Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function

Abstract

A key metabolic activity of the gut microbiota is the fermentation of non-digestible carbohydrate, which generates short-chain fatty acids (SCFAs) as the principal end products. SCFAs are absorbed from the gut lumen and modulate host metabolic responses at different organ sites. Evidence suggests that these organ sites include skeletal muscle, the largest organ in humans, which plays a pivotal role in whole-body energy metabolism. In this Review, we evaluate the evidence indicating that SCFAs mediate metabolic cross-talk between the gut microbiota and skeletal muscle. We discuss the effects of three primary SCFAs (acetate, propionate and butyrate) on lipid, carbohydrate and protein metabolism in skeletal muscle, and we consider the potential mechanisms involved. Furthermore, we highlight the emerging roles of these gut-derived metabolites in skeletal muscle function and exercise capacity, present limitations in current knowledge and provide suggestions for future work.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the major metabolic pathways involved in the gut bacterial production of SCFAs.
Fig. 2: The effects of short-chain fatty acids on metabolic signalling pathways in skeletal muscle.
Fig. 3: The contribution of short-chain fatty acids to the gut–muscle axis.

Similar content being viewed by others

References

  1. O’Connor, E. M. The role of gut microbiota in nutritional status. Curr. Opin. Clin. Nutr. Metab. Care 16, 509–516 (2013).

    Article  PubMed  CAS  Google Scholar 

  2. Tremaroli, V. & Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

    Article  CAS  Google Scholar 

  4. Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Dalile, B., Van Oudenhove, L., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478 (2019).

    Article  PubMed  Google Scholar 

  7. Mandaliya, D. K. & Seshadri, S. Short chain fatty acids, pancreatic dysfunction and type 2 diabetes. Pancreatology 19, 280–284 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, D. & Fan, J. G. Microbial metabolites in non-alcoholic fatty liver disease. World J. Gastroenterol. 25, 2019–2028 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zurlo, F., Larson, K., Bogardus, C. & Ravussin, E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J. Clin. Invest. 86, 1423–1427 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frontera, W. R. & Ochala, J. Skeletal muscle: a brief review of structure and function. Calcif. Tissue Int. 96, 183–195 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  PubMed  CAS  Google Scholar 

  12. Yan, H. et al. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice. Sci. Rep. 6, 31786 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lahiri, S. et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci. Transl. Med. 11, eaan5662 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nay, K. et al. Gut bacteria are critical for optimal muscle function: a potential link with glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 317, E158–E171 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Bindels, L. B. et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model. PLoS ONE 7, e37971 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, Y. M. et al. Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice. Nutrients 8, 205 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Everard, A. et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775–2786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buigues, C. et al. Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial. Int. J. Mol. Sci. 17, E932 (2016).

    Article  PubMed  CAS  Google Scholar 

  19. Ticinesi, A. et al. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: Is there a gut–muscle axis? Nutrients 9, 1–20 (2017).

    Article  CAS  Google Scholar 

  20. Grosicki, G. J., Fielding, R. A. & Lustgarten, M. S. Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle axis. Calcif. Tissue Int. 102, 433–442 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Evans, W. J. Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am. J. Clin. Nutr. 91, 1123S–1127S (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Penna, F. et al. The skeletal muscle as an active player against cancer cachexia. Front. Physiol. 10, 41 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brown, A. J. et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Nilsson, N. E., Kotarsky, K., Owman, C. & Olde, B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047–1052 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Gao, Z. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maruta, H. et al. Activation of AMP-activated protein kinase and stimulation of energy metabolism by acetic acid in L6 myotube cells. PLoS ONE 11, e0158055 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hong, J. et al. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget 7, 56071–56082 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu, L., Fu, C. & Li, F. Acetate affects the process of lipid metabolism in rabbit liver, skeletal muscle and adipose tissue. Animals (Basel) 9, e799 (2019).

    Article  Google Scholar 

  29. Walsh, M. E. et al. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell 14, 957–970 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. den Besten, G. et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64, 2398–2408 (2015).

    Article  CAS  Google Scholar 

  31. Pan, J. H. et al. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties. Biosci. Biotechnol. Biochem. 79, 1535–1541 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Han, J. H. et al. The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41. PLoS ONE 9, e95268 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fushimi, T. et al. Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. J. Nutr. 131, 1973–1977 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Nakao, C. et al. Effect of acetate on glycogen replenishment in liver and skeletal muscles after exhaustive swimming in rats. Scand. J. Med. Sci. Sports 11, 33–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Fushimi, T. & Sato, Y. Effect of acetic acid feeding on the circadian changes in glycogen and metabolites of glucose and lipid in liver and skeletal muscle of rats. Br. J. Nutr. 94, 714–719 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Sakakibara, S., Yamauchi, T., Oshima, Y., Tsukamoto, Y. & Kadowaki, T. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochem. Biophys. Res. Commun. 344, 597–604 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Chriett, S., Zerzaihi, O., Vidal, H. & Pirola, L. The histone deacetylase inhibitor sodium butyrate improves insulin signalling in palmitate-induced insulin resistance in L6 rat muscle cells through epigenetically-mediated up-regulation of Irs1. Mol. Cell. Endocrinol. 439, 224–232 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Wakelam, M. J. & Pette, D. The control of glucose 1,6-bisphosphate by developmental state and hormonal stimulation in cultured muscle tissue. Biochem. J. 204, 765–769 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang, S. & Czech, M. P. The GLUT4 glucose transporter. Cell Metab. 5, 237–252 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Yamashita, H. et al. Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci. Biotechnol. Biochem. 73, 570–576 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Gonzalez, A. et al. Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression. Nephrol. Dial. Transplant. 34, 783–794 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Koistinen, H. A. & Zierath, J. R. Regulation of glucose transport in human skeletal muscle. Ann. Med. 34, 410–418 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Tipton, K. D. & Wolfe, R. R. Exercise, protein metabolism, and muscle growth. Int. J. Sport Nutr. Exerc. Metab. 11, 109–132 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Kondo, T., Kishi, M., Fushimi, T. & Kaga, T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J. Agric. Food Chem. 57, 5982–5986 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Henagan, T. M. et al. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning. Br. J. Pharmacol. 172, 2782–2798 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jørgensen, H., Larsen, T., Zhao, X.-Q. & Eggum, B. O. The energy value of short-chain fatty acids infused into the caecum of pigs. Br. J. Nutr. 77, 745–756 (1997).

    Article  PubMed  Google Scholar 

  47. Imoto, S. & Namioka, S. Nutritive value of acetate in growing pigs. J. Anim. Sci. 56, 858–866 (1983).

    Article  CAS  PubMed  Google Scholar 

  48. Clarke, S. F. et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63, 1913–1920 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Barton, W. et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 67, 625–633 (2018).

    CAS  PubMed  Google Scholar 

  50. Allen, J. M. et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 50, 747–757 (2018).

    Article  PubMed  Google Scholar 

  51. Munukka, E. et al. Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women. Front. Microbiol. 9, 2323 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Okamoto, T. et al. Microbiome potentiates endurance exercise through intestinal acetate production. Am. J. Physiol. Endocrinol. Metab. 316, E956–E966 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Scheiman, J. et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 25, 1104–1109 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Clausen, M. R. & Mortensen, P. B. Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis. Gut 37, 684–689 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van Loon, L. J. C., Greenhaff, P. L., Constantin-Teodosiu, D., Saris, W. H. M. & Wagenmakers, A. J. M. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J. Physiol. (Lond.) 536, 295–304 (2001).

    Article  Google Scholar 

  56. Bergström, J., Hermansen, L., Hultman, E. & Saltin, B. Diet, muscle glycogen and physical performance. Acta Physiol. Scand. 71, 140–150 (1967).

    Article  PubMed  Google Scholar 

  57. van der Beek, C. M., Dejong, C. H. C., Troost, F. J., Masclee, A. A. M. & Lenaerts, K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr. Rev. 75, 286–305 (2017).

    Article  PubMed  Google Scholar 

  58. den Besten, G. et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G900–G910 (2013).

    Article  CAS  Google Scholar 

  59. Boets, E. et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study. J. Physiol. (Lond.) 595, 541–555 (2017).

    Article  CAS  Google Scholar 

  60. Mihaylova, M. M. & Shaw, R. J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016–1023 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Akimoto, T. et al. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J. Biol. Chem. 280, 19587–19593 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Jäger, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Fernandez-Marcos, P. J. & Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 93, 884S–90 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Conley, K. E. Mitochondria to motion: optimizing oxidative phosphorylation to improve exercise performance. J. Exp. Biol. 219, 243–249 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ehrenborg, E. & Krook, A. Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor delta. Pharmacol. Rev. 61, 373–393 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Krämer, D. K. et al. Direct activation of glucose transport in primary human myotubes after activation of peroxisome proliferator-activated receptor delta. Diabetes 54, 1157–1163 (2005).

    Article  PubMed  Google Scholar 

  67. Fan, W. et al. PPARδ promotes running endurance by preserving glucose. Cell Metab. 25, 1186–1193.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Krämer, D. K. et al. Role of AMP kinase and PPARδ in the regulation of lipid and glucose metabolism in human skeletal muscle. J. Biol. Chem. 282, 19313–19320 (2007).

    Article  PubMed  Google Scholar 

  69. Finck, B. N. et al. A potential link between muscle peroxisome proliferator- activated receptor-alpha signaling and obesity-related diabetes. Cell Metab. 1, 133–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Amin, R. H., Mathews, S. T., Camp, H. S., Ding, L. & Leff, T. Selective activation of PPARγ in skeletal muscle induces endogenous production of adiponectin and protects mice from diet-induced insulin resistance. Am. J. Physiol. Endocrinol. Metab. 298, E28–E37 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Walsh, M. E. & Van Remmen, H. Emerging roles for histone deacetylases in age-related muscle atrophy. Nutr. Healthy Aging 4, 17–30 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Beharry, A. W. et al. HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. J. Cell Sci. 127, 1441–1453 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bongers, K. S. et al. Skeletal muscle denervation causes skeletal muscle atrophy through a pathway that involves both Gadd45a and HDAC4. Am. J. Physiol. Endocrinol. Metab. 305, E907–E915 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lu, J., McKinsey, T. A., Nicol, R. L. & Olson, E. N. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc. Natl Acad. Sci. USA 97, 4070–4075 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Galmozzi, A. et al. Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 62, 732–742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McGee, S. L. & Hargreaves, M. Histone modifications and skeletal muscle metabolic gene expression. Clin. Exp. Pharmacol. Physiol. 37, 392–396 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Davie, J. R. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 133 (Suppl.), 2485S–2493S (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Waldecker, M., Kautenburger, T., Daumann, H., Busch, C. & Schrenk, D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem. 19, 587–593 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Soliman, M. L. & Rosenberger, T. A. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol. Cell. Biochem. 352, 173–180 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Salminen, A., Kauppinen, A. & Kaarniranta, K. AMPK/Snf1 signaling regulates histone acetylation: impact on gene expression and epigenetic functions. Cell. Signal. 28, 887–895 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. McGee, S. L. et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57, 860–867 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Steffen, R. P., McKenzie, J. E. & Haddy, F. J. The possible role of acetate in exercise hyperemia in dog skeletal muscle. Pflugers Arch. 392, 315–321 (1982).

    Article  CAS  PubMed  Google Scholar 

  83. Steffen, R. P., McKenzie, J. E., Bockman, E. L. & Haddy, F. J. Changes in dog gracilis muscle adenosine during exercise and acetate infusion. Am. J. Physiol. 244, H387–H395 (1983).

    CAS  PubMed  Google Scholar 

  84. Lin, H. V. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7, e35240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Villanueva-Peñacarrillo, M. L., Alcántara, A. I., Clemente, F., Delgado, E. & Valverde, I. Potent glycogenic effect of GLP-1(7-36)amide in rat skeletal muscle. Diabetologia 37, 1163–1166 (1994).

    Article  PubMed  Google Scholar 

  86. Villanueva-Peñacarrillo, M. L. et al. Characteristic of GLP-1 effects on glucose metabolism in human skeletal muscle from obese patients. Regul. Pept. 168, 39–44 (2011).

    Article  PubMed  CAS  Google Scholar 

  87. Green, C. J., Henriksen, T. I., Pedersen, B. K. & Solomon, T. P. J. Glucagon like peptide-1-induced glucose metabolism in differentiated human muscle satellite cells is attenuated by hyperglycemia. PLoS ONE 7, e44284 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chai, W., Zhang, X., Barrett, E. J. & Liu, Z. Glucagon-like peptide 1 recruits muscle microvasculature and improves insulin’s metabolic action in the presence of insulin resistance. Diabetes 63, 2788–2799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Subaran, S. C. et al. GLP-1 at physiological concentrations recruits skeletal and cardiac muscle microvasculature in healthy humans. Clin. Sci. (Lond.) 127, 163–170 (2014).

    Article  CAS  Google Scholar 

  90. Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E. & Raptis, S. A. Insulin effects in muscle and adipose tissue. Diabetes Res. Clin. Pract. 93 (Suppl. 1), S52–S59 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Abdulla, H., Smith, K., Atherton, P. J. & Idris, I. Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: a systematic review and meta-analysis. Diabetologia 59, 44–55 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Ceddia, R. B. Direct metabolic regulation in skeletal muscle and fat tissue by leptin: implications for glucose and fatty acids homeostasis. Int. J. Obes. (Lond.) 29, 1175–1183 (2005).

    Article  CAS  Google Scholar 

  93. Yan, J. et al. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc. Natl Acad. Sci. USA 113, E7554–E7563 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Scicchitano, B. M., Rizzuto, E. & Musarò, A. Counteracting muscle wasting in aging and neuromuscular diseases: the critical role of IGF-1. Aging (Albany NY) 1, 451–457 (2009).

    Article  CAS  Google Scholar 

  95. Barclay, R. D., Burd, N. A., Tyler, C., Tillin, N. A. & Mackenzie, R. W. The role of the IGF-1 signaling cascade in muscle protein synthesis and anabolic resistance in aging skeletal muscle. Front. Nutr. 6, 146 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Thankamony, A. et al. Low circulating levels of IGF-1 in healthy adults are associated with reduced β-cell function, increased intramyocellular lipid, and enhanced fat utilization during fasting. J. Clin. Endocrinol. Metab. 99, 2198–2207 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. McLoughlin, R. F., Berthon, B. S., Jensen, M. E., Baines, K. J. & Wood, L. G. Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis. Am. J. Clin. Nutr. 106, 930–945 (2017).

    CAS  PubMed  Google Scholar 

  98. Li, M. et al. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur. J. Pharmacol. 831, 52–59 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Londhe, P. & Guttridge, D. C. Inflammation induced loss of skeletal muscle. Bone 80, 131–142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu, H. & Ballantyne, C. M. Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Invest. 127, 43–54 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Murakami, Y. et al. Supplemental epilactose prevents metabolic disorders through uncoupling protein-1 induction in the skeletal muscle of mice fed high-fat diets. Br. J. Nutr. 114, 1774–1783 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Bareja, A. et al. Human and mouse skeletal muscle stem cells: convergent and divergent mechanisms of myogenesis. PLoS ONE 9, e90398 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Zhu, C. H. et al. Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell 6, 515–523 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Bjursell, M. et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 300, E211–E220 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Bellahcene, M. et al. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. Br. J. Nutr. 109, 1755–1764 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Kimura, I. et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4, 1829 (2013).

    Article  PubMed  CAS  Google Scholar 

  107. Lundquist, F., Tygstrup, N., Winkler, K., Mellemgaard, K. & Munck-Petersen, S. Ethanol metabolism and production of free acetate in the human liver. J. Clin. Invest. 41, 955–961 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Steiner, J. L. & Lang, C. H. Dysregulation of skeletal muscle protein metabolism by alcohol. Am. J. Physiol. Endocrinol. Metab. 308, E699–E712 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Lang, C. H. et al. Alcohol intoxication impairs phosphorylation of S6K1 and S6 in skeletal muscle independently of ethanol metabolism. Alcohol. Clin. Exp. Res. 28, 1758–1767 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Preedy, V. R., Keating, J. W. & Peters, T. J. The acute effects of ethanol and acetaldehyde on rates of protein synthesis in type I and type II fibre-rich skeletal muscles of the rat. Alcohol Alcohol. 27, 241–251 (1992).

    CAS  PubMed  Google Scholar 

  111. Veech, R. L. & Gitomer, W. L. The medical and metabolic consequences of administration of sodium acetate. Adv. Enzyme Regul. 27, 313–343 (1988).

    Article  CAS  PubMed  Google Scholar 

  112. Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. E. & Macfarlane, G. T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 1221–1227 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Peters, S. G., Pomare, E. W. & Fisher, C. A. Portal and peripheral blood short chain fatty acid concentrations after caecal lactulose instillation at surgery. Gut 33, 1249–1252 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bloemen, J. G. et al. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin. Nutr. 28, 657–661 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. van der Beek, C. M. et al. Hepatic uptake of rectally administered butyrate prevents an increase in systemic butyrate concentrations in humans. J. Nutr. 145, 2019–2024 (2015).

    Article  PubMed  CAS  Google Scholar 

  116. Neis, E. P. et al. Distal versus proximal intestinal short-chain fatty acid release in man. Gut 68, 764–765 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Section for Nutrition Research is supported by the NIHR Biomedical Research Centre Funding Scheme. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. J.F. is funded by the Imperial College London President’s PhD Scholarship. E.S.C. dedicates this Review to the memory of Professor David A. Jones (1943–2020).

Author information

Authors and Affiliations

Authors

Contributions

J.F. and E.S.C. designed and conceived the outline of the Review. J.F., K.G.M., G.F. and E.S.C. wrote the manuscript.

Corresponding author

Correspondence to Edward S. Chambers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Christoph Schmitt.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frampton, J., Murphy, K.G., Frost, G. et al. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab 2, 840–848 (2020). https://doi.org/10.1038/s42255-020-0188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-020-0188-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing