Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Lactate: the ugly duckling of energy metabolism

Abstract

Lactate, perhaps the best-known metabolic waste product, was first isolated from sour milk, in which it is produced by lactobacilli. Whereas microbes also generate other fermentation products, such as ethanol or acetone, lactate dominates in mammals. Lactate production increases when the demand for ATP and oxygen exceeds supply, as occurs during intense exercise and ischaemia. The build-up of lactate in stressed muscle and ischaemic tissues has established lactate’s reputation as a deleterious waste product. In this Perspective, we summarize emerging evidence that, in mammals, lactate also serves as a major circulating carbohydrate fuel. By providing mammalian cells with both a convenient source and sink for three-carbon compounds, circulating lactate enables the uncoupling of carbohydrate-driven mitochondrial energy generation from glycolysis. Lactate and pyruvate together serve as a circulating redox buffer that equilibrates the NADH/NAD ratio across cells and tissues. This reconceptualization of lactate as a fuel—analogous to how Hans Christian Andersen’s ugly duckling is actually a beautiful swan—has the potential to reshape the field of energy metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lactate—waste and fuel.
Fig. 2: Redox buffering by circulating lactate and pyruvate.
Fig. 3: Whole-body lactate homeostasis.
Fig. 4: Production and consumption of 3C units.

Similar content being viewed by others

References

  1. Chen, Y.-J. et al. Lactate metabolism is associated with mammalian mitochondria. Nat. Chem. Biol. 12, 937–943 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Barron, J. T., Gu, L. & Parrillo, J. E. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle. J. Mol. Cell. Cardiol. 30, 1571–1579 (1998).

    CAS  PubMed  Google Scholar 

  3. LaNoue, K. F. & Williamson, J. R. Interrelationships between malate-aspartate shuttle and citric acid cycle in rat heart mitochondria. Metabolism 20, 119–140 (1971).

    CAS  PubMed  Google Scholar 

  4. Houstĕk, J., Cannon, B. & Lindberg, O. Gylcerol-3-phosphate shuttle and its function in intermediary metabolism of hamster brown-adipose tissue. Eur. J. Biochem. 54, 11–18 (1975).

    PubMed  Google Scholar 

  5. Jorfeldt, L., Juhlin-Dannfelt, A. & Karlsson, J. Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J. Appl. Physiol. 44, 350–352 (1978).

    CAS  PubMed  Google Scholar 

  6. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  PubMed  Google Scholar 

  8. Vyas, S., Zaganjor, E. & Haigis, M. C. Mitochondria and cancer. Cell 166, 555–566 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wallace, D. C. Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zong, W. X., Rabinowitz, J. D. & White, E. Mitochondria and cancer. Mol. Cell 61, 667–676 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rathmell, J. C., Vander Heiden, M. G., Harris, M. H., Frauwirth, K. A. & Thompson, C. B. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol. Cell 6, 683–692 (2000).

    CAS  PubMed  Google Scholar 

  12. Lemons, J. M. et al. Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol. 8, e1000514 (2010).

    PubMed  PubMed Central  Google Scholar 

  13. Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272.e17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vander Heiden, M. G. et al. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol. Cell. Biol. 21, 5899–5912 (2001).

    Google Scholar 

  15. Cori, C. F. Glycogen breakdown and synthesis in animal tissues. Endocrinology 26, 285–296 (1940).

    CAS  Google Scholar 

  16. Wahren, J., Felig, P., Ahlborg, G. & Jorfeldt, L. Glucose metabolism during leg exercise in man. J. Clin. Invest. 50, 2715–2725 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jang, C. et al. Metabolite exchange between mammalian organs quantified in pigs. Cell Metab. 30, 594–606.e3 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dunn, A., Katz, J., Golden, S. & Chenoweth, M. Estimation of glucose turnover and recycling in rabbits using various [3H, 14C]glucose labels. Am. J. Physiol. 230, 1159–1162 (1976).

    CAS  PubMed  Google Scholar 

  19. Katz, J., Okajima, F., Chenoweth, M. & Dunn, A. The determination of lactate turnover in vivo with 3H- and 14C-labelled lactate. The significance of sites of tracer administration and sampling. Biochem. J. 194, 513–524 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stanley, W. C. et al. Lactate extraction during net lactate release in legs of humans during exercise. J. Appl. Physiol. 60, 1116–1120 (1986).

    CAS  PubMed  Google Scholar 

  21. Wolfe, R. R. Isotopic measurement of glucose and lactate kinetics. Ann. Med. 22, 163–170 (1990).

    CAS  PubMed  Google Scholar 

  22. Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371.e9 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Halestrap, A. P. The monocarboxylate transporter family: structure and functional characterization. IUBMB Life 64, 1–9 (2012).

    CAS  PubMed  Google Scholar 

  25. Brooks, G. A. The science and translation of lactate shuttle theory. Cell Metab. 27, 757–785 (2018).

    CAS  PubMed  Google Scholar 

  26. Zhao, C., Wilson, M. C., Schuit, F., Halestrap, A. P. & Rutter, G. A. Expression and distribution of lactate/monocarboxylate transporter isoforms in pancreatic islets and the exocrine pancreas. Diabetes 50, 361–366 (2001).

    CAS  PubMed  Google Scholar 

  27. Sekine, N. et al. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells: potential role in nutrient sensing. J. Biol. Chem. 269, 4895–4902 (1994).

    CAS  PubMed  Google Scholar 

  28. Wirthensohn, G. & Guder, W. G. Renal substrate metabolism. Physiol. Rev. 66, 469–497 (1986).

    CAS  PubMed  Google Scholar 

  29. Mårin, P., Rebuffé-Scrive, M., Smith, U. & Björntorp, P. Glucose uptake in human adipose tissue. Metabolism 36, 1154–1160 (1987).

    PubMed  Google Scholar 

  30. Gustafsson, J., Eriksson, J. & Marcus, C. Glucose metabolism in human adipose tissue studied by 13C-glucose and microdialysis. Scand. J. Clin. Lab. Invest. 67, 155–164 (2007).

    CAS  PubMed  Google Scholar 

  31. DiGirolamo, M., Newby, F. D. & Lovejoy, J. Lactate production in adipose tissue: a regulated function with extra-adipose implications. FASEB J. 6, 2405–2412 (1992).

    CAS  PubMed  Google Scholar 

  32. Tozzo, E., Shepherd, P. R., Gnudi, L. & Kahn, B. B. Transgenic GLUT-4 overexpression in fat enhances glucose metabolism: preferential effect on fatty acid synthesis. Am. J. Physiol. 268, E956–E964 (1995).

    CAS  PubMed  Google Scholar 

  33. Jansson, P. A., Smith, U. & Lönnroth, P. Evidence for lactate production by human adipose tissue in vivo. Diabetologia 33, 253–256 (1990).

    CAS  PubMed  Google Scholar 

  34. Boellaard, R. et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur. J. Nucl. Med. Mol. Imaging 42, 328–354 (2015).

    CAS  PubMed  Google Scholar 

  35. Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pucino, V. et al. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T cell metabolic rewiring. Cell Metab. 30, 1055–1074.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, J. et al. Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab. 31, 1136–1153.e7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Brand, A. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24, 657–671 (2016).

    CAS  PubMed  Google Scholar 

  40. Mountassif, D. et al. Immunoaffinity purification and characterization of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. Acta Biochim. Biophys. Sin. (Shanghai) 41, 399–406 (2009).

    CAS  Google Scholar 

  41. Talaiezadeh, A., Shahriari, A., Tabandeh, M. R., Fathizadeh, P. & Mansouri, S. Kinetic characterization of lactate dehydrogenase in normal and malignant human breast tissues. Cancer Cell Int. 15, 19 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. Mintun, M. A., Vlassenko, A. G., Rundle, M. M. & Raichle, M. E. Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proc. Natl Acad. Sci. USA 101, 659–664 (2004).

    CAS  PubMed  Google Scholar 

  43. Lambeth, M. J. & Kushmerick, M. J. A computational model for glycogenolysis in skeletal muscle. Ann. Biomed. Eng. 30, 808–827 (2002).

    PubMed  Google Scholar 

  44. Williamson, D. H., Lund, P. & Krebs, H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103, 514–527 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. McClelland, G. B., Khanna, S., González, G. F., Butz, C. E. & Brooks, G. A. Peroxisomal membrane monocarboxylate transporters: evidence for a redox shuttle system? Biochem. Biophys. Res. Commun. 304, 130–135 (2003).

    CAS  PubMed  Google Scholar 

  46. Patgiri, A. et al. An engineered enzyme that targets circulating lactate to alleviate intracellular NADH:NAD+ imbalance. Nat. Biotechnol. 38, 309–313 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jitrapakdee, S., Vidal-Puig, A. & Wallace, J. C. Anaplerotic roles of pyruvate carboxylase in mammalian tissues. Cell. Mol. Life Sci. 63, 843–854 (2006).

    CAS  PubMed  Google Scholar 

  48. Holness, M. J. & Sugden, M. C. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem. Soc. Trans. 31, 1143–1151 (2003).

    CAS  PubMed  Google Scholar 

  49. Bowker-Kinley, M. M., Davis, W. I., Wu, P., Harris, R. A. & Popov, K. M. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem. J. 329, 191–196 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sukonina, V. et al. FOXK1 and FOXK2 regulate aerobic glycolysis. Nature 566, 279–283 (2019).

    CAS  PubMed  Google Scholar 

  51. Gopal, E. et al. Expression of slc5a8 in kidney and its role in Na+-coupled transport of lactate. J. Biol. Chem. 279, 44522–44532 (2004).

    CAS  PubMed  Google Scholar 

  52. Scheiman, J. et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 25, 1104–1109 (2019).

    CAS  PubMed  Google Scholar 

  53. Madaan, A. et al. Lactate produced during labor modulates uterine inflammation via GPR81 (HCA1). Am. J. Obstet. Gynecol. 216, 60.e1–60.e17 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

S.E. is supported by the Swedish Research Council (2019-00773, 2018-02537), The Knut and Alice Wallenberg Foundation, Sahlgrenska’s University Hospital (LUA-ALF) and Novo Nordisk Foundation. J.D.R. is supported by NIH Pioneer award 1DP1DK113643, Diabetes Research Center grant P30 DK019525 and Pfizer, Inc.

Author information

Authors and Affiliations

Authors

Contributions

J.R. and S.E. equally conceived the idea, selected content and wrote the manuscript.

Corresponding authors

Correspondence to Joshua D. Rabinowitz or Sven Enerbäck.

Ethics declarations

Competing interests

J.D.R. is a cofounder and stockholder in VL54 and Raze Therapeutics, and an advisor and stockholder in Agios Pharmaceuticals, Kadmon Pharmaceuticals, Bantam Pharmaceuticals, Colorado Research Partners, Rafael Pharmaceuticals and L.E.A.F. Pharmaceuticals. S.E. declares no competing interests.

Additional information

Peer review information Primary Handling Editor: Christoph Schmitt.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabinowitz, J.D., Enerbäck, S. Lactate: the ugly duckling of energy metabolism. Nat Metab 2, 566–571 (2020). https://doi.org/10.1038/s42255-020-0243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-020-0243-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing