Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The metabolic engine of endothelial cells

Abstract

Endothelial cells (ECs) line the quiescent vasculature but can form new blood vessels (a process termed angiogenesis) in disease. Strategies targeting angiogenic growth factors have been clinically developed for the treatment of malignant and ocular diseases. Studies over the past decade have documented that several pathways of central carbon metabolism are necessary for EC homeostasis and growth, and that strategies that stimulate or block EC metabolism can be used to promote or inhibit vessel growth, respectively. In this Review, we provide an updated overview of the growing understanding of central carbon metabolic pathways in ECs and the therapeutic opportunities for targeting EC metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ECs rely on metabolic rewiring for angiogenesis.
Fig. 2: Key metabolic pathways in ECs.
Fig. 3: Adaptations of metabolic pathways in quiescent versus angiogenic ECs.
Fig. 4: Adaptations of metabolic pathways in lymphatic ECs.
Fig. 5: Amino acid metabolism in angiogenic ECs.
Fig. 6: Therapeutic strategies targeting EC metabolism.

Similar content being viewed by others

References

  1. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).

    CAS  PubMed  Google Scholar 

  2. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Eelen, G. et al. Endothelial cell metabolism. Physiol. Rev. 98, 3–58 (2018).

    CAS  PubMed  Google Scholar 

  4. Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943–953 (2010).

    CAS  PubMed  Google Scholar 

  5. Tabit, C. E., Chung, W. B., Hamburg, N. M. & Vita, J. A. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev. Endocr. Metab. Disord. 11, 61–74 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gimbrone, M. A. Jr. & García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 118, 620–636 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Vasa, M. et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res. 89, E1–E7 (2001).

    CAS  PubMed  Google Scholar 

  8. Matsuzawa, Y. & Lerman, A. Endothelial dysfunction and coronary artery disease: assessment, prognosis, and treatment. Coron. Artery Dis. 25, 713–724 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. Gutiérrez, E. et al. Endothelial dysfunction over the course of coronary artery disease. Eur. Heart J. 34, 3175–3181 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. Chrissobolis, S., Miller, A. A., Drummond, G. R., Kemp-Harper, B. K. & Sobey, C. G. Oxidative stress and endothelial dysfunction in cerebrovascular disease. Front Biosci. (Landmark Ed.) 16, 1733–1745 (2011).

    CAS  Google Scholar 

  11. Malyszko, J. Mechanism of endothelial dysfunction in chronic kidney disease. Clin. Chim. Acta 411, 1412–1420 (2010).

    CAS  PubMed  Google Scholar 

  12. Campochiaro, P. A. Ocular neovascularization. J. Mol. Med. (Berl.) 91, 311–321 (2013).

    CAS  Google Scholar 

  13. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29 Suppl 16, 15–18 (2002).

    CAS  PubMed  Google Scholar 

  14. Voelkel, N. F. & Gomez-Arroyo, J. The role of vascular endothelial growth factor in pulmonary arterial hypertension. The angiogenesis paradox. Am. J. Respir. Cell Mol. Biol. 51, 474–484 (2014).

    PubMed  Google Scholar 

  15. Ebos, J. M. & Kerbel, R. S. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol. 8, 210–221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Aragonés, J., Fraisl, P., Baes, M. & Carmeliet, P. Oxygen sensors at the crossroad of metabolism. Cell Metab. 9, 11–22 (2009).

    PubMed  Google Scholar 

  17. De Bock, K. et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663 (2013).

    PubMed  Google Scholar 

  18. Mertens, S., Noll, T., Spahr, R., Krützfeldt, A. & Piper, H. M. Energetic response of coronary endothelial cells to hypoxia. Am. J. Physiol. 258, H689–H694 (1990).

    CAS  PubMed  Google Scholar 

  19. Kalucka, J. et al. Quiescent endothelial cells upregulate fatty acid β-oxidation for vasculoprotection via redox homeostasis. Cell Metab. 28, 881–894.e13 (2018).

    CAS  PubMed  Google Scholar 

  20. Wilhelm, K. et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529, 216–220 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, P. et al. FGF-dependent metabolic control of vascular development. Nature 545, 224–228 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cantelmo, A. R. et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 30, 968–985 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Thenappan, T., Ormiston, M. L., Ryan, J. J. & Archer, S. L. Pulmonary arterial hypertension: pathogenesis and clinical management. Br. Med. J. 360, j5492 (2018).

    Google Scholar 

  24. Cruys, B. et al. Glycolytic regulation of cell rearrangement in angiogenesis. Nat. Commun. 7, 12240 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu, Y. et al. Endothelial PFKFB3 plays a critical role in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 34, 1231–1239 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schoors, S. et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 19, 37–48 (2014).

    CAS  PubMed  Google Scholar 

  27. Conradi, L. C. et al. Tumor vessel disintegration by maximum tolerable PFKFB3 blockade. Angiogenesis 20, 599–613 (2017).

    CAS  PubMed  Google Scholar 

  28. Liu, Z. et al. Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis. Nat. Commun. 8, 584 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Stone, O. A. et al. Loss of pyruvate kinase M2 limits growth and triggers innate immune signaling in endothelial cells. Nat. Commun. 9, 4077 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. Vizán, P. et al. Characterization of the metabolic changes underlying growth factor angiogenic activation: identification of new potential therapeutic targets. Carcinogenesis 30, 946–952 (2009).

    PubMed  Google Scholar 

  31. Forstermann, U. & Sessa, W. C. Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829–837, 837a–837d (2012).

    PubMed  Google Scholar 

  32. Leopold, J. A. et al. Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis. J. Biol. Chem. 278, 32100–32106 (2003).

    CAS  PubMed  Google Scholar 

  33. Fessel, J. P. et al. Metabolomic analysis of bone morphogenetic protein receptor type 2 mutations in human pulmonary endothelium reveals widespread metabolic reprogramming. Pulm. Circ. 2, 201–213 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chandler, K. B., Leon, D. R., Meyer, R. D., Rahimi, N. & Costello, C. E. Site-specific N-glycosylation of endothelial cell receptor tyrosine kinase VEGFR-2. J. Proteome Res. 16, 677–688 (2017).

    CAS  PubMed  Google Scholar 

  35. Zibrova, D. et al. GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochem. J. 474, 983–1001 (2017).

    CAS  PubMed  Google Scholar 

  36. Luo, B., Soesanto, Y. & McClain, D. A. Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28, 651–657 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schoors, S. et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520, 192–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, B., Li, J., Jang, C. & Arany, Z. Glutamine fuels proliferation but not migration of endothelial cells. EMBO J. 36, 2321–2333 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang, H. et al. Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J. 36, 2334–2352 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Blouin, A., Bolender, R. P. & Weibel, E. R. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma: a stereological study. J. Cell Biol. 72, 441–455 (1977).

    CAS  PubMed  Google Scholar 

  41. Oldendorf, W. H., Cornford, M. E. & Brown, W. J. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann. Neurol. 1, 409–417 (1977).

    CAS  PubMed  Google Scholar 

  42. Groschner, L. N., Waldeck-Weiermair, M., Malli, R. & Graier, W. F. Endothelial mitochondria: less respiration, more integration. Pflug. Arch. 464, 63–76 (2012).

    CAS  Google Scholar 

  43. Kluge, M. A., Fetterman, J. L. & Vita, J. A. Mitochondria and endothelial function. Circ. Res. 112, 1171–1188 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kadlec, A. O., Beyer, A. M., Ait-Aissa, K. & Gutterman, D. D. Mitochondrial signaling in the vascular endothelium: beyond reactive oxygen species. Basic Res. Cardiol. 111, 26 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Marcu, R., Zheng, Y. & Hawkins, B. J. Mitochondria and angiogenesis. Adv. Exp. Med. Biol. 982, 371–406 (2017).

    CAS  PubMed  Google Scholar 

  46. Koziel, A., Woyda-Ploszczyca, A., Kicinska, A. & Jarmuszkiewicz, W. The influence of high glucose on the aerobic metabolism of endothelial EA.hy926 cells. Pflug. Arch. 464, 657–669 (2012).

    CAS  Google Scholar 

  47. Diebold, L. P. et al. Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nat. Metab. 1, 158–171 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Vandekeere, S. et al. Serine synthesis via PHGDH is essential for heme production in endothelial cells. Cell Metab. 28, 573–587.e513 (2018).

    CAS  PubMed  Google Scholar 

  49. Petit, M., Koziel, R., Etemad, S., Pircher, H. & Jansen-Dürr, P. Depletion of oxaloacetate decarboxylase FAHD1 inhibits mitochondrial electron transport and induces cellular senescence in human endothelial cells. Exp. Gerontol. 92, 7–12 (2017).

    CAS  PubMed  Google Scholar 

  50. Andrade, J. & Potente, M. Endothelial metabolism: more complex (III) than previously thought. Nat. Metab. 1, 14–15 (2019).

    Google Scholar 

  51. Hirayama, A. et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 69, 4918–4925 (2009).

    CAS  PubMed  Google Scholar 

  52. Coutelle, O. et al. Embelin inhibits endothelial mitochondrial respiration and impairs neoangiogenesis during tumor growth and wound healing. EMBO Mol. Med. 6, 624–639 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Don, A. S. et al. A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells. Cancer Cell 3, 497–509 (2003).

    CAS  PubMed  Google Scholar 

  54. Blecha, J. et al. Antioxidant defense in quiescent cells determines selectivity of electron transport chain inhibition-induced cell death. Free Radic. Biol. Med. 112, 253–266 (2017).

    CAS  PubMed  Google Scholar 

  55. Xu, W. et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc. Natl Acad. Sci. USA 104, 1342–1347 (2007).

    CAS  PubMed  Google Scholar 

  56. Diebold, I. et al. BMPR2 preserves mitochondrial function and DNA during reoxygenation to promote endothelial cell survival and reverse pulmonary hypertension. Cell Metab. 21, 596–608 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Spector, A. A. & Yorek, M. A. Membrane lipid composition and cellular function. J. Lipid Res. 26, 1015–1035 (1985).

    CAS  PubMed  Google Scholar 

  58. O’Donnell, V. B. Free radicals and lipid signaling in endothelial cells. Antioxid. Redox Signal. 5, 195–203 (2003).

    PubMed  Google Scholar 

  59. Wymann, M. P. & Schneiter, R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9, 162–176 (2008).

    CAS  PubMed  Google Scholar 

  60. Ghosh, A., Gao, L., Thakur, A., Siu, P. M. & Lai, C. W. K. Role of free fatty acids in endothelial dysfunction. J. Biomed. Sci. 24, 50 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Bruning, U. et al. Impairment of angiogenesis by fatty acid synthase inhibition involves mTOR malonylation. Cell Metab. 28, 866–880.e15 (2018).

    CAS  PubMed  Google Scholar 

  62. Vanetti, C., Bifari, F., Vicentini, L. M. & Cattaneo, M. G. Fatty acids rather than hormones restore in vitro angiogenesis in human male and female endothelial cells cultured in charcoal-stripped serum. PLoS One 12, e0189528 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Hagberg, C. E. et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464, 917–921 (2010).

    CAS  PubMed  Google Scholar 

  64. Singh, N., Singh, H., Jagavelu, K., Wahajuddin, M. & Hanif, K. Fatty acid synthase modulates proliferation, metabolic functions and angiogenesis in hypoxic pulmonary artery endothelial cells. Eur. J. Pharmacol. 815, 462–469 (2017).

    CAS  PubMed  Google Scholar 

  65. Glatzel, D. K. et al. Acetyl-CoA carboxylase 1 regulates endothelial cell migration by shifting the phospholipid composition. J. Lipid Res. 59, 298–311 (2018).

    CAS  PubMed  Google Scholar 

  66. Swinnen, J. V. et al. Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem. Biophys. Res. Commun. 302, 898–903 (2003).

    CAS  PubMed  Google Scholar 

  67. Wei, X. et al. De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation. J. Biol. Chem. 286, 2933–2945 (2011).

    CAS  PubMed  Google Scholar 

  68. Ventura, R. et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine 2, 808–824 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. Elmasri, H. et al. Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: role of stem cell factor/c-kit pathway. Angiogenesis 15, 457–468 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Elmasri, H. et al. Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J. 23, 3865–3873 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ghesquière, B., Wong, B. W., Kuchnio, A. & Carmeliet, P. Metabolism of stromal and immune cells in health and disease. Nature 511, 167–176 (2014).

    PubMed  Google Scholar 

  72. Qu, Q., Zeng, F., Liu, X., Wang, Q. J. & Deng, F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis. 7, e2226 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Stoll, E. A. et al. Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity. Stem Cells 33, 2306–2319 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wong, B. W. et al. The role of fatty acid beta-oxidation in lymphangiogenesis. Nature 542, 49–54 (2017).

    CAS  PubMed  Google Scholar 

  75. Schoors, S. et al. Corrigendum: Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 526, 144 (2015).

    CAS  PubMed  Google Scholar 

  76. García-Caballero, M. et al. Role and therapeutic potential of dietary ketone bodies for lymph vessel growth. Nat. Metab. 1, 666–675 (2019).

    Google Scholar 

  77. Wong, B. W., Zecchin, A., García-Caballero, M. & Carmeliet, P. Emerging concepts in organ-specific lymphatic vessels and metabolic regulation of lymphatic development. Dev. Cell 45, 289–301 (2018).

    CAS  PubMed  Google Scholar 

  78. Puchalska, P. & Crawford, P. A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25, 262–284 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. DeBerardinis, R. J. & Cheng, T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313–324 (2010).

    CAS  PubMed  Google Scholar 

  80. Sanchez, E. L., Carroll, P. A., Thalhofer, A. B. & Lagunoff, M. Latent KSHV infected endothelial cells are glutamine addicted and require glutaminolysis for survival. PLoS Pathog. 11, e1005052 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Zhang, J. et al. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol. Cell 56, 205–218 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Eelen, G. et al. Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. Nature 561, 63–69 (2018).

    CAS  PubMed  Google Scholar 

  83. Yuan, L. et al. RhoJ is an endothelial cell-restricted Rho GTPase that mediates vascular morphogenesis and is regulated by the transcription factor ERG. Blood 118, 1145–1153 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lane, A. N. & Fan, T. W. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 43, 2466–2485 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Amelio, I., Cutruzzolá, F., Antonov, A., Agostini, M. & Melino, G. Serine and glycine metabolism in cancer. Trends Biochem. Sci. 39, 191–198 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, T. et al. Disruption of de novo serine synthesis in müller cells induced mitochondrial dysfunction and aggravated oxidative damage. Mol. Neurobiol. 55, 7025–7037 (2018).

    CAS  PubMed  Google Scholar 

  87. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Santoro, M. M. Fashioning blood vessels by ROS signalling and metabolism. Semin. Cell Dev. Biol. 80, 35–42 (2018).

    CAS  PubMed  Google Scholar 

  89. Schroder, K. Redox control of angiogenesis. Antioxid. Redox Signal. 30, 960–971 (2018).

    PubMed  Google Scholar 

  90. Bretón-Romero, R. & Lamas, S. Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol. 2, 529–534 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Incalza, M. A. et al. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vasc. Pharmacol. 100, 1–19 (2018).

    CAS  Google Scholar 

  92. Choi, S. J. et al. Isocitrate dehydrogenase 2 deficiency induces endothelial inflammation via p66sh-mediated mitochondrial oxidative stress. Biochem. Biophys. Res. Commun. 503, 1805–1811 (2018).

    CAS  PubMed  Google Scholar 

  93. Forman, H. J., Zhang, H. & Rinna, A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 30, 1–12 (2009).

    CAS  Google Scholar 

  94. Patella, F. et al. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability. Mol. Cell. Proteom. 14, 621–634 (2015).

    CAS  Google Scholar 

  95. Mugoni, V. et al. Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell 152, 504–518 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Carmeliet, P. & Jain, R. K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10, 417–427 (2011).

    CAS  PubMed  Google Scholar 

  97. Kim, B. et al. Endothelial pyruvate kinase M2 maintains vascular integrity. J. Clin. Invest. 128, 4543–4556 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Khan, S. et al. EndoDB: a database of endothelial cell transcriptomics data. Nucleic Acids Res. 47 D1, D736–D744 (2019).

    Google Scholar 

Download references

Acknowledgements

The authors thank all laboratory members, colleagues and collaborators for contributing to the discussed data. K.D.F. is supported by a Marie Sklodowska-Curie IF (H2020-MSCA-IF-2017, No. 799522). K.R. is supported by the Research Foundation Flanders (FWO, grant no. 12V9318N). Y.L. is supported by Sanming Project of Medicine in Shenzhen (SZSM201612074), BGI-Research, the Danish Research Council for Independent Research (DFF–1337–00128), a Sapere Aude Young Research Talent Prize (DFF-1335–00763A) and an Aarhus University Strategic Grant (AU-iCRISPR). The work of P.C. is supported by the VIB TechWatch program, long-term structural Methusalem funding by the Flemish Government, the Research Foundation Flanders (FWO-Vlaanderen), the Foundation Against Cancer (grant no. 2016–078), and European Research Council (ERC) Proof-of-concept (ERC-713758) and Advanced Research Grant (EU-ERC743074).

Author information

Authors and Affiliations

Authors

Contributions

All authors prepared, revised the manuscript and approved the final version; K.D.F. prepared the figures.

Corresponding author

Correspondence to Peter Carmeliet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Christoph Schmitt.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falkenberg, K.D., Rohlenova, K., Luo, Y. et al. The metabolic engine of endothelial cells. Nat Metab 1, 937–946 (2019). https://doi.org/10.1038/s42255-019-0117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-019-0117-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing