Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phospholipid methylation regulates muscle metabolic rate through Ca2+ transport efficiency

Abstract

The biophysical environment of membrane phospholipids affects the structure, function, and stability of membrane-bound proteins1,2. Obesity can disrupt membrane lipids, and, in particular, alter the activity of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) to affect cellular metabolism3,4,5. Recent evidence suggests that the transport efficiency (Ca2+ uptake and ATP hydrolysis) of skeletal muscle SERCA can be uncoupled to increase energy expenditure and protect mice from diet-induced obesity6,7. In isolated sarcoplasmic reticulum vesicles, membrane phospholipid composition is known to modulate SERCA efficiency8,9,10,11. Here we show that skeletal muscle sarcoplasmic reticulum phospholipids can be altered to decrease SERCA efficiency and increase the whole-body metabolic rate. The absence of skeletal muscle phosphatidylethanolamine methyltransferase (PEMT) promotes an increase in the skeletal muscle and whole-body metabolic rate to protect mice from diet-induced obesity. The elevation in metabolic rate is caused by a decrease in SERCA Ca2+-transport efficiency, whereas mitochondrial uncoupling is unaffected. Our findings support the hypothesis that skeletal muscle energy efficiency can be reduced to promote protection from obesity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: PEMTKO mice exhibit increased muscle metabolic rate and are protected from diet-induced obesity.
Fig. 2: Ca2+ transport inefficiency explains the increased muscle metabolic rate in PEMTKO muscle.
Fig. 3: PEMT-MKO mice are protected from diet-induced obesity.
Fig. 4: Skeletal muscle PEMT alters SR phospholipids to regulate muscle oxygen consumption.

Data availability

Data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510, 172–175 (2014).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Gupta, K. et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Fu, S. et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473, 528–531 (2011).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Funai, K. et al. Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling. J. Clin. Invest. 123, 1229–1240 (2013).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Funai, K. et al. Skeletal muscle phospholipid metabolism regulates insulin sensitivity and contractile function. Diabetes 65, 1–37 (2016).

    Article  Google Scholar 

  6. 6.

    Bal, N. C. et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med. 18, 1575–1579 (2012).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Maurya, S. K. et al. Sarcolipin is a key determinant of basal metabolic rate and its overexpression enhances energy expenditure and resistance against diet induced obesity. J. Biol. Chem. 290, 10840–10849 (2015).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Caffrey, M. & Feigenson, G. W. Fluorescence quenching in model membranes. 3. Relationship between calcium adenosinetriphosphatase enzyme activity and the affinity of the protein for phosphatidylcholines with different acyl chain characteristics. Biochemistry 20, 1949–1961 (1981).

    CAS  Article  Google Scholar 

  9. 9.

    Navarro, J., Toivio-Kinnucan, M. & Racker, E. Effect of lipid composition on the calcium/adenosine 5′-triphosphate coupling ratio of the Ca2+-ATPase of sarcoplasmic reticulum. Biochemistry 23, 130–135 (1984).

    CAS  Article  Google Scholar 

  10. 10.

    Lervik, A., Bresme, F., Kjelstrup, S. & Rubi, J. M. On the thermodynamic efficiency of Ca2+-ATPase molecular machines. Biophys. J. 103, 1218–1226 (2012).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Fajardo, V. A. et al. Dietary docosahexaenoic acid supplementation reduces SERCA Ca2+ transport efficiency in rat skeletal muscle. Chem. Phys. Lipids 187, 56–61 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Sharma, N. K., Langberg, K. A., Mondal, A. K. & Das, S. K. Phospholipid biosynthesis genes and susceptibility to obesity: analysis of expression and polymorphisms. PLoS ONE 8, e65303 (2013).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Jacobs, R. L. et al. Impaired de novo choline synthesis explains why phosphatidylethanolamine N-methyltransferase-deficient mice are protected from diet-induced obesity. J. Biol. Chem. 285, 22403–22413 (2010).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Tasseva, G. et al. Lack of phosphatidylethanolamine N-methyltransferase in mice does not promote fatty acid oxidation in skeletal muscle. Biochim. Biophys. Acta 1861, 119–129 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Gao, X. et al. Insufficient glucose supply is linked to hypothermia upon cold exposure in mice lacking phosphatidylethanolamine N-methyltransferase. J. Lipid Res. 56, 1701–1710 (2015).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Ferrara, P. J., Verkerke, A. R. P., Brault, J. J. & Funai, K. Hypothermia decreases O2 cost for ex vivo contraction in mouse skeletal muscle. Med. Sci. Sports Exerc. 50, 2015–2023 (2018).

    Article  Google Scholar 

  17. 17.

    Li, B. et al. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nat. Med. 6, 1115–1120 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    Fisher-Wellman, K. H. et al. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy-consuming redox circuit. Biochem. J. 467, 271–280 (2015).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Cui, Z., Vance, J. E., Chen, M. H., Voelker, D. R. & Vance, D. E. Cloning and expression of a novel phosphatidylethanolamine N-methyltransferase. A specific biochemical and cytological marker for a unique membrane fraction in rat liver. J. Biol. Chem. 268, 16655–16663 (1993).

    CAS  Google Scholar 

  20. 20.

    Smith, I. C., Bombardier, E., Vigna, C. & Tupling, A. R. ATP consumption by sarcoplasmic reticulum Ca2+ pumps accounts for 40–50% of resting metabolic rate in mouse fast and slow twitch skeletal muscle. PLoS ONE 8, 1–11 (2013).

    Google Scholar 

  21. 21.

    Ikeda, K. et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23, 1454–1465 (2017).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Paran, C. W. et al. Reduced efficiency of sarcolipin-dependent respiration in myocytes from humans with severe obesity. Obesity (Silver Spring) 23, 1440–1449 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Durham, W. J. et al. RyR1 S-Nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 knockin mice. Cell 133, 53–65 (2008).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Shields, D. J., Agellon, L. B. & Vance, D. E. Structure, expression profile and alternative processing of the human phosphatidylethanolamine N-methyltransferase (PEMT) gene. Biochim. Biophys. Acta 1532, 105–114 (2001).

    CAS  Article  Google Scholar 

  25. 25.

    Samborski, R. W., Ridgway, N. D. & Vance, D. E. Metabolism of molecular species of phosphatidylethanolamine and phosphatidylcholine in rat hepatocytes during prolonged inhibition of phosphatidylethanolamine N-methyltransferase. J. Lipid Res. 34, 125–137 (1993).

    CAS  Google Scholar 

  26. 26.

    Kajimura, S., Spiegelman, B. M. & Seale, P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22, 546–559 (2015).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Zurlo, F., Larson, K., Bogardus, C. & Ravussin, E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J. Clin. Invest. 86, 1423–1427 (1990).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Lee, S. et al. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine respond to exercise and influence insulin sensitivity in men. Sci. Rep. 8, 6531 (2018).

    Article  PubMed  Google Scholar 

  29. 29.

    Newsom, S. A. et al. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans. J. Appl. Physiol. 120, 1355–1363 (2016).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Ravussin, Y., Leibel, R. L. & Ferrante, A. W. Jr. A missing link in body weight homeostasis: the catabolic signal of the overfed state. Cell Metab. 20, 565–572 (2014).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Walkey, C. J., Donohue, L. R., Bronson, R., Agellon, L. B. & Vance, D. E. Disruption of the murine gene encoding phosphatidylethanolamine N-methyltransferase. Proc. Natl Acad. Sci. USA 94, 12880–12885 (1997).

    CAS  Article  Google Scholar 

  32. 32.

    McCarthy, J. J., Srikuea, R., Kirby, T. J., Peterson, C. A. & Esser, K. A. Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting. Skelet. Muscle 2, 8 (2012).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315 (1999).

    CAS  Article  Google Scholar 

  34. 34.

    Huang, H. et al. Rho-kinase regulates energy balance by targeting hypothalamic leptin receptor signaling. Nat. Neurosci. 15, 1391–1398 (2012).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Laing, B. T. et al. Voluntary exercise improves hypothalamic and metabolic function in obese mice. J. Endocrinol. 229, 109–122 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Lark, D. S. et al. Direct real-time quantification of mitochondrial oxidative phosphorylation efficiency in permeabilized skeletal muscle myofibers. Am. J. Physiol. 311, C239–C245 (2016).

    Article  Google Scholar 

  37. 37.

    Johnson, J. M. et al. Targeted overexpression of catalase to mitochondria does not prevent cardioskeletal myopathy in barth syndrome. J. Mol. Cell. Cardiol. 121, 94–102 (2018).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Gilliam, L. A. A. et al. Free radical biology and medicine the anticancer agent doxorubicin disrupts mitochondrial energy metabolism and redox balance in skeletal muscle. Free Radic. Biol. Med. 65, 988–996 (2013).

    CAS  Article  Google Scholar 

  39. 39.

    Ferdaoussi, M. et al. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells. J. Clin. Invest. 125, 3847–3860 (2015).

    Article  PubMed  Google Scholar 

  40. 40.

    Gan, Z. et al. The nuclear receptor PPARβ/δ programs muscle glucose metabolism in cooperation with AMPK and MEF2. Genes Dev. 25, 2619–2630 (2011).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Zechner, C. et al. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab. 12, 633–642 (2010).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Schuh, R. A., Jackson, K. C., Khairallah, R. J., Ward, C. W. & Spangenburg, E. E. Measuring mitochondrial respiration in intact single muscle fibers. Am. J. Physiol. 302, R712–R719 (2012).

    CAS  Google Scholar 

  43. 43.

    Matyash, V. et al. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49, 1137–1146 (2008).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Simonides, W. S. & van Hardeveld, C. An assay for sarcoplasmic reticulum Ca2+-ATPase activity in muscle homogenates. Anal. Biochem. 191, 321–331 (1990).

    CAS  Article  Google Scholar 

  45. 45.

    Brault, J. J., Pizzimenti, N. M., Dentel, J. N. & Wiseman, R. W. Selective inhibition of ATPase activity during contraction alters the activation of p38 MAP kinase isoforms in skeletal muscle. J. Cell. Biochem. 114, 1445–1455 (2013).

    CAS  Article  Google Scholar 

  46. 46.

    Aracena-Parks, P. et al. Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1. J. Biol. Chem. 281, 40354–40368 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research is supported by NIH DK107397, DK109888 (to K.F.), DK110656 (to P.D.N.), DK112826, DK108833 (to W.L.H.), DK115824, DK116450 (to S.A.S.), DK103930 (to C.J.V.), AR066660 (to E.E.S.), AR070200 (to J.J.B.), HL129362 (to T.E.R.), and DK091317 (to T.S.T.), P&F funding from P30 DK020579 at Washington University in St. Louis (to K.F.), American Heart Association 18PRE33960491 (to A.R.P.V.) and 19PRE34380991 (to J.M.J.), Larry H. & Gail Miller Family Foundation (to P.J.F. and C.J.V.), and Uehara Memorial Foundation (to H.E.). University of Utah Metabolomics Core Facility is supported by S10 OD016232, S10 OD021505, and U54 DK110858.

Author information

Affiliations

Authors

Contributions

A.R.P.V. and K.F. designed the study and wrote the manuscript. A.R.P.V. performed all metabolic phenotyping and biochemical assays. A.R.P.V., P.J.F., and E.E.S. performed muscle oxygen consumption assays. C.-T.L., J.M.J., T.E.R., and P.D.N. performed mitochondrial phenotyping. H.E. and P.S. assisted in muscle histology and functional measurements. C.J.V. assisted in experiments with adipose tissues. T.S.T., S.A.S., and W.L.H. assisted in AAV experiments. J.A.M. and J.E.C. performed mass spectrometry analyses. A.R.P.V. and J.J.B performed ultra-performance liquid chromatography. B.T.L and H.H. performed analyses on hypothalamus. A.R.P.V., C.W.P., E.J.W., D.E.V., and K.F. designed and generated the mouse models. T.E.R., H.H., E.E.S., J.J.B., S.A.S., W.L.H., J.E.C., D.E.V., and P.D.N. edited the manuscript.

Corresponding author

Correspondence to Katsuhiko Funai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Peer review information Primary Handling Editor: Elena Bellafante.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verkerke, A.R.P., Ferrara, P.J., Lin, CT. et al. Phospholipid methylation regulates muscle metabolic rate through Ca2+ transport efficiency. Nat Metab 1, 876–885 (2019). https://doi.org/10.1038/s42255-019-0111-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing