NAD+ homeostasis in health and disease

Abstract

The conceptual evolution of nicotinamide adenine dinucleotide (NAD+) from being seen as a simple metabolic cofactor to a pivotal cosubstrate for proteins regulating metabolism and longevity, including the sirtuin family of protein deacylases, has led to a new wave of scientific interest in NAD+. NAD+ levels decline during ageing, and alterations in NAD+ homeostasis can be found in virtually all age-related diseases, including neurodegeneration, diabetes and cancer. In preclinical settings, various strategies to increase NAD+ levels have shown beneficial effects, thus starting a competitive race to discover marketable NAD+ boosters to improve healthspan and lifespan. Here, we review the basics of NAD+ biochemistry and metabolism, and its roles in health and disease, and we discuss current challenges and the future translational potential of NAD+ research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Main biochemical reactions requiring NAD+/NADH as a coenzyme.
Fig. 2: The main NAD+-consuming enzymes.
Fig. 3: NAD+-biosynthesis pathways.
Fig. 4: Disease conditions associated with altered NAD+ homeostasis.

References

  1. 1.

    Harden, A. & Young, W. The alcoholic ferment of yeast‐juice. Proc. R. Soc. Lond. B 77, 405–420 (1906).

    Article  CAS  Google Scholar 

  2. 2.

    von Euler, H. & Myrbäck, K. Co‐zymase. XVII. Hoppe-Seyler’s Z. Physiol. Chem. 190, 93–100 (1930).

    Article  Google Scholar 

  3. 3.

    Warburg, O. & Christian, W. Pyridine, the hydrogen transfusing component of fermentative enzymes. Helv. Chim. Acta 19, 79–88 (1936).

    Article  Google Scholar 

  4. 4.

    Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    Article  CAS  Google Scholar 

  5. 5.

    Haigis, M. C. & Sinclair, D. A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Houtkooper, R. H., Pirinen, E. & Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225–238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kim, W. et al. Polyunsaturated fatty acid desaturation is a mechanism for glycolytic NAD+ recycling. Cell Metab. 29, 856–870.e7 (2019).

    Article  CAS  Google Scholar 

  8. 8.

    Lerner, F., Niere, M., Ludwig, A. & Ziegler, M. Structural and functional characterization of human NAD kinase. Biochem. Biophys. Res. Commun. 288, 69–74 (2001).

    Article  CAS  Google Scholar 

  9. 9.

    Arthur, K. Enzymatic synthesis of triphosphopyridine nucleotide. J. Biol. Chem. 182, 805–813 (1950).

    Google Scholar 

  10. 10.

    Liu, L. et al. Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab. 27, 1067–1080.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Hanukoglu, I. & Rapoport, R. Routes and regulation of NADPH production in steroidogenic mitochondria. Endocr. Res. 21, 231–241 (1995).

    Article  CAS  Google Scholar 

  12. 12.

    Grabowska, D. & Chelstowska, A. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J. Biol. Chem. 278, 13984–13988 (2003).

    Article  CAS  Google Scholar 

  13. 13.

    Ogawa, K., Suzuki, K., Okutsu, M., Yamazaki, K. & Shinkai, S. The association of elevated reactive oxygen species levels from neutrophils with low-grade inflammation in the elderly. Immun. Ageing 5, 13 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Clapper, D. L., Walseth, T. F., Dargie, P. J. & Lee, H. C. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem. 262, 9561–9568 (1987).

    CAS  PubMed  Google Scholar 

  15. 15.

    Huang, T.-T. et al. Genetic modifiers of the phenotype of mice deficient in mitochondrial superoxide dismutase. Hum. Mol. Genet. 15, 1187–1194 (2006).

    Article  CAS  Google Scholar 

  16. 16.

    Freeman, H. C., Hugill, A., Dear, N. T., Ashcroft, F. M. & Cox, R. D. Deletion of nicotinamide nucleotide transhydrogenase: a new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes 55, 2153–2156 (2006).

    Article  CAS  Google Scholar 

  17. 17.

    Ronchi, J. A. et al. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Free Radic. Biol. Med. 63, 446–456 (2013).

    Article  CAS  Google Scholar 

  18. 18.

    Pollak, N., Dölle, C. & Ziegler, M. The power to reduce: pyridine nucleotides—small molecules with a multitude of functions. Biochem. J. 402, 205–218 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ying, W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid. Redox Signal. 10, 179–206 (2008).

    Article  CAS  Google Scholar 

  20. 20.

    Klar, A. J. & Fogel, S. Activation of mating type genes by transposition in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 76, 4539–4543 (1979).

    Article  CAS  Google Scholar 

  21. 21.

    Rine, J., Strathern, J. N., Hicks, J. B. & Herskowitz, I. A suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci. Genetics 93, 877–901 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA 97, 5807–5811 (2000).

    Article  CAS  Google Scholar 

  24. 24.

    Frye, R. A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793–798 (2000).

    Article  CAS  Google Scholar 

  25. 25.

    Houtkooper, R. H., Cantó, C., Wanders, R. J. & Auwerx, J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31, 194–223 (2010).

    Article  CAS  Google Scholar 

  26. 26.

    Ghanta, S., Grossmann, R. E. & Brenner, C. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications. Crit. Rev. Biochem. Mol. Biol. 48, 561–574 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Bai, P. & Cantó, C. The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. 16, 290–295 (2012).

    Article  CAS  Google Scholar 

  28. 28.

    Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Braidy, N. et al. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One 6, e19194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Berger, N. A. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat. Res. 101, 4–15 (1985).

    Article  CAS  Google Scholar 

  31. 31.

    Feijs, K. L., Forst, A. H., Verheugd, P. & Lüscher, B. Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat. Rev. Mol. Cell Biol. 14, 443–451 (2013).

    Article  CAS  Google Scholar 

  32. 32.

    Guse, A. H. Regulation of calcium signaling by the second messenger cyclic adenosine diphosphoribose (cADPR). Curr. Mol. Med. 4, 239–248 (2004).

    Article  CAS  Google Scholar 

  33. 33.

    Quarona, V. et al. CD38 and CD157: a long journey from activation markers to multifunctional molecules. Cytom. B Clin. Cytom. 84, 207–217 (2013).

    Article  CAS  Google Scholar 

  34. 34.

    Hussain, A. M., Lee, H. C. & Chang, C. F. Functional expression of secreted mouse BST-1 in yeast. Protein Expr. Purif. 12, 133–137 (1998).

    Article  CAS  Google Scholar 

  35. 35.

    Bhan, A. K., Reinherz, E. L., Poppema, S., McCluskey, R. T. & Schlossman, S. F. Location of T cell and major histocompatibility complex antigens in the human thymus. J. Exp. Med. 152, 771–782 (1980).

    Article  CAS  Google Scholar 

  36. 36.

    Aksoy, P., White, T. A., Thompson, M. & Chini, E. N. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem. Biophys. Res. Commun. 345, 1386–1392 (2006).

    Article  CAS  Google Scholar 

  37. 37.

    Zhao, Y. J., Lam, C. M. C. & Lee, H. C. The membrane-bound enzyme CD38 exists in two opposing orientations. Sci. Signal. 5, ra67 (2012).

    Article  CAS  Google Scholar 

  38. 38.

    Sauve, A. A., Munshi, C., Lee, H. C. & Schramm, V. L. The reaction mechanism for CD38: a single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries. Biochemistry 37, 13239–13249 (1998).

    Article  CAS  Google Scholar 

  39. 39.

    Cakir-Kiefer, C., Muller-Steffner, H., Oppenheimer, N. & Schuber, F. Kinetic competence of the cADP-ribose-CD38 complex as an intermediate in the CD38/NAD+ glycohydrolase-catalysed reactions: implication for CD38 signalling. Biochem. J. 358, 399–406 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Summers, D. W., Gibson, D. A., DiAntonio, A. & Milbrandt, J. SARM1-specific motifs in the TIR domain enable NAD+ loss and regulate injury-induced SARM1 activation. Proc. Natl Acad. Sci. USA 113, E6271–E6280 (2016).

    Article  CAS  Google Scholar 

  41. 41.

    Essuman, K. et al. The SARM1 Toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron 93, 1334–1343.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Gerdts, J., Brace, E. J., Sasaki, Y., DiAntonio, A. & Milbrandt, J. SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science 348, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Kowtoniuk, W. E., Shen, Y., Heemstra, J. M., Agarwal, I. & Liu, D. R. A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA. Proc. Natl Acad. Sci. USA 106, 7768–7773 (2009).

    Article  Google Scholar 

  44. 44.

    Chen, Y. G., Kowtoniuk, W. E., Agarwal, I., Shen, Y. & Liu, D. R. LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat. Chem. Biol. 5, 879–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Cahová, H., Winz, M. L., Höfer, K., Nübel, G. & Jäschke, A. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature 519, 374–377 (2015).

    Article  CAS  Google Scholar 

  46. 46.

    Bird, J. G. et al. The mechanism of RNA 5′ capping with NAD+, NADH and desphospho-CoA. Nature 535, 444–447 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Walters, R. W. et al. Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 114, 480–485 (2017).

    Article  CAS  Google Scholar 

  48. 48.

    Jiao, X. et al. 5′ end nicotinamide adenine dinucleotide cap in human cells promotes RNA decay through DXO-mediated deNADding. Cell 168, 1015–1027.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Malygin, A. G. & Shemyakin, M. F. Adenosine, NAD and FAD can initiate template-dependent RNA synthesis catalyzed by Escherichia coli RNA polymerase. FEBS Lett. 102, 51–54 (1979).

    Article  CAS  Google Scholar 

  50. 50.

    Julius, C. & Yuzenkova, Y. Bacterial RNA polymerase caps RNA with various cofactors and cell wall precursors. Nucleic Acids Res. 45, 8282–8290 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Julius, C., Riaz-Bradley, A. & Yuzenkova, Y. RNA capping by mitochondrial and multi-subunit RNA polymerases. Transcription 9, 292–297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Bird, J. G. et al. Highly efficient 5′ capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase. eLife 7, e42179 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Bieganowski, P. & Brenner, C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell 117, 495–502 (2004).

    Article  CAS  Google Scholar 

  54. 54.

    Cantó, C., Menzies, K. J. & Auwerx, J. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22, 31–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Rongvaux, A., Andris, F., Van Gool, F. & Leo, O. Reconstructing eukaryotic NAD metabolism. BioEssays 25, 683–690 (2003).

    Article  CAS  Google Scholar 

  56. 56.

    Belenky, P., Bogan, K. L. & Brenner, C. NAD+ metabolism in health and disease. Trends Biochem. Sci. 32, 12–19 (2007).

    Article  CAS  Google Scholar 

  57. 57.

    Preiss, J. & Handler, P. Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J. Biol. Chem. 233, 488–492 (1958).

    CAS  PubMed  Google Scholar 

  58. 58.

    Katsyuba, E. et al. De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature 563, 354–359 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Palzer, L. et al. Alpha-amino-beta-carboxy-muconate-semialdehyde decarboxylase controls dietary niacin requirements for NAD+ synthesis. Cell Rep. 25, 1359–1370.e4 (2018).

    Article  CAS  Google Scholar 

  60. 60.

    Menzies, K. J., Zhang, H., Katsyuba, E. & Auwerx, J. Protein acetylation in metabolism—metabolites and cofactors. Nat. Rev. Endocrinol. 12, 43–60 (2016).

    Article  CAS  Google Scholar 

  61. 61.

    Cambronne, X. A. et al. Biosensor reveals multiple sources for mitochondrial NAD+. Science 352, 1474–1477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Di Lisa, F., Menabò, R., Canton, M., Barile, M. & Bernardi, P. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J. Biol. Chem. 276, 2571–2575 (2001).

    Article  Google Scholar 

  63. 63.

    Yang, H. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095–1107 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Pittelli, M. et al. Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J. Biol. Chem. 285, 34106–34114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Barile, M., Passarella, S., Danese, G. & Quagliariello, E. Rat liver mitochondria can synthesize nicotinamide adenine dinucleotide from nicotinamide mononucleotide and ATP via a putative matrix nicotinamide mononucleotide adenylyltransferase. Biochem. Mol. Biol. Int. 38, 297–306 (1996).

    CAS  PubMed  Google Scholar 

  66. 66.

    Nakagawa, I., Takahashi, T., Suzuki, T. & Masana, Y. Effect in man of the addition of tryptophan oniacin to the diet on the excretion of their metabolites. J. Nutr. 99, 325–330 (1969).

    Article  CAS  Google Scholar 

  67. 67.

    van Roermund, C. W., Elgersma, Y., Singh, N., Wanders, R. J. & Tabak, H. F. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J. 14, 3480–3486 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Di Lisa, F. & Ziegler, M. Pathophysiological relevance of mitochondria in NAD+ metabolism. FEBS Lett. 492, 4–8 (2001).

    Article  Google Scholar 

  69. 69.

    Brown, K. et al. SIRT3 reverses aging-associated degeneration. Cell Rep. 3, 319–327 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Cantó, C. et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15, 838–847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Nikiforov, A., Dölle, C., Niere, M. & Ziegler, M. Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. J. Biol. Chem. 286, 21767–21778 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Davila, A. et al. Nicotinamide adenine dinucleotide is transported into mammalian mitochondria. eLife 7, e33246 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Pittelli, M. et al. Pharmacological effects of exogenous NAD on mitochondrial bioenergetics, DNA repair, and apoptosis. Mol. Pharmacol. 80, 1136–1146 (2011).

    Article  CAS  Google Scholar 

  74. 74.

    Todisco, S., Agrimi, G., Castegna, A. & Palmieri, F. Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J. Biol. Chem. 281, 1524–1531 (2006).

    Article  CAS  Google Scholar 

  75. 75.

    Agrimi, G. et al. Deletion or overexpression of mitochondrial NAD+ carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the rate of glycolysis. Appl. Environ. Microbiol. 77, 2239–2246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    VanLinden, M. R. et al. Subcellular distribution of NAD+ between cytosol and mitochondria determines the metabolic profile of human cells. J. Biol. Chem. 290, 27644–27659 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Hara, N. et al. Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells. J. Biol. Chem. 282, 24574–24582 (2007).

    Article  CAS  Google Scholar 

  78. 78.

    Hara, N. et al. Molecular identification of human glutamine- and ammonia-dependent NAD synthetases: carbon-nitrogen hydrolase domain confers glutamine dependency. J. Biol. Chem. 278, 10914–10921 (2003).

    Article  CAS  Google Scholar 

  79. 79.

    Emanuelli, M. et al. Molecular cloning, chromosomal localization, tissue mRNA levels, bacterial expression, and enzymatic properties of human NMN adenylyltransferase. J. Biol. Chem. 276, 406–412 (2001).

    Article  CAS  Google Scholar 

  80. 80.

    Yalowitz, J. A. et al. Characterization of human brain nicotinamide 5′-mononucleotide adenylyltransferase-2 and expression in human pancreas. Biochem. J. 377, 317–326 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Berger, F., Lau, C., Dahlmann, M. & Ziegler, M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 280, 36334–36341 (2005).

    Article  CAS  Google Scholar 

  82. 82.

    Zhang, X. et al. Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis. J. Biol. Chem. 278, 13503–13511 (2003).

    Article  CAS  Google Scholar 

  83. 83.

    Ryu, K. W. et al. Metabolic regulation of transcription through compartmentalized NAD+ biosynthesis. Science 360, eaan5780 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Kitani, T., Okuno, S. & Fujisawa, H. Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor. FEBS Lett. 544, 74–78 (2003).

    Article  CAS  Google Scholar 

  85. 85.

    Rongvaux, A. et al. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur. J. Immunol. 32, 3225–3234 (2002).

    Article  CAS  Google Scholar 

  86. 86.

    Felici, R., Lapucci, A., Ramazzotti, M. & Chiarugi, A. Insight into molecular and functional properties of NMNAT3 reveals new hints of NAD homeostasis within human mitochondria. PLoS One 8, e76938 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Hikosaka, K. et al. Deficiency of nicotinamide mononucleotide adenylyltransferase 3 (nmnat3) causes hemolytic anemia by altering the glycolytic flow in mature erythrocytes. J. Biol. Chem. 289, 14796–14811 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Yamamoto, M. et al. Nmnat3 is dispensable in mitochondrial NAD level maintenance in vivo. PLoS One 11, e0147037 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Nakagawa, T., Lomb, D. J., Haigis, M. C. & Guarente, L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137, 560–570 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Yang, T., Chan, N. Y. & Sauve, A. A. Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells. J. Med. Chem. 50, 6458–6461 (2007).

    Article  CAS  Google Scholar 

  91. 91.

    Tischler, M. E., Friedrichs, D., Coll, K. & Williamson, J. R. Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats. Arch. Biochem. Biophys. 184, 222–236 (1977).

    Article  CAS  Google Scholar 

  92. 92.

    Bender, D. A., Magboul, B. I. & Wynick, D. Probable mechanisms of regulation of the utilization of dietary tryptophan, nicotinamide and nicotinic acid as precursors of nicotinamide nucleotides in the rat. Br. J. Nutr. 48, 119–127 (1982).

    Article  CAS  Google Scholar 

  93. 93.

    Lin, L. F. & Henderson, L. M. Pyridinium precursors of pyridine nucleotides in perfused rat kidney and in the testis. J. Biol. Chem. 247, 8023–8030 (1972).

    CAS  PubMed  Google Scholar 

  94. 94.

    Jackson, T. M., Rawling, J. M., Roebuck, B. D. & Kirkland, J. B. Large supplements of nicotinic acid and nicotinamide increase tissue NAD+ and poly(ADP-ribose) levels but do not affect diethylnitrosamine-induced altered hepatic foci in Fischer-344 rats. J. Nutr. 125, 1455–1461 (1995).

    CAS  PubMed  Google Scholar 

  95. 95.

    Hagino, Y., Lan, S. J., Ng, C. Y. & Henderson, L. M. Metabolism of pyridinium precursors of pyridine nucleotides in perfused rat liver. J. Biol. Chem. 243, 4980–4986 (1968).

    CAS  PubMed  Google Scholar 

  96. 96.

    Ijichi, H., Ichiyama, A. & Hayaishi, O. Studies on the biosynthesis of nicotinamide adenine dinucleotide. 3. Comparative in vivo studies on nicotinic acid, nicotinamide, and quinolinic acid as precursors of nicotinamide adenine dinucleotide. J. Biol. Chem. 241, 3701–3707 (1966).

    CAS  PubMed  Google Scholar 

  97. 97.

    Williams, G. T., Lau, K. M., Coote, J. M. & Johnstone, A. P. NAD metabolism and mitogen stimulation of human lymphocytes. Exp. Cell Res. 160, 419–426 (1985).

    Article  CAS  Google Scholar 

  98. 98.

    Mori, V. et al. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues. PLoS One 9, e113939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Collins, P. B. & Chaykin, S. Comparative metabolism of nicotinamide and nicotinic acid in mice. Biochem. J. 125, 117P (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Yang, S. J. et al. Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J. Nutr. Biochem. 25, 66–72 (2014).

    Article  CAS  Google Scholar 

  101. 101.

    Jacobson, E. L., Dame, A. J., Pyrek, J. S. & Jacobson, M. K. Evaluating the role of niacin in human carcinogenesis. Biochimie 77, 394–398 (1995).

    Article  CAS  Google Scholar 

  102. 102.

    Revollo, J. R. et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 6, 363–375 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Shibata, K., Hayakawa, T. & Iwai, K. Tissue distribution of the enzymes concerned with the biosynthesis of NAD in rats. Agr. Biol. Chem. 50, 3037–3041 (1986).

    CAS  Google Scholar 

  104. 104.

    Bender, D. A. & Olufunwa, R. Utilization of tryptophan, nicotinamide and nicotinic acid as precursors for nicotinamide nucleotide synthesis in isolated rat liver cells. Br. J. Nutr. 59, 279–287 (1988).

    Article  CAS  Google Scholar 

  105. 105.

    Trammell, S. A. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun. 7, 12948 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Ratajczak, J. et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat. Commun. 7, 13103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Fletcher, R. S. et al. Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells. Mol. Metab. 6, 819–832 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Li, J., Mayne, R. & Wu, C. A novel muscle-specific beta 1 integrin binding protein (MIBP) that modulates myogenic differentiation. J. Cell Biol. 147, 1391–1398 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Sasaki, Y., Araki, T. & Milbrandt, J. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J. Neurosci. 26, 8484–8491 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Grozio, A. et al. Slc12a8 is a nicotinamide mononucleotide transporter. Nat. Metab. 1, 47–57 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Schmidt, M. S. & Brenner, C. Absence of evidence that Slc12a8 encodes a nicotinamide mononucleotide transporter. Nat. Metab. 1, 660–661 (2019).

    Article  Google Scholar 

  113. 113.

    Diguet, N. et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation 137, 2256–2273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Frederick, D. W. et al. Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab. 24, 269–282 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Spector, R. & Johanson, C. E. Vitamin transport and homeostasis in mammalian brain: focus on vitamins B and E. J. Neurochem. 103, 425–438 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Cantó, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213–219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Chen, D. et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 22, 1753–1757 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Qin, W. et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J. Biol. Chem. 281, 21745–21754 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Sato, S. et al. Circadian reprogramming in the liver identifies metabolic pathways of aging. Cell 170, 664–677.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  Google Scholar 

  121. 121.

    Fulco, M. et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell 14, 661–673 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Cantó, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Costford, S. R. et al. Skeletal muscle NAMPT is induced by exercise in humans. Am. J. Physiol. Endocrinol. Metab. 298, E117–E126 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Koltai, E. et al. Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech. Ageing Dev. 131, 21–28 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Gariani, K. et al. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology 63, 1190–1204 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Gariani, K. et al. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. J. Hepatol. 66, 132–141 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Trammell, S. A. et al. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice. Sci. Rep. 6, 26933 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324, 654–657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Ramsey, K. M. et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324, 651–654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Mauvoisin, D. et al. Circadian and feeding rhythms orchestrate the diurnal liver acetylome. Cell Rep. 20, 1729–1743 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Peek, C. B. et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342, 1243417 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Asher, G. et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142, 943–953 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Chang, H. C. & Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448–1460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Bellet, M. M. et al. Histone deacetylase SIRT1 controls proliferation, circadian rhythm, and lipid metabolism during liver regeneration in mice. J. Biol. Chem. 291, 23318–23329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Masri, S. et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 158, 659–672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Masri, S. & Sassone-Corsi, P. Sirtuins and the circadian clock: bridging chromatin and metabolism. Sci. Signal. 7, re6 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Rutter, J., Reick, M., Wu, L. C. & McKnight, S. L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293, 510–514 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Sahar, S., Nin, V., Barbosa, M. T., Chini, E. N. & Sassone-Corsi, P. Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation. Aging (Albany N. Y.) 3, 794–802 (2011).

    Google Scholar 

  141. 141.

    Yoshino, J., Baur, J. A. & Imai, S. I. NAD+ intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab. 27, 513–528 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Imai, S. & Guarente, L. It takes two to tango: NAD+ and sirtuins in aging/longevity control. NPJ Aging Mech. Dis. 2, 16017 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Yang, Y., Mohammed, F. S., Zhang, N. & Sauve, A. A. Dihydronicotinamide riboside is a potent NAD+ concentration enhancer in vitro and in vivo. J. Biol. Chem. 294, 9295–9307 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Hsu, C. P., Oka, S., Shao, D., Hariharan, N. & Sadoshima, J. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ. Res. 105, 481–491 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Yoshida, M. et al. Extracellular vesicle-contained enampt delays aging and extends lifespan in mice. Cell Metab. 30, 329–342.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Wang, G. et al. P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage. Cell 158, 1324–1334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Gardell, S. J. et al. Boosting NAD+ with a small molecule that activates NAMPT. Nat. Commun. 10, 3241 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Araki, T., Sasaki, Y. & Milbrandt, J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010–1013 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Williams, P. A. et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science 355, 756–760 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Gaikwad, A., Long, D. J. II, Stringer, J. L. & Jaiswal, A. K. In vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue. J. Biol. Chem. 276, 22559–22564 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Khadka, D. et al. Augmentation of NAD+ levels by enzymatic action of NAD(P)H quinone oxidoreductase 1 attenuates adriamycin-induced cardiac dysfunction in mice. J. Mol. Cell. Cardiol. 124, 45–57 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Kim, H.-J. et al. Augmentation of NAD+ by NQO1 attenuates cisplatin-mediated hearing impairment. Cell Death Dis. 5, e1292 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Nazari Soltan Ahmad, S. et al. Dunnione protects against experimental cisplatin-induced nephrotoxicity by modulating NQO1 and NAD+ levels. Free Radic. Res. 52, 808–817 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Oh, G.-S. et al. Pharmacological activation of NQO1 increases NAD+ levels and attenuates cisplatin-mediated acute kidney injury in mice. Kidney Int. 85, 547–560 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Pandit, A. et al. Dunnione ameliorates cisplatin-induced small intestinal damage by modulating NAD+ metabolism. Biochem. Biophys. Res. Commun. 467, 697–703 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Shen, A. et al. NAD+ augmentation ameliorates acute pancreatitis through regulation of inflammasome signalling. Sci. Rep. 7, 3006 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Oh, G.-S. et al. Increased cellular NAD+ level through NQO1 enzymatic action has protective effects on bleomycin-induced lung fibrosis in mice. Tuberc. Respir. Dis. (Seoul.) 79, 257–266 (2016).

    Article  Google Scholar 

  158. 158.

    Diaz-Ruiz, A. et al. Overexpression of CYB5R3 and NQO1, two NAD+-producing enzymes, mimics aspects of caloric restriction. Aging Cell 17, e12767 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Pellicciari, R. et al. α-Amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) inhibitors as novel modulators of de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis. J. Med. Chem. 61, 745–759 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Kraus, D. et al. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508, 258–262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Neelakantan, H. et al. Selective and membrane-permeable small molecule inhibitors of nicotinamide N-methyltransferase reverse high fat diet-induced obesity in mice. Biochem. Pharmacol. 147, 141–152 (2018).

    Article  CAS  Google Scholar 

  162. 162.

    Neelakantan, H. et al. Small molecule nicotinamide N-methyltransferase inhibitor activates senescent muscle stem cells and improves regenerative capacity of aged skeletal muscle. Biochem. Pharmacol. 163, 481–492 (2019).

    Article  CAS  Google Scholar 

  163. 163.

    Bai, P. et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Pirinen, E. et al. Pharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 19, 1034–1041 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Waldman, M. et al. PARP-1 inhibition protects the diabetic heart through activation of SIRT1-PGC-1α axis. Exp. Cell Res. 373, 112–118 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Wang, H. et al. PARP-1 inhibition attenuates cardiac fibrosis induced by myocardial infarction through regulating autophagy. Biochem. Biophys. Res. Commun. 503, 1625–1632 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Xia, Q. et al. PARP-1 inhibition rescues short lifespan in hyperglycemic C. Elegans and improves GLP-1 secretion in human cells. Aging Dis. 9, 17–30 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Bian, C. et al. NADP+ is an endogenous PARP inhibitor in DNA damage response and tumor suppression. Nat. Commun. 10, 693 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Aksoy, P. et al. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38. Biochem. Biophys. Res. Commun. 349, 353–359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Barbosa, M. T. et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J. 21, 3629–3639 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Boslett, J., Hemann, C., Zhao, Y. J., Lee, H. C. & Zweier, J. L. Luteolinidin protects the postischemic heart through CD38 inhibition with preservation of NAD(P)(H). J. Pharmacol. Exp. Ther. 361, 99–108 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Boslett, J., Helal, M., Chini, E. & Zweier, J. L. Genetic deletion of CD38 confers post-ischemic myocardial protection through preserved pyridine nucleotides. J. Mol. Cell. Cardiol. 118, 81–94 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Boslett, J., Reddy, N., Alzarie, Y. A. & Zweier, J. L. Inhibition of CD38 with the thiazoloquin(az)olin(on)e 78c protects the heart against postischemic injury. J. Pharmacol. Exp. Ther. 369, 55–64 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. 174.

    Camacho-Pereira, J. et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23, 1127–1139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Tarragó, M. G. et al. A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD+ decline. Cell Metab. 27, 1081–1095.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Geisler, S. et al. Gene therapy targeting SARM1 blocks pathological axon degeneration in mice. J. Exp. Med. 216, 294–303 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. 177.

    Chiarugi, A., Dölle, C., Felici, R. & Ziegler, M. The NAD metabolome: a key determinant of cancer cell biology. Nat. Rev. Cancer 12, 741–752 (2012).

    Article  CAS  Google Scholar 

  178. 178.

    Rajman, L., Chwalek, K. & Sinclair, D. A. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 27, 529–547 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Verdin, E. NAD+ in aging, metabolism, and neurodegeneration. Science 350, 1208–1213 (2015).

    Article  CAS  Google Scholar 

  180. 180.

    Katsyuba, E. & Auwerx, J. Modulating NAD+ metabolism, from bench to bedside. EMBO J. 36, 2670–2683 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Fang, E. F. et al. NAD+ in aging: molecular mechanisms and translational implications. Trends Mol. Med. 23, 899–916 (2017).

    Article  CAS  Google Scholar 

  182. 182.

    Imai, S. & Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Johnson, V. E., Stewart, W. & Smith, D. H. Axonal pathology in traumatic brain injury. Exp. Neurol. 246, 35–43 (2013).

    Article  CAS  Google Scholar 

  184. 184.

    Lingor, P., Koch, J. C., Tönges, L. & Bähr, M. Axonal degeneration as a therapeutic target in the CNS. Cell Tissue Res. 349, 289–311 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Lunn, E. R., Perry, V. H., Brown, M. C., Rosen, H. & Gordon, S. Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur. J. Neurosci. 1, 27–33 (1989).

    Article  CAS  Google Scholar 

  186. 186.

    Wang, J. et al. A local mechanism mediates NAD-dependent protection of axon degeneration. J. Cell Biol. 170, 349–355 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Mack, T. G. et al. Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat. Neurosci. 4, 1199–1206 (2001).

    Article  CAS  Google Scholar 

  188. 188.

    Di Stefano, M. et al. A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death Differ. 22, 731–742 (2015).

    Article  CAS  Google Scholar 

  189. 189.

    Zhao, Z. Y. et al. A cell-permeant mimetic of NMN activates SARM1 to produce cyclic ADP-ribose and induce non-apoptotic cell death. iScience 15, 452–466 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Sasaki, Y., Nakagawa, T., Mao, X., DiAntonio, A. & Milbrandt, J. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion. eLife 5, e19749 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Pieper, A. A. et al. Discovery of a proneurogenic, neuroprotective chemical. Cell 142, 39–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. 192.

    De Jesús-Cortés, H. et al. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease. Proc. Natl Acad. Sci. USA 109, 17010–17015 (2012).

    Article  Google Scholar 

  193. 193.

    Tesla, R. et al. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 109, 17016–17021 (2012).

    Article  Google Scholar 

  194. 194.

    Yin, T. C. et al. P7C3 neuroprotective chemicals block axonal degeneration and preserve function after traumatic brain injury. Cell Rep. 8, 1731–1740 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. 195.

    Choi, S. H. et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361, eaan8821 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. 196.

    Voorhees, J. R. et al. (–)-P7C3-S243 protects a rat model of Alzheimer’s disease from neuropsychiatric deficits and neurodegeneration without altering amyloid deposition or reactive glia. Biol. Psychiatry 84, 488–498 (2018).

    Article  CAS  Google Scholar 

  197. 197.

    Liu, D. et al. Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession. Neurobiol. Aging 34, 1564–1580 (2013).

    Article  CAS  Google Scholar 

  198. 198.

    Zhou, M. et al. Neuronal death induced by misfolded prion protein is due to NAD+ depletion and can be relieved in vitro and in vivo by NAD+ replenishment. Brain 138, 992–1008 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  199. 199.

    Schöndorf, D. C. et al. The NAD+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in iPSC and fly models of Parkinson’s disease. Cell Rep. 23, 2976–2988 (2018).

    Article  CAS  Google Scholar 

  200. 200.

    Blacher, E. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572, 474–480 (2019).

    Article  CAS  Google Scholar 

  201. 201.

    Ward, J. M. et al. Metabolic and organelle morphology defects in mice and human patients define spinocerebellar ataxia type 7 as a mitochondrial disease. Cell Rep. 26, 1189–1202.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. 202.

    Stein, L. R. & Imai, S. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J. 33, 1321–1340 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Zhang, H. et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016).

    Article  CAS  Google Scholar 

  204. 204.

    Fukuwatari, T., Morikawa, Y., Sugimoto, E. & Shibata, K. Effects of fatty liver induced by niacin-free diet with orotic acid on the metabolism of tryptophan to niacin in rats. Biosci. Biotechnol. Biochem. 66, 1196–1204 (2002).

    Article  CAS  Google Scholar 

  205. 205.

    Mukhopadhyay, P. et al. PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis. J. Hepatol. 66, 589–600 (2017).

    Article  CAS  Google Scholar 

  206. 206.

    Amano, H. et al. Telomere dysfunction induces sirtuin repression that drives telomere-dependent disease. Cell Metab. 29, 1274–1290.e9 (2019).

    Article  CAS  Google Scholar 

  207. 207.

    Mukhopadhyay, P. et al. Poly (ADP-ribose) polymerase-1 is a key mediator of liver inflammation and fibrosis. Hepatology 59, 1998–2009 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. 208.

    Tummala, K. S. et al. Inhibition of de novo NAD+ synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell 26, 826–839 (2014).

    Article  CAS  Google Scholar 

  209. 209.

    Ear, P. H. et al. Maternal nicotinamide riboside enhances postpartum weight loss, juvenile offspring development, and neurogenesis of adult offspring. Cell Rep. 26, 969–983.e4 (2019).

    Article  CAS  Google Scholar 

  210. 210.

    Li, Z. et al. Overexpressed SIRT6 attenuates cisplatin-induced acute kidney injury by inhibiting ERK1/2 signaling. Kidney Int. 93, 881–892 (2018).

    Article  CAS  Google Scholar 

  211. 211.

    Morigi, M. et al. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Invest. 125, 715–726 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  212. 212.

    Chang, J. W. et al. Up-regulation of SIRT1 reduces endoplasmic reticulum stress and renal fibrosis. Nephron 133, 116–128 (2016).

    Article  CAS  Google Scholar 

  213. 213.

    He, W. et al. Sirt1 activation protects the mouse renal medulla from oxidative injury. J. Clin. Invest. 120, 1056–1068 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. 214.

    Koyama, T. et al. SIRT3 attenuates palmitate-induced ROS production and inflammation in proximal tubular cells. Free Radic. Biol. Med. 51, 1258–1267 (2011).

    Article  CAS  Google Scholar 

  215. 215.

    Hasegawa, K. et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med. 19, 1496–1504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. 216.

    Hong, Q. et al. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int. 93, 1330–1343 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. 217.

    Ogura, Y. et al. Renal mitochondrial oxidative stress is enhanced by the reduction of Sirt3 activity, in Zucker diabetic fatty rats. Redox Rep. 23, 153–159 (2018).

    Article  CAS  Google Scholar 

  218. 218.

    Papadimitriou, A. et al. Theobromine increases NAD+/Sirt-1 activity and protects the kidney under diabetic conditions. Am. J. Physiol. Ren. Physiol. 308, F209–F225 (2015).

    Article  CAS  Google Scholar 

  219. 219.

    Poyan Mehr, A. et al. De novo NAD+ biosynthetic impairment in acute kidney injury in humans. Nat. Med. 24, 1351–1359 (2018).

    Article  CAS  Google Scholar 

  220. 220.

    Wang, Y.-M., Han, R.-L., Song, S.-G., Yuan, X.-P. & Ren, X.-S. Inhibition of PARP overactivation protects acute kidney injury of septic shock. Eur. Rev. Med. Pharmacol. Sci. 22, 6049–6056 (2018).

    PubMed  Google Scholar 

  221. 221.

    Guan, Y. et al. Nicotinamide mononucleotide, an NAD+ precursor, rescues age-associated susceptibility to AKI in a sirtuin 1-dependent manner. J. Am. Soc. Nephrol. 28, 2337–2352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. 222.

    Tran, M. T. et al. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 531, 528–532 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. 223.

    Ugur, S. et al. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren. Fail. 37, 332–336 (2015).

    Article  CAS  Google Scholar 

  224. 224.

    Chen, Y. et al. Endogenous Nampt upregulation is associated with diabetic nephropathy inflammatory-fibrosis through the NF-κB p65 and Sirt1 pathway: NMN alleviates diabetic nephropathy inflammatory-fibrosis by inhibiting endogenous Nampt. Exp. Ther. Med. 14, 4181–4193 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. 225.

    Zakaria, E. M., El-Maraghy, N. N., Ahmed, A. F., Ali, A. A. & El-Bassossy, H. M. PARP inhibition ameliorates nephropathy in an animal model of type 2 diabetes: focus on oxidative stress, inflammation, and fibrosis. Naunyn Schmiedebergs Arch. Pharmacol. 390, 621–631 (2017).

    Article  CAS  Google Scholar 

  226. 226.

    Zhuo, L. et al. NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway. Cell. Physiol. Biochem. 27, 681–90 (2011).

    Article  CAS  Google Scholar 

  227. 227.

    Cho, K. H., Kim, H. J., Rodriguez-Iturbe, B. & Vaziri, N. D. Niacin ameliorates oxidative stress, inflammation, proteinuria, and hypertension in rats with chronic renal failure. Am. J. Physiol. Ren. Physiol. 297, F106–F113 (2009).

    Article  CAS  Google Scholar 

  228. 228.

    Zheng, M. et al. Nicotinamide reduces renal interstitial fibrosis by suppressing tubular injury and inflammation. J. Cell. Mol. Med. 23, 3995–4004 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. 229.

    Gerner, R. R. et al. NAD metabolism fuels human and mouse intestinal inflammation. Gut 67, 1813–1823 (2018).

    Article  CAS  Google Scholar 

  230. 230.

    Lo Sasso, G. et al. Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer. PLoS One 9, e102495 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. 231.

    Wellman, A. S. et al. Intestinal epithelial sirtuin 1 regulates intestinal inflammation during aging in mice by altering the intestinal microbiota. Gastroenterology 153, 772–786 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  232. 232.

    Igarashi, M. & Guarente, L. mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell 166, 436–450 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. 233.

    Mihaylova, M. M. et al. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell 22, 769–778.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. 234.

    Igarashi, M. et al. NAD+ supplementation rejuvenates aged gut adult stem cells. Aging Cell 18, e12935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. 235.

    Toropova, Y. G. et al. Nicotinamide riboside has protective effects in a rat model of mesenteric ischaemia-reperfusion. Int. J. Exp. Pathol. 99, 304–311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. 236.

    Seita, J. & Weissman, I. L. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 640–653 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. 237.

    Vannini, N. et al. Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. Nat. Commun. 7, 13125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. 238.

    Vannini, N. et al. The NAD-booster nicotinamide riboside potently stimulates hematopoiesis through increased mitochondrial clearance. Cell Stem Cell 24, 405–418.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. 239.

    Giammona, L. M. et al. Mechanistic studies on the effects of nicotinamide on megakaryocytic polyploidization and the roles of NAD+ levels and SIRT inhibition. Exp. Hematol. 37, 1340–1352.e3 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. 240.

    Peled, T. et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp. Hematol. 40, 342–55.e1 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. 241.

    Konieczna, I. M. et al. Administration of nicotinamide does not increase platelet levels in mice. Blood Cells Mol. Dis. 50, 171–176 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. 242.

    Delabie, W. et al. The senotherapeutic nicotinamide riboside raises platelet nicotinamide adenine dinucleotide levels but cannot prevent storage lesion. Transfusion https://doi.org/10.1111/trf.15556 (2019).

  243. 243.

    Livingston, D. H. et al. Bone marrow failure following severe injury in humans. Ann. Surg. 238, 748–753 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  244. 244.

    Robinson, Y., Hostmann, A., Matenov, A., Ertel, W. & Oberholzer, A. Erythropoiesis in multiply injured patients. J. Trauma 61, 1285–1291 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  245. 245.

    Sims, C. A. et al. Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock. JCI Insight 3, 120182 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  246. 246.

    Meng, Z. H., Dyer, K., Billiar, T. R. & Tweardy, D. J. Essential role for IL-6 in postresuscitation inflammation in hemorrhagic shock. Am. J. Physiol. Cell Physiol. 280, C343–C351 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. 247.

    Stensballe, J. et al. The early IL-6 and IL-10 response in trauma is correlated with injury severity and mortality. Acta Anaesthesiol. Scand. 53, 515–521 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. 248.

    Minhas, P. S. et al. Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation. Nat. Immunol. 20, 50–63 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. 249.

    Cameron, A. M. et al. Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species-mediated DNA damage. Nat. Immunol. 20, 420–432 (2019).

    Article  CAS  Google Scholar 

  250. 250.

    Lee, C.-U., Song, E.-K., Yoo, C.-H., Kwak, Y.-K. & Han, M.-K. Lipopolysaccharide induces CD38 expression and solubilization in J774 macrophage cells. Mol. Cells 34, 573–576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. 251.

    Cerutti, R. et al. NAD+-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 19, 1042–1049 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. 252.

    Khan, N. A. et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol. Med. 6, 721–731 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. 253.

    Wallace, G. Q. & McNally, E. M. Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annu. Rev. Physiol. 71, 37–57 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. 254.

    Ryu, D. et al. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci. Transl. Med. 8, 361ra139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. 255.

    Chalkiadaki, A., Igarashi, M., Nasamu, A. S., Knezevic, J. & Guarente, L. Muscle-specific SIRT1 gain-of-function increases slow-twitch fibers and ameliorates pathophysiology in a mouse model of duchenne muscular dystrophy. PLoS Genet. 10, e1004490 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. 256.

    Choi, J. Y. et al. Age-associated repression of type 1 inositol 1, 4, 5-triphosphate receptor impairs muscle regeneration. Aging (Albany NY) 8, 2062–2080 (2016).

    Article  CAS  Google Scholar 

  257. 257.

    Cousin, W. et al. Regenerative capacity of old muscle stem cells declines without significant accumulation of DNA damage. PLoS One 8, e63528 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  258. 258.

    Gomes, A. P. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. 259.

    Mohamed, J. S., Wilson, J. C., Myers, M. J., Sisson, K. J. & Alway, S. E. Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism. Aging (Albany NY) 6, 820–834 (2014).

    Article  CAS  Google Scholar 

  260. 260.

    Kourtzidis, I. A. et al. The NAD+ precursor nicotinamide riboside decreases exercise performance in rats. J. Int. Soc. Sports Nutr. 13, 32 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. 261.

    Karamanlidis, G. et al. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 18, 239–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. 262.

    Pillai, J. B., Isbatan, A., Imai, S. & Gupta, M. P. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J. Biol. Chem. 280, 43121–43130 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. 263.

    Pillai, V. B. et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J. Biol. Chem. 285, 3133–3144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. 264.

    Yamamoto, T. et al. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One 9, e98972 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. 265.

    Boslett, J., Hemann, C., Christofi, F. L. & Zweier, J. L. Characterization of CD38 in the major cell types of the heart: endothelial cells highly express CD38 with activation by hypoxia-reoxygenation triggering NAD(P)H depletion. Am. J. Physiol. Cell Physiol. 314, C297–C309 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. 266.

    Wang, L.-F. et al. CD38 deficiency protects heart from high fat diet-induced oxidative stress via activating Sirt3/FOXO3 pathway. Cell. Physiol. Biochem. 48, 2350–2363 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. 267.

    Xu, W. et al. Lethal cardiomyopathy in mice lacking transferrin receptor in the heart. Cell Rep. 13, 533–545 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. 268.

    Lee, C. F. et al. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation 134, 883–894 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. 269.

    Yano, M. et al. Monocyte-derived extracellular Nampt-dependent biosynthesis of NAD+ protects the heart against pressure overload. Sci. Rep. 5, 15857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. 270.

    Martens, C. R. et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat. Commun. 9, 1286 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. 271.

    Winnik, S., Auwerx, J., Sinclair, D. A. & Matter, C. M. Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur. Heart J. 36, 3404–3412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. 272.

    de Picciotto, N. E. et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15, 522–530 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. 273.

    Dahl, T. et al. Nicotinamide phosphoribosyltransferase and lipid accumulation in macrophages. Eur. J. Clin. Invest. 41, 1098–1104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. 274.

    Romani, M., Hofer, D. C., Katsyuba, E. & Auwerx, J. Niacin: an old lipid drug in a new NAD+ dress. J. Lipid Res. 60, 741–746 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. 275.

    Hughes-Large, J. M. et al. Niacin receptor activation improves human microvascular endothelial cell angiogenic function during lipotoxicity. Atherosclerosis 237, 696–704 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. 276.

    Borradaile, N. M. & Pickering, J. G. Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment. Aging Cell 8, 100–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. 277.

    Das, A. et al. Impairment of an endothelial NAD+-H2S signalling network is a reversible cause of vascular aging. Cell 173, 74–89.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. 278.

    Tarantini, S. et al. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol. 24, 101192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. 279.

    Dollerup, O. L. et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am. J. Clin. Nutr. 108, 343–353 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  280. 280.

    Dollerup, O. L. et al. Effects of nicotinamide riboside on endocrine pancreatic function and incretin hormones in nondiabetic men with obesity. J. Clin. Endocrinol. Metab. 104, 5703–5714 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  281. 281.

    Elhassan, Y. S. et al. Nicotinamide riboside augments the human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures in aged subjects: a placebo-controlled, randomized trial. Cell Rep. 28, 1717–1728.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. 282.

    Trammell, S. A. & Brenner, C. Targeted, LCMS-based metabolomics for quantitative measurement of NAD+ metabolites. Comput. Struct. Biotechnol. J. 4, e201301012 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  283. 283.

    Sallin, O. et al. Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides. eLife 7, e32638 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  284. 284.

    Yu, Q. et al. A biosensor for measuring NAD+ levels at the point of care. Nat. Metab. 1, 1219–1225 (2019).

    Article  Google Scholar 

  285. 285.

    Smith, B. C., Hallows, W. C. & Denu, J. M. A continuous microplate assay for sirtuins and nicotinamide-producing enzymes. Anal. Biochem. 394, 101–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. 286.

    Pacholec, M. et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 285, 8340–8351 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. 287.

    Gerhart-Hines, Z. et al. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD+. Mol. Cell 44, 851–863 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. 288.

    Jin, L. et al. Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3. Protein Sci. 18, 514–25 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. 289.

    Hirschey, M. D. et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44, 177–190 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. 290.

    Laurent, G. et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 50, 686–698 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. 291.

    Madsen, A. S. et al. Investigating the sensitivity of NAD+-dependent sirtuin diacylation activities to NADH. J. Biol. Chem. 291, 7128–7141 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. 292.

    Roessler, C., Tüting, C., Meleshin, M., Steegborn, C. & Schutkowski, M. A novel continuous assay for the deacylase Sirtuin 5 and other deacetylases. J. Med. Chem. 58, 7217–7223 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. 293.

    Kugel, S. et al. Identification of and molecular basis for SIRT6 loss-of-function point mutations in cancer. Cell Rep. 13, 479–488 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. 294.

    Mendoza-Alvarez, H. & Alvarez-Gonzalez, R. Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J. Biol. Chem. 268, 22575–22580 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. 295.

    Amé, J. C. et al. PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 274, 17860–17868 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  296. 296.

    Schweiger, M. et al. Characterization of recombinant human nicotinamide mononucleotide adenylyl transferase (NMNAT), a nuclear enzyme essential for NAD synthesis. FEBS Lett. 492, 95–100 (2001).

    Article  CAS  Google Scholar 

  297. 297.

    Raffaelli, N. et al. Identification of a novel human nicotinamide mononucleotide adenylyltransferase. Biochem. Biophys. Res. Commun. 297, 835–840 (2002).

    Article  CAS  Google Scholar 

  298. 298.

    The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019); https://www.uniprot.org/.

  299. 299.

    Pabarcus, M. K. & Casida, J. E. Kynurenine formamidase: determination of primary structure and modeling-based prediction of tertiary structure and catalytic triad. Biochim. Biophys. Acta 1596, 201–211 (2002).

    Article  CAS  Google Scholar 

  300. 300.

    Pabarcus, M. K. & Casida, J. E. Cloning, expression, and catalytic triad of recombinant arylformamidase. Protein Expr. Purif. 44, 39–44 (2005).

    Article  CAS  Google Scholar 

  301. 301.

    Uemura, T. & Hirai, K. Kynurenine 3-monooxygenase activity of rat brain mitochondria determined by high performance liquid chromatography with electrochemical detection. Adv. Exp. Med. Biol. 294, 531–534 (1991).

    Article  CAS  Google Scholar 

  302. 302.

    Alberati-Giani, D. et al. Cloning and functional expression of human kynurenine 3-monooxygenase. FEBS Lett. 410, 407–412 (1997).

    Article  CAS  Google Scholar 

  303. 303.

    Erickson, J. B., Flanagan, E. M., Russo, S. & Reinhard, J. F.Jr. A radiometric assay for kynurenine 3-hydroxylase based on the release of 3H2O during hydroxylation of l-[3,5-3H]kynurenine. Anal. Biochem. 205, 257–262 (1992).

    Article  CAS  Google Scholar 

  304. 304.

    Alberati-Giani, D. et al. Isolation and expression of a cDNA clone encoding human kynureninase. Eur. J. Biochem. 239, 460–468 (1996).

    Article  CAS  Google Scholar 

  305. 305.

    Malherbe, P. et al. Molecular cloning and functional expression of human 3-hydroxyanthranilic-acid dioxygenase. J. Biol. Chem. 269, 13792–13797 (1994).

    CAS  PubMed  Google Scholar 

  306. 306.

    Allegri, G., Costa, C.V.L., Ragazzi, E., Steinhart, H. & Laresio, L. Developments in Tryptophan and Serotonin Metabolism (Springer, 2012).

  307. 307.

    Thul, P. J. et al. A subcellular map of the human proteome. Science 26, eaal3321 (2017); https://www.proteinatlas.org/

  308. 308.

    Seifert, R., Hoshino, J. & Kröger, H. Nicotinamide methylation: tissue distribution, developmental and neoplastic changes. Biochim Biophys. Acta 801, 259–264 (1984).

    Article  CAS  Google Scholar 

  309. 309.

    Riederer, M., Erwa, W., Zimmermann, R., Frank, S. & Zechner, R. Adipose tissue as a source of nicotinamide N-methyltransferase and homocysteine. Atherosclerosis 204, 412–417 (2009).

    Article  CAS  Google Scholar 

  310. 310.

    Pawlak, D., Tankiewicz, A., Matys, T. & Buczko, W. Peripheral distribution of kynurenine metabolites and activity of kynurenine pathway enzymes in renal failure. J. Physiol. Pharmacol. 54, 175–189 (2003).

    CAS  PubMed  Google Scholar 

  311. 311.

    Ito, H. et al. Ability of IDO to attenuate liver injury in alpha-galactosylceramide-induced hepatitis model. J. Immunol. 185, 4554–4560 (2010).

    Article  CAS  Google Scholar 

  312. 312.

    Dobrovolsky, V. N. et al. Effect of arylformamidase (kynurenine formamidase) gene inactivation in mice on enzymatic activity, kynurenine pathway metabolites and phenotype. Biochim. Biophys. Acta 1724, 163–172 (2005).

    Article  CAS  Google Scholar 

  313. 313.

    Kawai, J., Okuno, E. & Kido, R. Organ distribution of rat kynureninase and changes of its activity during development. Enzyme 39, 181–189 (1988).

    Article  CAS  Google Scholar 

  314. 314.

    Pucci, L., Perozzi, S., Cimadamore, F., Orsomando, G. & Raffaelli, N. Tissue expression and biochemical characterization of human 2-amino 3-carboxymuconate 6-semialdehyde decarboxylase, a key enzyme in tryptophan catabolism. FEBS J. 274, 827–840 (2007).

    Article  CAS  Google Scholar 

  315. 315.

    Sanada, H. & Miyazaki, M. Effect of high-protein diet on liver alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase in rats. J. Nutr. Sci. Vitaminol. (Tokyo) 30, 113–123 (1984).

    Article  CAS  Google Scholar 

  316. 316.

    Tanabe, A., Egashira, Y., Fukuoka, S., Shibata, K. & Sanada, H. Purification and molecular cloning of rat 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase. Biochem. J. 361, 567–575 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. 317.

    Sadanaga-Akiyoshi, F. et al. Nicotinamide attenuates focal ischemic brain injury in rats: with special reference to changes in nicotinamide and NAD+ levels in ischemic core and penumbra. Neurochem. Res. 28, 1227–1234 (2003).

    Article  CAS  Google Scholar 

  318. 318.

    Kabra, D. G., Thiyagarajan, M., Kaul, C. L. & Sharma, S. S. Neuroprotective effect of 4-amino-1,8-napthalimide, a poly(ADP ribose) polymerase inhibitor in middle cerebral artery occlusion-induced focal cerebral ischemia in rat. Brain Res. Bull. 62, 425–433 (2004).

    Article  CAS  Google Scholar 

  319. 319.

    Kaundal, R. K., Shah, K. K. & Sharma, S. S. Neuroprotective effects of NU1025, a PARP inhibitor in cerebral ischemia are mediated through reduction in NAD depletion and DNA fragmentation. Life Sci. 79, 2293–2302 (2006).

    Article  CAS  Google Scholar 

  320. 320.

    Feng, Y., Paul, I. A. & LeBlanc, M. H. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat. Brain Res. Bull. 69, 117–122 (2006).

    Article  CAS  Google Scholar 

  321. 321.

    Zheng, C. et al. NAD+ administration decreases ischemic brain damage partially by blocking autophagy in a mouse model of brain ischemia. Neurosci. Lett. 512, 67–71 (2012).

    Article  CAS  Google Scholar 

  322. 322.

    Xie, L., Wang, Z., Li, C., Yang, K. & Liang, Y. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis. J. Clin. Neurosci. 36, 114–119 (2017).

    Article  CAS  Google Scholar 

  323. 323.

    Gong, B. et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol. Aging 34, 1581–1588 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. 324.

    Turunc Bayrakdar, E., Uyanikgil, Y., Kanit, L., Koylu, E. & Yalcin, A. Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Aβ(1-42)-induced rat model of Alzheimer’s disease. Free Radic. Res. 48, 146–158 (2014).

    Article  CAS  Google Scholar 

  325. 325.

    Wang, X., Hu, X., Yang, Y., Takata, T. & Sakurai, T. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 1643, 1–9 (2016).

    Article  CAS  Google Scholar 

  326. 326.

    Sorrentino, V. et al. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 552, 187–193 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. 327.

    Choi, S. H. et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361, eaan8821 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. 328.

    Hamity, M. V. et al. Nicotinamide riboside, a form of vitamin B3 and NAD+ precursor, relieves the nociceptive and aversive dimensions of paclitaxel-induced peripheral neuropathy in female rats. Pain 158, 962–972 (2017).

    Article  CAS  Google Scholar 

  329. 329.

    Brown, K. D. et al. Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab. 20, 1059–1068 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. 330.

    Stromsdorfer, K. L. et al. NAMPT-mediated NAD+ biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice. Cell Rep. 16, 1851–1860 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. 331.

    Escande, C. et al. Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 62, 1084–1093 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. 332.

    Abdullah, K. M., Alam, M. M., Iqbal, Z. & Naseem, I. Therapeutic effect of vitamin B3 on hyperglycemia, oxidative stress and DNA damage in alloxan induced diabetic rat model. Biomed. Pharmacother. 105, 1223–1231 (2018).

    Article  CAS  Google Scholar 

  333. 333.

    Demarin, V., Podobnik, S. S., Storga-Tomic, D. & Kay, G. Treatment of Alzheimer’s disease with stabilized oral nicotinamide adenine dinucleotide: a randomized, double-blind study. Drugs Exp. Clin. Res. 30, 27–33 (2004).

    CAS  PubMed  Google Scholar 

  334. 334.

    Wakade, C., Chong, R., Bradley, E. & Morgan, J. C. Low-dose niacin supplementation modulates GPR109A, niacin index and ameliorates Parkinson’s disease symptoms without side effects. Clin. Case Rep. 3, 635–637 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  335. 335.

    Alisky, J. M. Niacin improved rigidity and bradykinesia in a Parkinson’s disease patient but also caused unacceptable nightmares and skin rash—a case report. Nutr. Neurosci. 8, 327–329 (2005).

    Article  Google Scholar 

  336. 336.

    Phelan, M. J. & Phase, I. I. Clinical trial of nicotinamide for the treatment of mild to moderate Alzheimer’s disease. J. Geriatr. Med. Gerontol. 3, 021 (2017).

    Article  Google Scholar 

  337. 337.

    Vestergaard, E. T., Cichosz, S. L., Møller, N., Jørgensen, J. O. L. & Fleischer, J. Short-term acipimox treatment is associated with decreased cardiac parasympathetic modulation. Br. J. Clin. Pharmacol. 83, 2671–2677 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. 338.

    de la Rubia, J. E. et al. Efficacy and tolerability of EH301 for amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled human pilot study. Amyotroph. Lateral Scler. Frontotemporal Degener. 20, 115–122 (2019).

    Article  CAS  Google Scholar 

  339. 339.

    Berge, K. G. & Canner, P. L. Coronary drug project: experience with niacin. Eur. J. Clin. Pharmacol. 40(Suppl. 1), S49–S51 (1991).

    Article  Google Scholar 

  340. 340.

    Westphal, S., Borucki, K., Taneva, E., Makarova, R. & Luley, C. Adipokines and treatment with niacin. Metabolism 55, 1283–1285 (2006).

    Article  CAS  Google Scholar 

  341. 341.

    Brown, G. et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N. Engl. J. Med. 323, 1289–1298 (1990).

    Article  CAS  Google Scholar 

  342. 342.

    Blankenhorn, D. H. et al. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. J. Am. Med. Assoc. 257, 3233–3240 (1987).

    Article  CAS  Google Scholar 

  343. 343.

    Blankenhorn, D. H. et al. The Cholesterol Lowering Atherosclerosis Study (CLAS): design, methods, and baseline results. Control. Clin. Trials 8, 356–387 (1987).

    Article  CAS  Google Scholar 

  344. 344.

    Brown, B. G. et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N. Engl. J. Med. 345, 1583–1592 (2001).

    Article  CAS  Google Scholar 

  345. 345.

    Taylor, A. J., Sullenberger, L. E., Lee, H. J., Lee, J. K. & Grace, K. A. Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation 110, 3512–3517 (2004).

    Article  CAS  Google Scholar 

  346. 346.

    Guyton, J. R. et al. Lipid-altering efficacy and safety of ezetimibe/simvastatin coadministered with extended-release niacin in patients with type IIa or type IIb hyperlipidemia. J. Am. Coll. Cardiol. 51, 1564–1572 (2008).

    Article  CAS  Google Scholar 

  347. 347.

    Sang, Z. C. et al. Combined use of extended-release niacin and atorvastatin: safety and effects on lipid modification. Chin. Med. J. (Engl.) 122, 1615–1620 (2009).

    CAS  Google Scholar 

  348. 348.

    Villines, T. C. et al. The ARBITER 6-HALTS Trial (Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol 6-HDL and LDL Treatment Strategies in Atherosclerosis): final results and the impact of medication adherence, dose, and treatment duration. J. Am. Coll. Cardiol. 55, 2721–2726 (2010).

    Article  Google Scholar 

  349. 349.

    AIM-HIGH Investigators et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).

    Article  CAS  Google Scholar 

  350. 350.

    HPS2-THRIVE Collaborative Group. et al. Effects of extended-release niacin with laropiprant in high-risk patients. N. Engl. J. Med. 371, 203–212 (2014).

    Article  CAS  Google Scholar 

  351. 351.

    Takahashi, Y. et al. Nicotinamide suppresses hyperphosphatemia in hemodialysis patients. Kidney Int. 65, 1099–1104 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. 352.

    Airhart, S. E. et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One 12, e0186459 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. 353.

    Conze, D., Brenner, C. & Kruger, C. L. Safety and metabolism of long-term administration of NIAGEN (nicotinamide riboside chloride) in a randomized, double-blind, placebo-controlled clinical trial of healthy overweight adults. Sci. Rep. 9, 9772 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. 354.

    Irie, J. et al. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr. J. https://doi.org/10.1507/endocrj.EJ19-0313 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  355. 355.

    Dellinger, R. W. et al. Repeat dose NRPT (nicotinamide riboside and pterostilbene) increases NAD+ levels in humans safely and sustainably: a randomized, double-blind, placebo-controlled study. NPJ Aging Mech. Dis. 3, 17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. 356.

    Sirtori, C. R. et al. Reduced triglyceridemia and increased high density lipoprotein cholesterol levels after treatment with acipimox, a new inhibitor of lipolysis. Atherosclerosis 38, 267–271 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. 357.

    Taskinen, M. R. & Nikkilä, E. A. Effects of acipimox on serum lipids, lipoproteins and lipolytic enzymes in hypertriglyceridemia. Atherosclerosis 69, 249–255 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. 358.

    Worm, D. et al. Pronounced blood glucose-lowering effect of the antilipolytic drug acipimox in noninsulin-dependent diabetes mellitus patients during a 3-day intensified treatment period. J. Clin. Endocrinol. Metab. 78, 717–721 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  359. 359.

    Bajaj, M. et al. Effect of a sustained reduction in plasma free fatty acid concentration on intramuscular long-chain fatty Acyl-CoAs and insulin action in type 2 diabetic patients. Diabetes 54, 3148–3153 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. 360.

    van de Weijer, T. et al. Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans. Diabetes 64, 1193–1201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. 361.

    Salgin, B. et al. Effects of prolonged fasting and sustained lipolysis on insulin secretion and insulin sensitivity in normal subjects. Am. J. Physiol. Endocrinol. Metab. 296, E454–E461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. 362.

    Santomauro, A. T. et al. Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes 48, 1836–1841 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. 363.

    Lehto, H.-R. et al. Effects of acute and one-week fatty acid lowering on cardiac function and insulin sensitivity in relation with myocardial and muscle fat and adiponectin levels. J. Clin. Endocrinol. Metab. 97, 3277–3284 (2012).

    Article  CAS  Google Scholar 

  364. 364.

    Vestergaard, E. T. et al. Acipimox acutely increases GLP-1 concentrations in overweight subjects and hypopituitary patients. J. Clin. Endocrinol. Metab. 78, 2581–2592 (2019).

    Article  Google Scholar 

  365. 365.

    Hansen, D. et al. Adipose tissue lipolytic inhibition enhances the glucoregulatory properties of exercise in type 2 diabetes patients. Eur. J. Sport Sci. 18, 1245–1254 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  366. 366.

    Siadat, A. H., Iraji, F., Khodadadi, M. & Jary, M. K. Topical nicotinamide in combination with calcipotriol for the treatment of mild to moderate psoriasis: A double-blind, randomized, comparative study. Adv. Biomed. Res. 2, 90 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. 367.

    Dollerup, O. L. et al. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin resistant men. J. Physiol. (Lond.) https://doi.org/10.1113/JP278752 (2019).

  368. 368.

    van Loon, L. J. C. et al. Inhibition of adipose tissue lipolysis increases intramuscular lipid use in type 2 diabetic patients. Diabetologia 48, 2097–2107 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. 369.

    Restrepo Valencia, C. A. & Cruz, J. [Safety and effectiveness of nicotinic acid in the management of patients with chronic renal disease and hyperlipidemia associated to hyperphosphatemia]. Nefrologia 28, 61–66 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  370. 370.

    Jin Kang, H. et al. Effects of low-dose niacin on dyslipidemia and serum phosphorus in patients with chronic kidney disease. Kidney Res. Clin. Pract. 32, 21–26 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  371. 371.

    Maccubbin, D., Tipping, D., Kuznetsova, O., Hanlon, W. A. & Bostom, A. G. Hypophosphatemic effect of niacin in patients without renal failure: a randomized trial. Clin. J. Am. Soc. Nephrol. 5, 582–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. 372.

    Shimoda, K. et al. [Niceritrol decreases serum phosphate levels in chronic hemodialysis patients]. Nihon Jinzo Gakkai Shi. 40, 1–7 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  373. 373.

    Flechtner-Mors, M., Jenkinson, C. P., Alt, A., Adler, G. & Ditschuneit, H. H. Effects of acipimox on the lipolysis rate in subcutaneous adipose tissue of obese subjects. Diabetes Metab. Res. Rev. 17, 387–390 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the EPFL, the European Research Council (ERC-AdG-787702), the Swiss National Science Foundation (SNSF 310030B-160318 and SNF NAD 31003A_179435), the Fondation Suisse de Recherche sur les Maladies Musculaires (FSRMM), the AgingX program of the Swiss Initiative for Systems Biology (RTD 2013/153) and the NIH (R01AG043930).

Author information

Affiliations

Authors

Contributions

E.K., M.R., D.H. and J.A. wrote the manuscript.

Corresponding author

Correspondence to Johan Auwerx.

Ethics declarations

Competing interests

J.A. is a consultant to Mitobridge-Astellas, MetroBiotech and TES pharma, companies that develop NAD+-boosting therapies. E.K., M.R. and D.H. declare no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Primary handling editor: Christoph Schmitt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katsyuba, E., Romani, M., Hofer, D. et al. NAD+ homeostasis in health and disease. Nat Metab 2, 9–31 (2020). https://doi.org/10.1038/s42255-019-0161-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing