–369 (2017).

    PubMed Central  Article  PubMed  Google Scholar 

  94. 94.

    Judge, S. et al. Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1564–R1572 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Picard, M. et al. Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle. J. Appl. Phyisiol. 115, 1562–1571 (2013).

    CAS  Article  Google Scholar 

  96. 96.

    Wang, H. et al. Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC-1α and Akt activation. Cell Physiol. Biochem. 35, 2159–2168 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  98. 98.

    Laugwitz, K. L. et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647–653 (2005).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  99. 99.

    Lázár, E., Sadek, H. A. & Bergmann, O. Cardiomyocyte renewal in the human heart: insights from the fall-out. Eur. Heart J. 38, 2333–2342 (2017).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  100. 100.

    Vujic, A. et al. Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nat. Commun. 9, 1659 (2018).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  101. 101.

    Mazzeo, R. S. & Tanaka, H. Exercise prescription for the elderly: current recommendations. Sports Med. 31, 809–818 (2001).

    CAS  Article  Google Scholar 

  102. 102.

    Singh, M. A. Exercise comes of age: rationale and recommendations for a geriatric exercise prescription. J. Gerontol. A Biol. Sci. Med. Sci. 57, M262–M282 (2002).

    Article  Google Scholar 

  103. 103.

    Gomes Neto, M. et al. High intensity interval training versus moderate intensity continuous training on exercise capacity and quality of life in patients with heart failure with reduced ejection fraction: a systematic review and meta-analysis. Int. J. Cardiol. 261, 134–141 (2018).

    Article  Google Scholar 

  104. 104.

    Rognmo, Ø. et al. Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients. Circulation 126, 1436–1440 (2012).

    Article  Google Scholar 

  105. 105.

    Chien, K. R., Knowlton, K. U., Zhu, H. & Chien, S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J. 5, 3037–3046 (1991).

    CAS  Article  Google Scholar 

  106. 106.

    Strøm, C. C. et al. Expression profiling reveals differences in metabolic gene expression between exercise-induced cardiac effects and maladaptive cardiac hypertrophy. FEBS J. 272, 2684–2695 (2005).

    Article  CAS  Google Scholar 

  107. 107.

    Song, H. K., Hong, S. E., Kim, T. & Kim, D. H. Deep RNA sequencing reveals novel cardiac transcriptomic signatures for physiological and pathological hypertrophy. PLoS ONE 7, e35552 (2012).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  108. 108.

    Bernardo, B. C., Ooi, J. Y. Y., Weeks, K. L., Patterson, N. L. & McMullen, J. R. Understanding key mechanisms of exercise-induced cardiac protection to mitigate disease: current knowledge and emerging concepts. Physiol. Rev. 98, 419–475 (2018).

    CAS  Article  Google Scholar 

  109. 109.

    Alessio, H. M., Ansinelli, H., Threadgill, C. & Hagerman, A. E. Comparison of gene and protein expressions in rats residing in standard cages with those having access to an exercise wheel. BioMed. Res. Int. 2014, 950516 (2014).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  110. 110.

    Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    CAS  Article  Google Scholar 

  111. 111.

    Baar, K. et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 16, 1879–1886 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Botta, A. et al. Short term exercise induces PGC-1α, ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts. PLoS ONE 8, e70248 (2013).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  113. 113.

    Arany, Z. et al. Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab. 1, 259–271 (2005). The article shows how PGC-1α functions as a major regulator of bioenergetics in cardiac muscle.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Scarpulla, R. C., Vega, R. B. & Kelly, D. P. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 23, 459–466 (2012).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  115. 115.

    Dufour, C. R. et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab. 5, 345–356 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Moreira, J. B. N. et al. Exercise reveals proline dehydrogenase as a potential target in heart failure. Prog. Cardiovasc. Dis. 62, 193–202 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Makarewich, C. A. et al. MOXI Is a mitochondrial micropeptide that enhances fatty acid β-oxidation. Cell Rep. 23, 3701–3709 (2018).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  118. 118.

    McMullen, J. R. et al. Phosphoinositide 3-kinase(p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc. Natl Acad. Sci. USA 100, 12355–12360 (2003). This article shows that PI3K is required for the induction of physiological cardiac growth and is essential for maintaining contractile function in response to pathological stimuli.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. 119.

    McMullen, J. R. et al. Protective effects of exercise and phosphoinositide 3-kinase(p110α) signaling in dilated and hypertrophic cardiomyopathy. Proc. Natl Acad. Sci. USA 104, 612–617 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. 120.

    DeBosch, B. et al. Akt1 is required for physiological cardiac growth. Circulation 113, 2097–2104 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Kim, J. et al. Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy. Mol. Endocrinol. 22, 2531–2543 (2008).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  122. 122.

    McMullen, J. R. et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110α) pathway. J. Biol. Chem. 279, 4782–4793 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Boudina, S. et al. Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart. Circulation 119, 1272–1283 (2009).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  124. 124.

    Noh, J. et al. Phosphoinositide dependent protein kinase 1 is required for exercise-induced cardiac hypertrophy but not the associated mitochondrial adaptations. J. Mol. Cell. Cardiol. 89, 297–305 (2015).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  125. 125.

    Kim, A. H., Khursigara, G., Sun, X., Franke, T. F. & Chao, M. V. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol. Cell. Biol. 21, 893–901 (2001).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  126. 126.

    Weeks, K. L., Bernardo, B. C., Ooi, J. Y. Y., Patterson, N. L. & McMullen, J. R. The IGF1-PI3K-Akt signaling pathway in mediating exercise-induced cardiac hypertrophy and protection. Adv. Exp. Med. Biol. 1000, 187–210 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Vega, R. B., Konhilas, J. P., Kelly, D. P. & Leinwand, L. A. Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metab. 25, 1012–1026 (2017).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  128. 128.

    Silva, G. J. J., Bye, A., El Azzouzi, H. & Wisløff, U. MicroRNAs as important regulators of exercise adaptation. Prog. Cardiovasc. Dis. 60, 130–151 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Shi, J. et al. miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics 7, 664–676 (2017).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  130. 130.

    Carè, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Liu, X. et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 21, 584–595 (2015).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  132. 132.

    Boström, P. et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143, 1072–1083 (2010).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  133. 133.

    Bezzerides, V. J. et al. CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury. JCI Insight 1, e85904 (2016).

    PubMed Central  Article  PubMed  Google Scholar 

  134. 134.

    Hamilton, K. L. et al. Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic. Biol. Med. 34, 800–809 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Hutter, J. J. et al. Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation 94, 1408–1411 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Tekin, D., Dursun, A. D. & Xi, L. Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacol. Sin. 31, 1085–1094 (2010).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  137. 137.

    Brown, D. A. et al. Cardioprotection afforded by chronic exercise is mediated by the sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat. J. Physiol. (Lond.) 569, 913–924 (2005).

    CAS  Article  Google Scholar 

  138. 138.

    Yao, Z. & Gross, G. J. Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation 89, 1769–1775 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Wang, Z. et al. Irisin protects heart against ischemia-reperfusion injury through a SOD2-dependent mitochondria mechanism. J. Cardiovasc. Pharmacol. 72, 259–269 (2018).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  140. 140.

    Otaka, N. et al. Myonectin is an exercise-induced myokine that protects the heart from ischemia-reperfusion injury. Circ. Res. 123, 1326–1338 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Tham, Y. K. et al. Lipidomic profiles of the heart and circulation in response to exercise versus cardiac pathology: a resource of potential biomarkers and drug targets. Cell Rep. 24, 2757–2772 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Guo, H., Isserlin, R., Emili, A. & Burniston, J. G. Exercise-responsive phosphoproteins in the heart. J. Mol. Cell. Cardiol. 111, 61–68 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Penny, W. F. & Hammond, H. K. Randomized clinical trials of gene transfer for heart failure with reduced ejection fraction. Hum. Gene Ther. 28, 378–384 (2017).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  144. 144.

    Narkar, V. A. et al. AMPK and PPARdelta agonists are exercise mimetics. Cell 134, 405–415 (2008).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

Download references

Acknowledgements

J.B.N.M. is supported by a grant from the Research Council of Norway (project 275714). M.W. is supported by grants from the KG Jebsen Center for Exercise in Medicine and the Liaison Committee between the Central Norway Regional Health Authority (RHA) and the Norwegian University of Science and Technology (NTNU).

Author information

Affiliations

Authors

Contributions

Idea and outline: U.W. and J.B.N.M. Drafting of the manuscript: J.B.N.M., U.W. and M.W. Critical revision of the manuscript for intellectual content: all authors. Study supervision: U.W. Obtaining funding: U.W. and J.B.N.M.

Corresponding author

Correspondence to Ulrik Wisløff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Pooja Jha.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moreira, J.B.N., Wohlwend, M. & Wisløff, U. Exercise and cardiac health: physiological and molecular insights. Nat Metab 2, 829–839 (2020). https://doi.org/10.1038/s42255-020-0262-1

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing