Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrating the inputs that shape pancreatic islet hormone release

Abstract

The pancreatic islet is a complex mini organ composed of a variety of endocrine cells and their support cells, which together tightly control blood glucose homeostasis. Changes in glucose concentration are commonly regarded as the chief signal controlling insulin-secreting beta cells, glucagon-secreting alpha cells and somatostatin-secreting delta cells. However, each of these cell types is highly responsive to a multitude of endocrine, paracrine, nutritional and neural inputs, which collectively shape the final endocrine output of the islet. Here, we review the principal inputs for each islet-cell type and the physiological circumstances in which these signals arise, through the prism of the insights generated by the transcriptomes of each of the major endocrine-cell types. A comprehensive integration of the factors that influence blood glucose homeostasis is essential to successfully improve therapeutic strategies for better diabetes management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparative architecture of pancreatic islets of mice and humans.
Fig. 2: Inter-organ signalling from nutrient sensing to islet-mediated metabolic effects.
Fig. 3: Visualization of the abundance and selectivity of GPCR and transporter gene expression in alpha, beta and delta cells.
Fig. 4: Diabetes disrupts the extensive paracrine signalling network of the islet.

Similar content being viewed by others

Data availability

The dataset analysed in this study are available from the Gene Expression Omnibus repository under accession number GSE90766.

References

  1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

  2. Unger, R. H. & Cherrington, A. D. Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J. Clin. Invest. 122, 4–12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cabrera, O. et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl Acad. Sci. USA 103, 2334–2339 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Steiner, D. J., Kim, A., Miller, K. & Hara, M. Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets 2, 135–145 (2010).

    Article  PubMed  Google Scholar 

  5. Brissova, M. et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J. Histochem. Cytochem. 53, 1087–1097 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Keane, K. & Newsholme, P. Metabolic regulation of insulin secretion. Vitam. Horm. 95, 1–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Grodsky, G. M. et al. Effects of carbohydrates on secretion of insulin from isolated rat pancreas. Am. J. Physiol. 205, 638–644 (1963).

    Article  CAS  PubMed  Google Scholar 

  8. Jensen, M. V. et al. Metabolic cycling in control of glucose-stimulated insulin secretion. Am. J. Physiol. Endocrinol. Metab. 295, E1287–E1297 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E. & Raptis, S. A. Insulin effects in muscle and adipose tissue. Diabetes Res. Clin. Pract. 93 Suppl 1, S52–S59 (2011).

    Article  PubMed  CAS  Google Scholar 

  10. Hart, N. J. & Powers, A. C. Use of human islets to understand islet biology and diabetes: progress, challenges and suggestions. Diabetologia 62, 212–222 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Briant, L., Salehi, A., Vergari, E., Zhang, Q. & Rorsman, P. Glucagon secretion from pancreatic α-cells. Ups. J. Med. Sci. 121, 113–119 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vieira, E., Salehi, A. & Gylfe, E. Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells. Diabetologia 50, 370–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Walker, J. N. et al. Regulation of glucagon secretion by glucose: paracrine, intrinsic or both? Diabetes Obes. Metab. 13 (Suppl. 1), 95–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. van der Meulen, T. et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21, 769–776 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rorsman, P. & Huising, M. O. The somatostatin-secreting pancreatic δ-cell in health and disease. Nat. Rev. Endocrinol. 14, 404–414 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D’Alessio, D. A. & Ensinck, J. W. Fasting and postprandial concentrations of somatostatin-28 and somatostatin-14 in type II diabetes in men. Diabetes 39, 1198–1202 (1990).

    Article  PubMed  Google Scholar 

  17. Huising, M. O., van der Meulen, T., Huang, J. L., Pourhosseinzadeh, M. S. & Noguchi, G. M. The difference δ-cells make in glucose control. Physiol. (Bethesda) 33, 403–411 (2018).

    CAS  Google Scholar 

  18. Rorsman, P. & Ashcroft, F. M. Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev. 98, 117–214 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez-Diaz, R. & Caicedo, A. Neural control of the endocrine pancreas. Best. Pract. Res. Clin. Endocrinol. Metab. 28, 745–756 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Amisten, S. et al. A comparative analysis of human and mouse islet G-protein coupled receptor expression. Sci. Rep. 7, 46600 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amisten, S., Salehi, A., Rorsman, P., Jones, P. M. & Persaud, S. J. An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol. Ther. 139, 359–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Atanes, P. et al. Defining G protein-coupled receptor peptide ligand expressomes and signalomes in human and mouse islets. Cell. Mol. Life Sci. 75, 3039–3050 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang, S. C. et al. Human pancreatic neuro-insular network in health and fatty infiltration. Diabetologia 61, 168–181 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Brunicardi, F. C., Shavelle, D. M. & Andersen, D. K. Neural regulation of the endocrine pancreas. Int. J. Pancreatol. 18, 177–195 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, C., Ling, Z. & Pipeleers, D. Comparison of cellular and medium insulin and GABA content as markers for living beta-cells. Am. J. Physiol. Endocrinol. Metab. 288, E307–E313 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez-Diaz, R. et al. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat. Med. 17, 888–892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Almaça, J. et al. Human beta cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Rep. 17, 3281–3291 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Rodriguez-Diaz, R. et al. Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 14, 45–54 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dorrell, C. et al. Human islets contain four distinct subtypes of β cells. Nat. Commun. 7, 11756 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Adriaenssens, A. E. et al. Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets. Diabetologia 59, 2156–2165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benner, C. et al. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics 15, 620 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. DiGruccio, M. R. et al. Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets. Mol. Metab. 5, 449–458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Segerstolpe, Å. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Briant, L. J. et al. Functional identification of islet cell types by electrophysiological fingerprinting. J. R. Soc. Interface 14, 20160999 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cadwell, C. R. et al. Multimodal profiling of single-cell morphology, electrophysiology, and gene expression using Patch-seq. Nat. Protoc. 12, 2531–2553 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Camunas-Soler, J. et al. Pancreas patch-seq links physiologic dysfunction in diabetes to single-cell transcriptomic phenotypes. Preprint at bioRxiv https://doi.org/10.1101/555110 (2019).

  38. Bonner-Weir, S., Sullivan, B. A. & Weir, G. C. Human islet morphology revisited: human and rodent islets are not so different after all. J. Histochem. Cytochem. 63, 604–612 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kilimnik, G., Jo, J., Periwal, V., Zielinski, M. C. & Hara, M. Quantification of islet size and architecture. Islets 4, 167–172 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Skelin Klemen, M., Dolenšek, J., Slak Rupnik, M. & Stožer, A. The triggering pathway to insulin secretion: functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets 9, 109–139 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Longuet, C. et al. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab. 8, 359–371 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boden, G., Rezvani, I. & Owen, O. E. Effects of glucagon on plasma amino acids. J. Clin. Invest. 73, 785–793 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rorsman, P. & Braun, M. Regulation of insulin secretion in human pancreatic islets. Annu. Rev. Physiol. 75, 155–179 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. De Vos, A. et al. Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J. Clin. Invest. 96, 2489–2495 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang, Q. et al. R-type Ca2+-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nat. Cell Biol. 9, 453–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Briant, L. J. B. et al. δ-cells and β-cells are electrically coupled and regulate α-cell activity via somatostatin. J. Physiol. (Lond.) 596, 197–215 (2018).

    Article  CAS  Google Scholar 

  47. Göpel, S. O., Kanno, T., Barg, S. & Rorsman, P. Patch-clamp characterisation of somatostatin-secreting -cells in intact mouse pancreatic islets. J. Physiol. (Lond.) 528, 497–507 (2000).

    Article  Google Scholar 

  48. Salehi, A., Qader, S. S., Grapengiesser, E. & Hellman, B. Pulses of somatostatin release are slightly delayed compared with insulin and antisynchronous to glucagon. Regul. Pept. 144, 43–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. MacDonald, P. E. et al. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans. PLoS Biol. 5, e143 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lai, B. K. et al. Somatostatin is only partly required for the glucagonostatic effect of glucose but is necessary for the glucagonostatic effect of KATP channel blockers. Diabetes 67, 2239–2253 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Smith, P. A. et al. Electrogenic arginine transport mediates stimulus-secretion coupling in mouse pancreatic beta-cells. J. Physiol. (Lond.) 499, 625–635 (1997).

    Article  CAS  Google Scholar 

  52. Dunne, M. J., Yule, D. I., Gallacher, D. V. & Petersen, O. H. Effects of alanine on insulin-secreting cells: patch-clamp and single cell intracellular Ca2+ measurements. Biochim. Biophys. Acta 1055, 157–164 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Henquin, J. C. & Meissner, H. P. Effects of amino acids on membrane potential and 86Rb+ fluxes in pancreatic beta-cells. Am. J. Physiol. 240, E245–E252 (1981).

    CAS  PubMed  Google Scholar 

  54. Newsholme, P., Bender, K., Kiely, A. & Brennan, L. Amino acid metabolism, insulin secretion and diabetes. Biochem. Soc. Trans. 35, 1180–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Yan-Do, R. et al. A glycine-insulin autocrine feedback loop enhances insulin secretion from human β-cells and is impaired in type 2 diabetes. Diabetes 65, 2311–2321 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Rocha, D. M., Faloona, G. R. & Unger, R. H. Glucagon-stimulating activity of 20 amino acids in dogs. J. Clin. Invest. 51, 2346–2351 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ang, T., Bruce, C. R. & Kowalski, G. M. Postprandial aminogenic insulin and glucagon secretion can stimulate glucose flux in humans. Diabetes 68, 939–946 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Rorsman, P. & Hellman, B. Voltage-activated currents in guinea pig pancreatic alpha 2 cells. Evidence for Ca2+-dependent action potentials. J. Gen. Physiol. 91, 223–242 (1988).

    Article  CAS  PubMed  Google Scholar 

  59. Li, C. et al. Regulation of glucagon secretion in normal and diabetic human islets by γ-hydroxybutyrate and glycine. J. Biol. Chem. 288, 3938–3951 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Dean, E. D. et al. Interrupted glucagon signalling reveals hepatic alpha cell axis and role for l-glutamine in alpha cell proliferation. Cell Metab. 25, 1362–1373.e1365 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gelling, R. W. et al. Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc. Natl Acad. Sci. USA 100, 1438–1443 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, J. et al. Amino acid transporter Slc38a5 controls glucagon receptor inhibition-induced pancreatic alpha cell hyperplasia in mice. Cell Metab. 25, 1348–1361.e1348 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, J. et al. Increased SLC38A4 amino acid transporter expression in human pancreatic α-cells after glucagon receptor inhibition. Endocrinology 160, 979–988 (2019).

    Article  PubMed  CAS  Google Scholar 

  64. Wewer Albrechtsen, N. J. et al. Evidence of a liver-alpha cell axis in humans: hepatic insulin resistance attenuates relationship between fasting plasma glucagon and glucagonotropic amino acids. Diabetologia 61, 671–680 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Wewer Albrechtsen, N. J. et al. Hyperglucagonemia correlates with plasma levels of non-branched-chain amino acids in patients with liver disease independent of type 2 diabetes. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G91–G96 (2018).

    Article  PubMed  CAS  Google Scholar 

  66. Itoh, Y. et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422, 173–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Pujol, J. B. et al. Coordination of GPR40 and ketogenesis signalling by medium chain fatty acids regulates beta cell function. Nutrients 10, E473 (2018).

    Article  PubMed  CAS  Google Scholar 

  68. Nolan, C. J., Madiraju, M. S., Delghingaro-Augusto, V., Peyot, M. L. & Prentki, M. Fatty acid signalling in the beta-cell and insulin secretion. Diabetes 55 (Suppl. 2), S16–S23 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Kristinsson, H., Bergsten, P. & Sargsyan, E. Free fatty acid receptor 1 (FFAR1/GPR40) signaling affects insulin secretion by enhancing mitochondrial respiration during palmitate exposure. Biochim. Biophys. Acta 1853, 3248–3257 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Nagasumi, K. et al. Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes 58, 1067–1076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Haber, E. P. et al. Pleiotropic effects of fatty acids on pancreatic beta-cells. J. Cell. Physiol. 194, 1–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Ferdaoussi, M. et al. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia 55, 2682–2692 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kristinsson, H., Smith, D. M., Bergsten, P. & Sargsyan, E. FFAR1 is involved in both the acute and chronic effects of palmitate on insulin secretion. Endocrinology 154, 4078–4088 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Opara, E. C., Garfinkel, M., Hubbard, V. S., Burch, W. M. & Akwari, O. E. Effect of fatty acids on insulin release: role of chain length and degree of unsaturation. Am. J. Physiol. 266, E635–E639 (1994).

    CAS  PubMed  Google Scholar 

  75. Hoppa, M. B. et al. Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca2+ channels from secretory granules. Cell Metab. 10, 455–465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Olofsson, C. S., Salehi, A., Holm, C. & Rorsman, P. Palmitate increases L-type Ca2+ currents and the size of the readily releasable granule pool in mouse pancreatic beta-cells. J. Physiol. (Lond.) 557, 935–948 (2004).

    Article  CAS  Google Scholar 

  77. Gerich, J. E., Langlois, M., Schneider, V., Karam, J. H. & Noacco, C. Effects of alternations of plasma free fatty acid levels on pancreatic glucagon secretion in man. J. Clin. Invest. 53, 1284–1289 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kristinsson, H. et al. Basal hypersecretion of glucagon and insulin from palmitate-exposed human islets depends on FFAR1 but not decreased somatostatin secretion. Sci. Rep. 7, 4657 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Olofsson, C. S., Salehi, A., Göpel, S. O., Holm, C. & Rorsman, P. Palmitate stimulation of glucagon secretion in mouse pancreatic alpha-cells results from activation of L-type calcium channels and elevation of cytoplasmic calcium. Diabetes 53, 2836–2843 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Guettet, C., Mathé, D., Navarro, N. & Lecuyer, B. Effects of chronic glucagon administration on rat lipoprotein composition. Biochim. Biophys. Acta 1005, 233–238 (1989).

    Article  CAS  PubMed  Google Scholar 

  81. Xiao, C., Pavlic, M., Szeto, L., Patterson, B. W. & Lewis, G. F. Effects of acute hyperglucagonemia on hepatic and intestinal lipoprotein production and clearance in healthy humans. Diabetes 60, 383–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stone, V. M. et al. GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans. Diabetologia 57, 1182–1191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Samols, E., Marri, G. & Marks, V. Promotion of insulin secretion by glucagon. Lancet 2, 415–416 (1965).

    Article  CAS  PubMed  Google Scholar 

  84. Watts, M., Ha, J., Kimchi, O. & Sherman, A. Paracrine regulation of glucagon secretion: the β/α/δ model. Am. J. Physiol. Endocrinol. Metab. 310, E597–E611 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rodriguez-Diaz, R. et al. Paracrine interactions within the pancreatic islet determine the glycemic set point. Cell Metab. 27, 549–558.e544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lauritsen, K. B., Moody, A. J., Christensen, K. C. & Lindkaer Jensen, S. Gastric inhibitory polypeptide (GIP) and insulin release after small-bowel resection in man. Scand. J. Gastroenterol. 15, 833–840 (1980).

    Article  CAS  PubMed  Google Scholar 

  87. Elrick, H., Stimmler, L., Hlad, C. J. Jr. & Arai, Y. Plasma insulin response to oral and intravenous glucose administration. J. Clin. Endocrinol. Metab. 24, 1076–1082 (1964).

    Article  CAS  PubMed  Google Scholar 

  88. Nauck, M. A. et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J. Clin. Endocrinol. Metab. 63, 492–498 (1986).

    Article  CAS  PubMed  Google Scholar 

  89. MacDonald, P. E. et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 51 (Suppl. 3), S434–S442 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Shigeto, M. et al. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J. Clin. Invest. 125, 4714–4728 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Stoffers, D. A. et al. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 49, 741–748 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Yang, D. H., Zhou, C. H., Liu, Q. & Wang, M. W. Landmark studies on the glucagon subfamily of GPCRs: from small molecule modulators to a crystal structure. Acta Pharmacol. Sin. 36, 1033–1042 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Capozzi, M. E. et al. Beta-cell tone is defined by proglucagon peptides through cyclic AMP signalling. JCI Insight 4, e126742 (2019).

    Article  PubMed Central  Google Scholar 

  94. Chambers, A. P. et al. The role of pancreatic preproglucagon in glucose homeostasis in mice. Cell Metab. 25, 927–934.e923 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Svendsen, B. et al. Insulin secretion depends on intra-islet glucagon signalling. Cell Rep. 25, 1127–1134.e1122 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Zhu, L. et al. Intra-islet glucagon signalling is critical for maintaining glucose homeostasis. JCI Insight 5, 127994 (2019).

    Article  PubMed  Google Scholar 

  97. Huypens, P., Ling, Z., Pipeleers, D. & Schuit, F. Glucagon receptors on human islet cells contribute to glucose competence of insulin release. Diabetologia 43, 1012–1019 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Kawai, K., Yokota, C., Ohashi, S., Watanabe, Y. & Yamashita, K. Evidence that glucagon stimulates insulin secretion through its own receptor in rats. Diabetologia 38, 274–276 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Song, Y. et al. Gut-proglucagon-derived peptides are essential for regulating glucose homeostasis in mice. Cell Metab. 30, 976–986.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Whalley, N. M., Pritchard, L. E., Smith, D. M. & White, A. Processing of proglucagon to GLP-1 in pancreatic α-cells: is this a paracrine mechanism enabling GLP-1 to act on β-cells? J. Endocrinol. 211, 99–106 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Tillner, J. et al. A novel dual glucagon-like peptide and glucagon receptor agonist SAR425899: results of randomized, placebo-controlled first-in-human and first-in-patient trials. Diabetes Obes. Metab. 21, 120–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Zhou, J. et al. A novel glucagon-like peptide-1/glucagon receptor dual agonist exhibits weight-lowering and diabetes-protective effects. Eur. J. Med. Chem. 138, 1158–1169 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Petrusz, P., Merchenthaler, I., Maderdrut, J. L., Vigh, S. & Schally, A. V. Corticotropin-releasing factor (CRF)-like immunoreactivity in the vertebrate endocrine pancreas. Proc. Natl Acad. Sci. USA 80, 1721–1725 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huising, M. O. et al. CRFR1 is expressed on pancreatic beta cells, promotes beta cell proliferation, and potentiates insulin secretion in a glucose-dependent manner. Proc. Natl Acad. Sci. USA 107, 912–917 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Kanno, T., Suga, S., Nakano, K., Kamimura, N. & Wakui, M. Corticotropin-releasing factor modulation of Ca2+ influx in rat pancreatic beta-cells. Diabetes 48, 1741–1746 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Blaabjerg, L. et al. CRFR1 activation protects against cytokine-induced β-cell death. J. Mol. Endocrinol. 53, 417–427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Molina, J. et al. Control of insulin secretion by cholinergic signalling in the human pancreatic islet. Diabetes 63, 2714–2726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gautam, D. et al. A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab. 3, 449–461 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Gilon, P. & Henquin, J. C. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr. Rev. 22, 565–604 (2001).

    CAS  PubMed  Google Scholar 

  110. Duttaroy, A. et al. Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in m3 muscarinic acetylcholine receptor-deficient mice. Diabetes 53, 1714–1720 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Hauge-Evans, A. C., Anderson, R. L., Persaud, S. J. & Jones, P. M. Delta cell secretory responses to insulin secretagogues are not mediated indirectly by insulin. Diabetologia 55, 1995–2004 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Martyn, J. A., Fagerlund, M. J. & Eriksson, L. I. Basic principles of neuromuscular transmission. Anaesthesia 64 Suppl 1, 1–9 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Ostenson, C. G. Regulation of glucagon release: effects of insulin on the pancreatic A2-cell of the guinea pig. Diabetologia 17, 325–330 (1979).

    Article  CAS  PubMed  Google Scholar 

  114. Kawamori, D. et al. Insulin signaling in alpha cells modulates glucagon secretion in vivo. Cell Metab. 9, 350–361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Franklin, I., Gromada, J., Gjinovci, A., Theander, S. & Wollheim, C. B. Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54, 1808–1815 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Ravier, M. A. & Rutter, G. A. Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 54, 1789–1797 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Vergari, E. et al. Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion. Nat. Commun. 10, 139 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ohta, Y. et al. Convergence of the insulin and serotonin programs in the pancreatic beta-cell. Diabetes 60, 3208–3216 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim, H. et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat. Med. 16, 804–808 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kim, Y. G. et al. β-cell serotonin production is associated with female sex, old age, and diabetes-free condition. Biochem. Biophys. Res. Commun. 493, 1197–1203 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Marco, J., Hedo, J. A., Martinell, J., Calle, C. & Villanueva, M. L. Potentiation of glucagon secretion by serotonin antagonists in man. J. Clin. Endocrinol. Metab. 42, 215–221 (1976).

    Article  CAS  PubMed  Google Scholar 

  122. Michalik, M. & Erecińska, M. GABA in pancreatic islets: metabolism and function. Biochem. Pharmacol. 44, 1–9 (1992).

    Article  CAS  PubMed  Google Scholar 

  123. Jin, Y., Korol, S. V., Jin, Z., Barg, S. & Birnir, B. In intact islets interstitial GABA activates GABAA receptors that generate tonic currents in α-cells. PLoS One 8, e67228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rorsman, P. et al. Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341, 233–236 (1989).

    Article  CAS  PubMed  Google Scholar 

  125. Wendt, A. et al. Glucose inhibition of glucagon secretion from rat alpha-cells is mediated by GABA released from neighboring beta-cells. Diabetes 53, 1038–1045 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Gilon, P., Bertrand, G., Loubatières-Mariani, M. M., Remacle, C. & Henquin, J. C. The influence of gamma-aminobutyric acid on hormone release by the mouse and rat endocrine pancreas. Endocrinology 129, 2521–2529 (1991).

    Article  CAS  PubMed  Google Scholar 

  127. Braun, M. et al. Gamma-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic beta-cells. Diabetes 59, 1694–1701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Baker, E. N. et al. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Phil. Trans. R. Soc. Lond. B 319, 369–456 (1988).

    Article  CAS  Google Scholar 

  129. Ishihara, H., Maechler, P., Gjinovci, A., Herrera, P. L. & Wollheim, C. B. Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells. Nat. Cell Biol. 5, 330–335 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Zhou, H., Zhang, T., Harmon, J. S., Bryan, J. & Robertson, R. P. Zinc, not insulin, regulates the rat alpha-cell response to hypoglycemia in vivo. Diabetes 56, 1107–1112 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Nicolson, T. J. et al. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58, 2070–2083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wijesekara, N. et al. Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53, 1656–1668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ramracheya, R. et al. Membrane potential-dependent inactivation of voltage-gated ion channels in alpha-cells inhibits glucagon secretion from human islets. Diabetes 59, 2198–2208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Patel, Y. C., Greenwood, M. T., Warszynska, A., Panetta, R. & Srikant, C. B. All five cloned human somatostatin receptors (hSSTR1-5) are functionally coupled to adenylyl cyclase. Biochem. Biophys. Res. Commun. 198, 605–612 (1994).

    Article  CAS  PubMed  Google Scholar 

  135. Blodgett, D. M. et al. Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes 64, 3172–3181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Singh, V. et al. Characterization of somatostatin receptor subtype-specific regulation of insulin and glucagon secretion: an in vitro study on isolated human pancreatic islets. J. Clin. Endocrinol. Metab. 92, 673–680 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Kailey, B. et al. SSTR2 is the functionally dominant somatostatin receptor in human pancreatic β- and α-cells. Am. J. Physiol. Endocrinol. Metab. 303, E1107–E1116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hsu, W. H., Xiang, H. D., Rajan, A. S., Kunze, D. L. & Boyd, A. E. III Somatostatin inhibits insulin secretion by a G-protein-mediated decrease in Ca2+ entry through voltage-dependent Ca2+ channels in the beta cell. J. Biol. Chem. 266, 837–843 (1991).

    Article  CAS  PubMed  Google Scholar 

  139. Kumar, U. et al. Subtype-selective expression of the five somatostatin receptors (hSSTR1-5) in human pancreatic islet cells: a quantitative double-label immunohistochemical analysis. Diabetes 48, 77–85 (1999).

    Article  CAS  PubMed  Google Scholar 

  140. Cheng-Xue, R. et al. Tolbutamide controls glucagon release from mouse islets differently than glucose: involvement of K(ATP) channels from both α-cells and δ-cells. Diabetes 62, 1612–1622 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Li, J. et al. Submembrane ATP and Ca2+ kinetics in α-cells: unexpected signaling for glucagon secretion. FASEB J. 29, 3379–3388 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. van der Meulen, T. et al. Urocortin 3 marks mature human primary and embryonic stem cell-derived pancreatic alpha and beta cells. PLoS One 7, e52181 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. van der Meulen, T. & Huising, M. O. Maturation of stem cell-derived beta-cells guided by the expression of urocortin 3. Rev. Diabet. Stud. 11, 115–132 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Blum, B. et al. Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nat. Biotechnol. 30, 261–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cryer, P. E., Davis, S. N. & Shamoon, H. Hypoglycemia in diabetes. Diabetes Care 26, 1902–1912 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Shah, P. et al. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 85, 4053–4059 (2000).

    CAS  PubMed  Google Scholar 

  147. Ma, Y., Wang, Q., Joe, D., Wang, M. & Whim, M. D. Recurrent hypoglycemia inhibits the counterregulatory response by suppressing adrenal activity. J. Clin. Invest. 128, 3866–3871 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cryer, P. E. Mechanisms of hypoglycemia-associated autonomic failure in diabetes. N. Engl. J. Med. 369, 362–372 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Yue, J. T. et al. Somatostatin receptor type 2 antagonism improves glucagon and corticosterone counterregulatory responses to hypoglycemia in streptozotocin-induced diabetic rats. Diabetes 61, 197–207 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Karimian, N. et al. Somatostatin receptor type 2 antagonism improves glucagon counterregulation in biobreeding diabetic rats. Diabetes 62, 2968–2977 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rui, J. et al. β cells that resist immunological attack develop during progression of autoimmune diabetes in NOD mice. Cell Metab. 25, 727–738 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Blum, B. et al. Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFβ pathway. eLife 3, e02809 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zhou, Y. P. & Grill, V. E. Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J. Clin. Invest. 93, 870–876 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lawlor, N. et al. Single cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res. Genome Res. 27, 208–222 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Egido, E. M., Rodriguez-Gallardo, J., Silvestre, R. A. & Marco, J. Inhibitory effect of ghrelin on insulin and pancreatic somatostatin secretion. Eur. J. Endocrinol. 146, 241–244 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Reimer, M. K., Pacini, G. & Ahrén, B. Dose-dependent inhibition by ghrelin of insulin secretion in the mouse. Endocrinology 144, 916–921 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Tong, J. et al. Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans. Diabetes 59, 2145–2151 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Date, Y. et al. Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion. Diabetes 51, 124–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Damian, M. et al. Ghrelin receptor conformational dynamics regulate the transition from a preassembled to an active receptor:Gq complex. Proc. Natl Acad. Sci. USA 112, 1601–1606 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dezaki, K., Kakei, M. & Yada, T. Ghrelin uses Gαi2 and activates voltage-dependent K+ channels to attenuate glucose-induced Ca2+ signaling and insulin release in islet beta-cells: novel signal transduction of ghrelin. Diabetes 56, 2319–2327 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Chu, Z. L. et al. A role for beta-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release. Endocrinology 148, 2601–2609 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Soga, T. et al. Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem. Biophys. Res. Commun. 326, 744–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Ritter, K., Buning, C., Halland, N., Pöverlein, C. & Schwink, L. G protein-coupled receptor 119 (GPR119) agonists for the treatment of diabetes: recent progress and prevailing challenges. J. Med. Chem. 59, 3579–3592 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Li, N. X. et al. GPR119 agonism increases glucagon secretion during insulin-induced hypoglycemia. Diabetes 67, 1401–1413 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Harding, S. D. et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Res. 46 D1, D1091–D1106 (2018).

    Article  CAS  Google Scholar 

  166. Brereton, M. F., Vergari, E., Zhang, Q. & Clark, A. Alpha-, delta- and PP-cells: are they the architectural cornerstones of islet structure and co-ordination? J. Histochem. Cytochem. 63, 575–591 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Adrian, T. E. et al. Distribution and release of human pancreatic polypeptide. Gut 17, 940–944 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Batterham, R. L. et al. Pancreatic polypeptide reduces appetite and food intake in humans. J. Clin. Endocrinol. Metab. 88, 3989–3992 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Andralojc, K. M. et al. Ghrelin-producing epsilon cells in the developing and adult human pancreas. Diabetologia 52, 486–493 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Brissova, M. et al. Pancreatic islet production of vascular endothelial growth factor-a is essential for islet vascularization, revascularization, and function. Diabetes 55, 2974–2985 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Narayanan, S. et al. Intra-islet endothelial cell and β-cell crosstalk: implication for islet cell transplantation. World J. Transplant. 7, 117–128 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Tang, S. C., Chiu, Y. C., Hsu, C. T., Peng, S. J. & Fu, Y. Y. Plasticity of Schwann cells and pericytes in response to islet injury in mice. Diabetologia 56, 2424–2434 (2013).

    Article  PubMed  Google Scholar 

  173. Almaca, J., Weitz, J., Rodriguez-Diaz, R., Pereira, E. & Caicedo, A. The pericyte of the pancreatic islet regulates capillary diameter and local blood flow. Cell Metab. 27, 630–644.e634 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sasson, A. et al. Islet pericytes are required for β-cell maturity. Diabetes 65, 3008–3014 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Mwangi, S. et al. Glial cell line-derived neurotrophic factor increases beta-cell mass and improves glucose tolerance. Gastroenterology 134, 727–737 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Geutskens, S. B., Otonkoski, T., Pulkkinen, M. A., Drexhage, H. A. & Leenen, P. J. Macrophages in the murine pancreas and their involvement in fetal endocrine development in vitro. J. Leukoc. Biol. 78, 845–852 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Weitz, J. R. et al. Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity. Diabetologia 61, 182–192 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Zang, G. et al. Activated pancreatic stellate cells can impair pancreatic islet function in mice. Ups. J. Med. Sci. 120, 169–180 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Barreto, S. G., Carati, C. J., Toouli, J. & Saccone, G. T. The islet-acinar axis of the pancreas: more than just insulin. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G10–G22 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work discussed in this Review was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK-110276), the American Diabetes Association (1-19-IBS-078) and the Juvenile Diabetes Research Foundation (2-SRA-2019-700-S-B). G.M.N. was supported by a NIGMS-funded Pharmacology Training Program (T32GM099608). We thank A. Mawla for assistance in bioinformatics analysis and data presentation and T. van der Meulen for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

G.M.N. wrote the article together with M.O.H.

Corresponding author

Correspondence to Mark O. Huising.

Ethics declarations

Competing interests

M.O.H. receives funding from Crinetics Inc. to study somatostatin analogues. None of that work is discussed in this Review.

Additional information

Peer review information Primary Handling Editor: Elena Bellafante.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noguchi, G.M., Huising, M.O. Integrating the inputs that shape pancreatic islet hormone release. Nat Metab 1, 1189–1201 (2019). https://doi.org/10.1038/s42255-019-0148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-019-0148-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing