Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Childhood obesity and the associated rise in cardiometabolic complications

Abstract

Childhood obesity is one of the most serious global public-health challenges of the twenty-first century. Over the past four decades, the number of children and adolescents with obesity has risen more than tenfold. Worldwide, an increasing number of youth are facing greater exposure to obesity throughout their lives, and this increase will contribute to the early development of type 2 diabetes, fatty liver and cardiovascular complications. Herein, we provide a brief overview of trends in the global shifts in, and environmental and genetic determinants of, childhood obesity. We then discuss recent progress in the elucidation of the central role of insulin resistance, the key element linking obesity and cardiovascular-risk-factor clustering, and the potential mechanisms through which ectopic lipid accumulation leads to insulin resistance and its associated cardiometabolic complications in obese adolescents. In the absence of effective prevention and intervention programs, childhood obesity will have severe public-health consequences for decades to come.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trends in the number of children and adolescents with obesity and with moderate and severe underweight by region.
Fig. 2: Trends in the prevalence of childhood obesity in the United States from 1963 to 2016.
Fig. 3: Proposed pathophysiological mechanisms linking NAFLD to IR and cardiac dysfunction in obese adolescents.

Similar content being viewed by others

References

  1. Consideration of the Evidence on Childhood Obesity for the Commission on Ending Childhood Obesity: Report of the Ad Hoc Working Group on Science and Evidence for Ending Childhood Obesity, Geneva, Switzerland (World Health Organization, 2016).

  2. Lobstein, T., Baur, L. & Uauy, R. Obesity in children and young people: a crisis in public health. Obes. Rev. 5 (Suppl. 1), 4–104 (2004).

    Article  PubMed  Google Scholar 

  3. Prevalence of obesity. World Obesity Federation https://www.worldobesity.org/about/about-obesity/prevalence-of-obesity (2015).

  4. Wang, Y. & Lobstein, T. Worldwide trends in childhood overweight and obesity. Int. J. Pediatr. Obes. 1, 11–25 (2006).

    Article  PubMed  Google Scholar 

  5. Ogden, C. L., Carroll, M. D., Kit, B. K. & Flegal, K. M. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 311, 806–814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koplan, J. P. & Dietz, W. H. Caloric imbalance and public health policy. JAMA 282, 1579–1581 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Styne, D. M. et al. Pediatric obesity—assessment, treatment, and prevention: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 102, 709–757 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Freedman, D. S. & Sherry, B. The validity of BMI as an indicator of body fatness and risk among children. Pediatrics 124 (Suppl. 1), S23–S34 (2009).

    Article  PubMed  Google Scholar 

  9. Freedman, D. S. et al. Classification of body fatness by body mass index-for-age categories among children. Arch. Pediatr. Adolesc. Med. 163, 805–811 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cole, T. J. & Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 7, 284–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).

    Article  Google Scholar 

  12. National Center for Health Statistics. National Health Examination Surveys II (ages 6–11) and III (ages 12–17), and National Health and Nutrition Examination Surveys I, II and III, and 1999–2006 Centers for Disease Control and Prevention https://www.cdc.gov/nchs/nhanes/index.htm (2020).

  13. Yanovski, J. A. Trends in underweight and obesity—scale of the problem. Nat. Rev. Endocrinol. 14, 5–6 (2018).

    Article  PubMed  Google Scholar 

  14. Fryar. C. D., Carroll, M. D. & Ogden, C. L. Prevalence of Overweight, Obesity, and Severe Obesity Among Children and Adolescents Aged 2–19 Years: United States, 1963–1965 Through 2015–2016 (National Center for Health Statistics, 2018); https://www.cdc.gov/nchs/data/hestat/obesity_child_15_16/obesity_child_15_16.pdf

  15. Skinner, A. C. & Skelton, J. A. Prevalence and trends in obesity and severe obesity among children in the United States, 1999-2012. JAMA Pediatr. 168, 561–566 (2014).

    Article  PubMed  Google Scholar 

  16. Skinner, A. C., Perrin, E. M., Moss, L. A. & Skelton, J. A. Cardiometabolic risks and severity of obesity in children and young adults. N. Engl. J. Med. 373, 1307–1317 (2015).

    Article  PubMed  Google Scholar 

  17. Skinner, A. C., Ravanbakht, S. N., Skelton, J. A., Perrin, E. M. & Armstrong, S. C. Prevalence of obesity and severe obesity in US children, 1999-2016. Pediatrics 141, e20173459 (2018).

    Article  PubMed  Google Scholar 

  18. Grossman, D. C. et al. Screening for obesity in children and adolescents: US Preventive Services Task Force recommendation statement. JAMA 317, 2417–2426 (2017).

    Article  PubMed  Google Scholar 

  19. Jeffery, R. W. & Utter, J. The changing environment and population obesity in the United States. Obes. Res. 11 (Suppl.), 12S–22S (2003).

    Article  PubMed  Google Scholar 

  20. Ebbeling, C. B., Pawlak, D. B. & Ludwig, D. S. Childhood obesity: public-health crisis, common sense cure. Lancet 360, 473–482 (2002).

    Article  PubMed  Google Scholar 

  21. Campbell, K. J. et al. Associations between the home food environment and obesity-promoting eating behaviors in adolescence. Obesity (Silver Spring) 15, 719–730 (2007).

    Article  Google Scholar 

  22. Gluckman, P., Nishtar, S. & Armstrong, T. Ending childhood obesity: a multidimensional challenge. Lancet 385, 1048–1050 (2015).

    Article  PubMed  Google Scholar 

  23. Jastreboff, A. M. et al. Altered brain response to drinking glucose and fructose in obese adolescents. Diabetes 65, 1929–1939 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jastreboff, A. M. et al. Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity. Diabetes Care 37, 3061–3068 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brook, C. G., Huntley, R. M. & Slack, J. Influence of heredity and environment in determination of skinfold thickness in children. Br. Med. J. 2, 719–721 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stunkard, A. J., Foch, T. T. & Hrubec, Z. A twin study of human obesity. JAMA 256, 51–54 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Stunkard, A. J., Harris, J. R., Pedersen, N. L. & McClearn, G. E. The body-mass index of twins who have been reared apart. N. Engl. J. Med. 322, 1483–1487 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Montague, C. T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Farooqi, I. S. et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J. Clin. Invest. 106, 271–279 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Farooqi, I. S. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085–1095 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Miraglia Del Giudice, E. et al. Low frequency of melanocortin-4 receptor (MC4R) mutations in a Mediterranean population with early-onset obesity. Int. J. Obes. Relat. Metab. Disord. 26, 647–651 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Santoro, N. et al. Prevalence of pathogenetic MC4R mutations in Italian children with early onset obesity, tall stature and familial history of obesity. BMC Med. Genet. 10, 25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Clément, K. et al. MC4R agonism promotes durable weight loss in patients with leptin receptor deficiency. Nat. Med. 24, 551–555 (2018).

    Article  PubMed  CAS  Google Scholar 

  37. Collet, T. H. et al. Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency. Mol. Metab. 6, 1321–1329 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pulit, S. L. et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet. 28, 166–174 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Felix, J. F. et al. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Hum. Mol. Genet. 25, 389–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Bradfield, J. P. et al. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat. Genet. 44, 526–531 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao, J. et al. The role of obesity-associated loci identified in genome-wide association studies in the determination of pediatric BMI. Obesity (Silver Spring) 17, 2254–2257 (2009).

    Article  Google Scholar 

  45. Zhao, J. et al. Role of BMI-associated loci identified in GWAS meta-analyses in the context of common childhood obesity in European Americans. Obesity (Silver Spring) 19, 2436–2439 (2011).

    Article  CAS  Google Scholar 

  46. Bradfield, J. P. et al. A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity. Hum. Mol. Genet. 28, 3327–3338 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Khera, A. V. et al. Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell 177, 587–596.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Turcot, V. et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat. Genet. 50, 26–41 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Dina, C. et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 39, 724–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Lauria, F. et al. Prospective analysis of the association of a common variant of FTO (rs9939609) with adiposity in children: results of the IDEFICS study. PLoS One 7, e48876 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wardle, J. et al. Obesity associated genetic variation in FTO is associated with diminished satiety. J. Clin. Endocrinol. Metab. 93, 3640–3643 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. den Hoed, M., Westerterp-Plantenga, M. S., Bouwman, F. G., Mariman, E. C. & Westerterp, K. R. Postprandial responses in hunger and satiety are associated with the rs9939609 single nucleotide polymorphism in FTO. Am. J. Clin. Nutr. 90, 1426–1432 (2009).

    Article  CAS  Google Scholar 

  53. McTaggart, J. S. et al. FTO is expressed in neurones throughout the brain and its expression is unaltered by fasting. PLoS One 6, e27968 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Olszewski, P. K. et al. Hypothalamic FTO is associated with the regulation of energy intake not feeding reward. BMC Neurosci. 10, 129 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Fredriksson, R. et al. The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology 149, 2062–2071 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Cowley, M. A. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37, 649–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Cecil, J. E., Tavendale, R., Watt, P., Hetherington, M. M. & Palmer, C. N. An obesity-associated FTO gene variant and increased energy intake in children. N. Engl. J. Med. 359, 2558–2566 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Qi, Q. et al. Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ 348, g1610 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Karra, E. et al. A link between FTO, ghrelin, and impaired brain food-cue responsivity. J. Clin. Invest. 123, 3539–3551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ranzenhofer, L. M. et al. The FTO gene and measured food intake in 5- to 10-year-old children without obesity. Obesity (Silver Spring) 27, 1023–1029 (2019).

    Article  CAS  Google Scholar 

  61. Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Melhorn, S. J. et al. FTO genotype impacts food intake and corticolimbic activation. Am. J. Clin. Nutr. 107, 145–154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Angulo, M. A., Butler, M. G. & Cataletto, M. E. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J. Endocrinol. Invest. 38, 1249–1263 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Burnett, L. C. et al. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. J. Clin. Invest. 127, 293–305 (2017).

    Article  PubMed  Google Scholar 

  65. Jackson, R. S. et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat. Genet. 16, 303–306 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Paisey, R.B. et al. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 1993).

  67. Han, J. C. et al. Comprehensive endocrine-metabolic evaluation of patients with Alström syndrome compared with BMI-matched controls. J. Clin. Endocrinol. Metab. 103, 2707–2719 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Forsythe, E., Kenny, J., Bacchelli, C. & Beales, P. L. Managing Bardet-Biedl Syndrome: now and in the future. Front Pediatr. 6, 23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sherafat-Kazemzadeh, R. et al. Hyperphagia among patients with Bardet-Biedl syndrome. Pediatr. Obes. 8, e64–e67 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Feuillan, P. P. et al. Patients with Bardet-Biedl syndrome have hyperleptinemia suggestive of leptin resistance. J. Clin. Endocrinol. Metab. 96, E528–E535 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Daniels, S. R. et al. Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment. Circulation 111, 1999–2012 (2005).

    Article  PubMed  Google Scholar 

  72. Morrison, J. A., Barton, B. A., Biro, F. M., Daniels, S. R. & Sprecher, D. L. Overweight, fat patterning, and cardiovascular disease risk factors in black and white boys. J. Pediatr. 135, 451–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Morrison, J. A., Sprecher, D. L., Barton, B. A., Waclawiw, M. A. & Daniels, S. R. Overweight, fat patterning, and cardiovascular disease risk factors in black and white girls: The National Heart, Lung, and Blood Institute Growth and Health Study. J. Pediatr. 135, 458–464 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Pinhas-Hamiel, O. et al. Increased incidence of non-insulin-dependent diabetes mellitus among adolescents. J. Pediatr. 128, 608–615 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Weiss, R. et al. Obesity and the metabolic syndrome in children and adolescents. N. Engl. J. Med. 350, 2362–2374 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Berenson, G. S. et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults: the Bogalusa Heart Study. N. Engl. J. Med. 338, 1650–1656 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Freedman, D. S. et al. The relation of childhood BMI to adult adiposity: the Bogalusa Heart Study. Pediatrics 115, 22–27 (2005).

    Article  PubMed  Google Scholar 

  78. Juonala, M. et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N. Engl. J. Med. 365, 1876–1885 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Ludwig, D. S. Childhood obesity: the shape of things to come. N. Engl. J. Med. 357, 2325–2327 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Wajchenberg, B. L. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr. Rev. 21, 697–738 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Frayn, K. N. Adipose tissue as a buffer for daily lipid flux. Diabetologia 45, 1201–1210 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Smith, S. R. et al. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism 50, 425–435 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Taksali, S. E. et al. High visceral and low abdominal subcutaneous fat stores in the obese adolescent: a determinant of an adverse metabolic phenotype. Diabetes 57, 367–371 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Shulman, G. I. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106, 171–176 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shulman, G. I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371, 1131–1141 (2014).

    Article  PubMed  CAS  Google Scholar 

  86. Gray, S. L. & Vidal-Puig, A. J. Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr. Rev. 65, S7–S12 (2007).

    Article  PubMed  Google Scholar 

  87. Virtue, S. & Vidal-Puig, A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome: an allostatic perspective. Biochim. Biophys. Acta 1801, 338–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Kursawe, R. et al. Cellularity and adipogenic profile of the abdominal subcutaneous adipose tissue from obese adolescents: association with insulin resistance and hepatic steatosis. Diabetes 59, 2288–2296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kursawe, R. et al. Decreased transcription of ChREBP-α/β isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: associations with insulin resistance and hyperglycemia. Diabetes 62, 837–844 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gillum, M. P. et al. SirT1 regulates adipose tissue inflammation. Diabetes 60, 3235–3245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nouws, J. et al. Altered in vivo lipid fluxes and cell dynamics in subcutaneous adipose tissues are associated with the unfavourable pattern of fat distribution in obese adolescent girls. Diabetes 68, 1168–1177 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Petersen, M. C. & Shulman, G. I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 98, 2133–2223 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Reaven, G. Metabolic syndrome: pathophysiology and implications for management of cardiovascular disease. Circulation 106, 286–288 (2002).

    Article  PubMed  Google Scholar 

  94. Roden, M. et al. Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Invest. 97, 2859–2865 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Weiss, R. et al. Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet 362, 951–957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nagarajan, A. et al. MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels. Nat. Commun. 7, 12639 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cali, A. M. et al. Glucose dysregulation and hepatic steatosis in obese adolescents: is there a link? Hepatology 49, 1896–1903 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Hershkop, K. et al. Adipose insulin resistance in obese adolescents across the spectrum of glucose tolerance. J. Clin. Endocrinol. Metab. 101, 2423–2431 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Weiss, R. et al. Degree of obesity and glucose allostasis are major effectors of glucose tolerance dynamics in obese youth. Diabetes Care 30, 1845–1850 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Giannini, C. et al. Evidence for early defects in insulin sensitivity and secretion before the onset of glucose dysregulation in obese youths: a longitudinal study. Diabetes 61, 606–614 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cali, A. M. et al. Intrahepatic fat accumulation and alterations in lipoprotein composition in obese adolescents: a perfect proatherogenic state. Diabetes Care 30, 3093–3098 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Caprio, S., Perry, R. & Kursawe, R. Adolescent obesity and insulin resistance: roles of ectopic fat accumulation and adipose inflammation. Gastroenterology 152, 1638–1646 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Winer, J. C. et al. Adiponectin in childhood and adolescent obesity and its association with inflammatory markers and components of the metabolic syndrome. J. Clin. Endocrinol. Metab. 91, 4415–4423 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Brady, T. M. The role of obesity in the development of left ventricular hypertrophy among children and adolescents. Curr. Hypertens. Rep. 18, 3 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Reinehr, T., Kiess, W., de Sousa, G., Stoffel-Wagner, B. & Wunsch, R. Intima media thickness in childhood obesity: relations to inflammatory marker, glucose metabolism, and blood pressure. Metabolism 55, 113–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Yajnik, C. S. et al. Higher glucose, insulin and insulin resistance (HOMA-IR) in childhood predict adverse cardiovascular risk in early adulthood: the Pune Children’s Study. Diabetologia 58, 1626–1636 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Angulo, P. Nonalcoholic fatty liver disease. N. Engl. J. Med. 346, 1221–1231 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Schwimmer, J. B. et al. Prevalence of fatty liver in children and adolescents. Pediatrics 118, 1388–1393 (2006).

    Article  PubMed  Google Scholar 

  110. Tricò, D. et al. Metabolic features of non-alcoholic fatty liver (NAFL) in obese adolescents: findings from a multi-ethnic cohort. Hepatology 68, 1376–1390 (2018).

    Article  PubMed  CAS  Google Scholar 

  111. Feldstein, A. E. et al. The natural history of non-alcoholic fatty liver disease in children: a follow-up study for up to 20 years. Gut 58, 1538–1544 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. D’Adamo, E. et al. Central role of fatty liver in the pathogenesis of insulin resistance in obese adolescents. Diabetes Care 33, 1817–1822 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Newton, K. P. et al. Prevalence of prediabetes and type 2 diabetes in children with non-alcoholic fatty liver disease. JAMA Pediatr. 170, e161971 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Schwimmer, J. B., Pardee, P. E., Lavine, J. E., Blumkin, A. K. & Cook, S. Cardiovascular risk factors and the metabolic syndrome in pediatric nonalcoholic fatty liver disease. Circulation 118, 277–283 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wagenknecht, L. E. et al. Correlates and heritability of nonalcoholic fatty liver disease in a minority cohort. Obesity (Silver Spring) 17, 1240–1246 (2009).

    Article  CAS  Google Scholar 

  116. Schwimmer, J. B. et al. Heritability of nonalcoholic fatty liver disease. Gastroenterology 136, 1585–1592 (2009).

    Article  PubMed  Google Scholar 

  117. Loomba, R. et al. Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology 149, 1784–1793 (2015).

    Article  PubMed  Google Scholar 

  118. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mitsche, M. A., Hobbs, H. H. & Cohen, J. C. Patatin-like phospholipase domain–containing protein 3 promotes transfer of essential fatty acids from triglycerides to phospholipids in hepatic lipid droplets. J. Biol. Chem. 293, 6958–6968 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tian, C., Stokowski, R. P., Kershenobich, D., Ballinger, D. G. & Hinds, D. A. Variant in PNPLA3 is associated with alcoholic liver disease. Nat. Genet. 42, 21–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Núñez-Torres, R. et al. The PNPLA3 genetic variant rs738409 influences the progression to cirrhosis in HIV/hepatitis C virus coinfected patients. PLoS One 11, e0168265 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Santoro, N. et al. Variant in the glucokinase regulatory protein (GCKR) gene is associated with fatty liver in obese children and adolescents. Hepatology 55, 781–789 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Goffredo, M. et al. Role of TM6SF2 rs58542926 in the pathogenesis of nonalcoholic pediatric fatty liver disease: a multiethnic study. Hepatology 63, 117–125 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Santoro, N. et al. Hepatic de novo lipogenesis in obese youth is modulated by a common variant in the GCKR gene. J. Clin. Endocrinol. Metab. 100, E1125–E1132 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Stender, S. et al. Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat. Genet. 49, 842–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Freedman, D. S., Mei, Z., Srinivasan, S. R., Berenson, G. S. & Dietz, W. H. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J. Pediatr. 150, 12–17.e2 (2007).

    Article  PubMed  Google Scholar 

  127. Zabarsky, G. et al. Impact of severe obesity on cardiovascular risk factors in youth. J. Pediatr. 192, 105–114 (2018).

    Article  PubMed  Google Scholar 

  128. Al-Khudairy, L. et al. Diet, physical activity and behavioural interventions for the treatment of overweight or obese adolescents aged 12 to 17 years. Cochrane Database Syst. Rev. 6, CD012691 (2017).

    PubMed  Google Scholar 

  129. Rajjo, T. et al. The association of weight loss and cardiometabolic outcomes in obese children: systematic review and meta-regression. J. Clin. Endocrinol. Metab. 102, 758–762 (2017).

    Article  PubMed  Google Scholar 

  130. Fonvig, C. E. et al. Multidisciplinary care of obese children and adolescents for one year reduces ectopic fat content in liver and skeletal muscle. BMC Pediatr. 15, 196 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Kloppenborg, J. T. et al. The effect of impaired glucose metabolism on weight loss in multidisciplinary childhood obesity treatment. Pediatr. Diabetes 19, 366–374 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Farpour-Lambert, N. J. et al. Physical activity reduces systemic blood pressure and improves early markers of atherosclerosis in pre-pubertal obese children. J. Am. Coll. Cardiol. 54, 2396–2406 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Reinehr, T. et al. Which amount of BMI-SDS reduction is necessary to improve cardiovascular risk factors in overweight children? J. Clin. Endocrinol. Metab. 101, 3171–3179 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Reinehr, T., Kleber, M. & Toschke, A. M. Lifestyle intervention in obese children is associated with a decrease of the metabolic syndrome prevalence. Atherosclerosis 207, 174–180 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Savoye, M. et al. Long-term results of an obesity program in an ethnically diverse pediatric population. Pediatrics 127, 402–410 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Adam, T. C. et al. Insulin sensitivity as an independent predictor of fat mass gain in Hispanic adolescents. Diabetes Care 32, 2114–2115 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Weiss, R. et al. Predictors of changes in glucose tolerance status in obese youth. Diabetes Care 28, 902–909 (2005).

    Article  PubMed  Google Scholar 

  138. van der Baan-Slootweg, O. et al. Inpatient treatment of children and adolescents with severe obesity in the Netherlands: a randomized clinical trial. JAMA Pediatr. 168, 807–814 (2014).

    Article  PubMed  Google Scholar 

  139. Zeller, M. et al. Predictors of attrition from a pediatric weight management program. J. Pediatr. 144, 466–470 (2004).

    Article  PubMed  Google Scholar 

  140. Hampl, S., Paves, H., Laubscher, K. & Eneli, I. Patient engagement and attrition in pediatric obesity clinics and programs: results and recommendations. Pediatrics 128 (Suppl. 2), S59–S64 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Guerciolini, R. Mode of action of orlistat. Int. J. Obes. Relat. Metab. Disord. 21 (Suppl. 3), S12–S23 (1997).

    CAS  PubMed  Google Scholar 

  142. Chanoine, J. P., Hampl, S., Jensen, C., Boldrin, M. & Hauptman, J. Effect of orlistat on weight and body composition in obese adolescents: a randomized controlled trial. JAMA 293, 2873–2883 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Klein, D. J. et al. Liraglutide’s safety, tolerability, pharmacokinetics, and pharmacodynamics in pediatric type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Diabetes Technol. Ther. 16, 679–687 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mastrandrea, L. D. et al. Liraglutide effects in a paediatric (7-11 y) population with obesity: a randomized, double-blind, placebo-controlled, short-term trial to assess safety, tolerability, pharmacokinetics, and pharmacodynamics. Pediatr. Obes. 14, e12495 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Secher, A. et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J. Clin. Invest. 124, 4473–4488 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kühnen, P. et al. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N. Engl. J. Med. 375, 240–246 (2016).

    Article  PubMed  CAS  Google Scholar 

  147. Cali, A. M. et al. Rosiglitazone improves glucose metabolism in obese adolescents with impaired glucose tolerance: a pilot study. Obesity (Silver Spring) 19, 94–99 (2011).

    Article  CAS  Google Scholar 

  148. Pratt, J. S. A. et al. ASMBS pediatric metabolic and bariatric surgery guidelines, 2018. Surg. Obes. Relat. Dis. 14, 882–890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Inge, T. H. et al. Weight loss and health status 3 years after bariatric surgery in adolescents. N. Engl. J. Med. 374, 113–123 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Inge, T. H. et al. Five-year outcomes of gastric bypass in adolescents as compared with adults. N. Engl. J. Med. 380, 2136–2145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Olbers, T. et al. Laparoscopic Roux-en-Y gastric bypass in adolescents with severe obesity (AMOS): a prospective, 5-year, Swedish nationwide study. Lancet Diabetes Endocrinol. 5, 174–183 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Dewberry, L. C. et al. Change in gastrointestinal symptoms over the first 5 years after bariatric surgery in a multicenter cohort of adolescents. J. Pediatr. Surg. 54, 1220–1225 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zeller, M. H. et al. Severe obesity and comorbid condition impact on the weight-related quality of life of the adolescent patient. J. Pediatr. 166, 651–659.e4 (2015).

    Article  PubMed  Google Scholar 

  154. Ells, L.J. et al. Surgery for the treatment of obesity in children and adolescents. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD011740 (2015).

  155. Yu, E. W. et al. Two-year changes in bone density after Roux-en-Y gastric bypass surgery. J. Clin. Endocrinol. Metab. 100, 1452–1459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lu, C. W. et al. Fracture risk after bariatric surgery: a 12-year nationwide cohort study. Medicine (Baltimore) 94, e2087 (2015).

    Article  Google Scholar 

  157. Denzer, C., Reithofer, E., Wabitsch, M. & Widhalm, K. The outcome of childhood obesity management depends highly upon patient compliance. Eur. J. Pediatr. 163, 99–104 (2004).

    Article  PubMed  Google Scholar 

  158. Rankin, J. et al. Psychological consequences of childhood obesity: psychiatric comorbidity and prevention. Adolesc. Health Med. Ther. 7, 125–146 (2016).

    PubMed  PubMed Central  Google Scholar 

  159. Beamish, A. J. & Reinehr, T. Should bariatric surgery be performed in adolescents? Eur. J. Endocrinol. 176, D1–D15 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Scheimann, A. O., Butler, M. G., Gourash, L., Cuffari, C. & Klish, W. Critical analysis of bariatric procedures in Prader-Willi syndrome. J. Pediatr. Gastroenterol. Nutr. 46, 80–83 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bretault, M. et al. Clinical review: bariatric surgery following treatment for craniopharyngioma: a systematic review and individual-level data meta-analysis. J. Clin. Endocrinol. Metab. 98, 2239–2246 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Rodgers, A., Woodward, A., Swinburn, B. & Dietz, W. H. Prevalence trends tell us what did not precipitate the US obesity epidemic. Lancet Public Health 3, e162–e163 (2018).

    Article  PubMed  Google Scholar 

  163. Young, L. R. & Nestle, M. Expanding portion sizes in the US marketplace: implications for nutrition counseling. J. Am. Diet. Assoc. 103, 231–234 (2003).

    Article  PubMed  Google Scholar 

  164. Bray, G. A., Nielsen, S. J. & Popkin, B. M. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 79, 537–543 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Population-based Approaches to Childhood Obesity Prevention (World Health Organization, 2012).

  166. Report of the Commission on Ending Childhood Obesity (World Health Organization, 2016); https://www.who.int/end-childhood-obesity/publications/echo-report/en/.

  167. Institute of Medicine. Early Childhood Obesity Prevention Policies (National Academy of Sciences, 2011); http://www.nationalacademies.org/hmd/Reports/2011/Early-Childhood-Obesity-Prevention-Policies.aspx

  168. Roberto, C. A. et al. Patchy progress on obesity prevention: emerging examples, entrenched barriers, and new thinking. Lancet 385, 2400–2409 (2015).

    Article  PubMed  Google Scholar 

  169. Swinburn, B. A. et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet 378, 804–814 (2011).

    Article  PubMed  Google Scholar 

  170. Stuckler, D. & Nestle, M. Big food, food systems, and global health. PLoS Med. 9, e1001242 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Ward, Z. J. et al. Simulation of growth trajectories of childhood obesity into adulthood. N. Engl. J. Med. 377, 2145–2153 (2017).

    Article  PubMed  Google Scholar 

  172. Santoro, N. & Caprio, S. Nonalcoholic fatty liver disease/nonalcoholic steatohepatitis in obese adolescents: a looming marker of cardiac dysfunction. Hepatology 59, 372–374 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to B. Pierpont and M. Savoye for their support and dedication to this work. S.C. is supported by US National Institutes of Health (NIH) grants R01-DK111038 and R01-HD028016. N.S. is supported by NIH grant R01-DK114504. The work of S.C. and N.S. at Yale is also made possible by NIH grant P30DK045735. This publication was also made possible by CTSA grant UL1 TR000142 from the National Center for Advancing Translational Science (NCATS), a component of the NIH. The contents herein are solely the responsibility of the authors and do not necessarily represent the official view of NIH.

Author information

Authors and Affiliations

Authors

Contributions

S.C. drafted the following: Abstract, introduction, ‘Epidemiology’, ‘Environmental determinants’, ‘The effects of the FTO genotype on food intake in children’, ‘Future outlook’, ‘Ectopic fat storage in obese youth’ and ‘Halting the epidemic of childhood obesity’. R.W. drafted the following: ‘Bariatric surgery in paediatric obesity’ and ‘Obesity dynamics and CVRF stability in obese adolescents’. N.S. drafted the following: ‘Genetics of childhood obesity’, ‘Syndromic forms of obesity’, ‘Non-alcoholic fatty liver disease in obese youth’ and ‘Pharmacological approaches’. All the authors have read and edited the final version of the manuscript.

Corresponding authors

Correspondence to Sonia Caprio, Nicola Santoro or Ram Weiss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Elena Bellafante.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caprio, S., Santoro, N. & Weiss, R. Childhood obesity and the associated rise in cardiometabolic complications. Nat Metab 2, 223–232 (2020). https://doi.org/10.1038/s42255-020-0183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-020-0183-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing