Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice

A Matters Arising to this article was published on 13 April 2020

An Author Correction to this article was published on 10 September 2019

This article has been updated


Human and rodent brown adipose tissues (BAT) appear morphologically and molecularly different. Here we compare human BAT with both classical brown and brite/beige adipose tissues of ‘physiologically humanized’ mice: middle-aged mice living under conditions approaching human thermal and nutritional conditions, that is, prolonged exposure to thermoneutral temperature (approximately 30 °C) and to an energy-rich (high-fat, high-sugar) diet. We find that the morphological, cellular and molecular characteristics (both marker and adipose-selective gene expression) of classical brown fat, but not of brite/beige fat, of these physiologically humanized mice are notably similar to human BAT. We also demonstrate, both in silico and experimentally, that in physiologically humanized mice only classical BAT possesses a high thermogenic potential. These observations suggest that classical rodent BAT is the tissue of choice for translational studies aimed at recruiting human BAT to counteract the development of obesity and its comorbidities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: iBAT in physiologically humanized mice morphologically phenocopies human supraclavicular BAT.
Fig. 2: iBAT in physiologically humanized mice retains a distinct ‘thermogenic’ molecular signature.
Fig. 3: Under humanized conditions, the distinguishing power of the suggested brown versus brite/beige marker genes is diminished.
Fig. 4: Physiological humanization leads to more extensive transcriptome alterations in iBAT than in ingWAT.
Fig. 5: iBAT in physiologically humanized mice molecularly phenocopies human supraclavicular BAT.
Fig. 6: Browning probability in human and mouse adipose tissues.
Fig. 7: Physiologically humanized mouse iBAT, but not ingWAT, retains high browning capacity.

Data availability

The RNA-Seq data of human samples have been deposited with the European Nucleotide Archive with the accession number PRJEB20634(ref. 36). The RNA-Seq data of mouse samples have been deposited with Array Express with accession nos. E-MTAB-7561 (iBAT and ingWAT samples from standard and physiologically humanized mice) and E-MTAB-7565 (iBAT and ingWAT samples from cold-acclimated mice).

Code availability

The detailed MATLAB code for the PCA can be obtained upon reasonable request.

Change history

  • 10 September 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    CAS  PubMed  Google Scholar 

  2. 2.

    Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med 360, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med 360, 1500–1508 (2009).

    CAS  PubMed  Google Scholar 

  5. 5.

    Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    CAS  PubMed  Google Scholar 

  6. 6.

    Zingaretti, M. C. et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 23, 3113–3120 (2009).

    CAS  PubMed  Google Scholar 

  7. 7.

    Saito, M. Brown adipose tissue as a therapeutic target for human obesity. Obes. Res. Clin. Pract. 7, e432–e438 (2013).

    PubMed  Google Scholar 

  8. 8.

    Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    CAS  PubMed  Google Scholar 

  9. 9.

    Carey, A. L. & Kingwell, B. A. Brown adipose tissue in humans: therapeutic potential to combat obesity. Pharmacol. Ther. 140, 26–33 (2013).

    CAS  PubMed  Google Scholar 

  10. 10.

    Bartelt, A. & Heeren, J. The holy grail of metabolic disease: brown adipose tissue. Curr. Opin. Lipidol. 23, 190–195 (2012).

    CAS  PubMed  Google Scholar 

  11. 11.

    Nedergaard, J. & Cannon, B. The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab. 11, 268–272 (2010).

    CAS  PubMed  Google Scholar 

  12. 12.

    Kokolus, K. M. et al. Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc. Natl Acad. Sci. USA 110, 20176–20181 (2013).

    CAS  PubMed  Google Scholar 

  13. 13.

    Tian, X. Y. et al. Thermoneutral housing accelerates metabolic inflammation to potentiate atherosclerosis but not insulin resistance. Cell Metab. 23, 165–178 (2016).

    CAS  PubMed  Google Scholar 

  14. 14.

    Karp, C. L. Unstressing intemperate models: how cold stress undermines mouse modeling. J. Exp. Med. 209, 1069–1074 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Sharp, L. Z. et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One 7, e49452 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Jespersen, N. Z. et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 17, 798–805 (2013).

    CAS  PubMed  Google Scholar 

  18. 18.

    Cypess, A. M. et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 19, 635–639 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lidell, M. E. et al. Evidence for two types of brown adipose tissue in humans. Nat. Med. 19, 631–634 (2013).

    CAS  PubMed  Google Scholar 

  20. 20.

    Cannon, B. & Nedergaard, J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J. Exp. Biol. 214, 242–253 (2011).

    PubMed  Google Scholar 

  21. 21.

    Fischer, A. W., Cannon, B. & Nedergaard, J. The answer to the question “What is the best housing temperature to translate mouse experiments to humans?” is: thermoneutrality. Mol. Metab. 26, 1–3 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Roh, H. C. et al. Warming induces significant reprogramming of beige, but not brown, adipocyte cellular identity. Cell Metab. 27, 1121–1137.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Hung, C. M. et al. Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell Rep. 8, 256–271 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Sanchez-Gurmaches, J., Hung, C. M. & Guertin, D. A. Emerging complexities in adipocyte origins and identity. Trends Cell Biol. 26, 313–326 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Fischer, A. W. et al. UCP1 inhibition in Cidea-overexpressing mice is physiologically counteracted by brown adipose tissue hyperrecruitment. Am. J. Physiol. Endocrinol. Metab. 312, E72–E87 (2017).

    PubMed  Google Scholar 

  26. 26.

    Guilherme, A. et al. Neuronal modulation of brown adipose activity through perturbation of white adipocyte lipogenesis. Mol. Metab. 16, 116–125 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Abreu-Vieira, G. et al. Cidea improves the metabolic profile through expansion of adipose tissue. Nat. Commun. 6, 7433 (2015).

    CAS  PubMed  Google Scholar 

  28. 28.

    de Jong, J. M., Larsson, O., Cannon, B. & Nedergaard, J. A stringent validation of mouse adipose tissue identity markers. Am. J. Physiol. Endocrinol. Metab. 308, E1085–E1105 (2015).

    PubMed  Google Scholar 

  29. 29.

    Waldén, T. B., Hansen, I. R., Timmons, J. A., Cannon, B. & Nedergaard, J. Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am. J. Physiol. Endocrinol. Metab. 302, E19–E31 (2012).

    PubMed  Google Scholar 

  30. 30.

    Petrovic, N. et al. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285, 7153–7164 (2010).

    CAS  PubMed  Google Scholar 

  31. 31.

    Ishibashi, J. & Seale, P. Medicine. Beige can be slimming. Science 328, 1113–1114 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    de Jong, J. M. A. et al. The β3-adrenergic receptor is dispensable for browning of adipose tissues. Am. J. Physiol. Endocrinol. Metab. 312, E508–E518 (2017).

    PubMed  Google Scholar 

  33. 33.

    Kalinovich, A. V., de Jong, J. M., Cannon, B. & Nedergaard, J. UCP1 in adipose tissues: two steps to full browning. Biochimie 134, 127–137 (2017).

    CAS  PubMed  Google Scholar 

  34. 34.

    Shinoda, K. et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat. Med. 21, 389–394 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Ussar, S. et al. ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Sci. Transl. Med. 6, 247ra103 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Perdikari, A. et al. BATLAS: deconvoluting brown adipose tissue. Cell Rep. 25, 784–797.e4 (2018).

    CAS  PubMed  Google Scholar 

  37. 37.

    Lin, S. et al. Comparison of the transcriptional landscapes between human and mouse tissues. Proc. Natl Acad. Sci. USA 111, 17224–17229 (2014).

    CAS  PubMed  Google Scholar 

  38. 38.

    Breschi, A. et al. Gene-specific patterns of expression variation across organs and species. Genome Biol. 17, 151 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Sudmant, P. H., Alexis, M. S. & Burge, C. B. Meta-analysis of RNA-seq expression data across species, tissues and studies. Genome Biol. 16, 287 (2015).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Su, A. I. et al. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl Acad. Sci. USA 99, 4465–4470 (2002).

    CAS  PubMed  Google Scholar 

  41. 41.

    Chan, E. T. et al. Conservation of core gene expression in vertebrate tissues. J. Biol. 8, 33 (2009).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Jespersen, N. Z. et al. Heterogeneity in the perirenal region of humans suggests presence of dormant brown adipose tissue that contains brown fat precursor cells. Mol. Metab. 24, 30–43 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Shabalina, I. G. et al. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 5, 1196–1203 (2013).

    CAS  PubMed  Google Scholar 

  44. 44.

    Cheng, Y. et al. Prediction of adipose browning capacity by systematic integration of transcriptional profiles. Cell Rep. 23, 3112–3125 (2018).

    CAS  PubMed  Google Scholar 

  45. 45.

    Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    CAS  PubMed  Google Scholar 

  46. 46.

    Virtue, S. & Vidal-Puig, A. Assessment of brown adipose tissue function. Front. Physiol. 4, 128 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Berry, D. C. et al. Cellular aging contributes to failure of cold-induced beige adipocyte formation in old mice and humans. Cell Metab. 25, 166–181 (2017).

    CAS  PubMed  Google Scholar 

  48. 48.

    Zhang, F. et al. An adipose tissue atlas: an image-guided identification of human-like BAT and beige depots in rodents. Cell Metab. 27, 252–262.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Bonet, M. L., Oliver, P. & Palou, A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim. Biophys. Acta 1831, 969–985 (2013).

    CAS  PubMed  Google Scholar 

  50. 50.

    Wu, J., Cohen, P. & Spiegelman, B. M. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 27, 234–250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Nedergaard, J. & Cannon, B. The browning of white adipose tissue: some burning issues. Cell Metab. 20, 396–407 (2014).

    CAS  PubMed  Google Scholar 

  52. 52.

    Frontini, A. et al. White-to-brown transdifferentiation of omental adipocytes in patients affected by pheochromocytoma. Biochim. Biophys. Acta 1831, 950–959 (2013).

    CAS  PubMed  Google Scholar 

  53. 53.

    van der Lans, A. A. J. J. et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest. 123, 3395–3403 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404–3408 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Romu, T. et al. A randomized trial of cold-exposure on energy expenditure and supraclavicular brown adipose tissue volume in humans. Metabolism 65, 926–934 (2016).

    CAS  PubMed  Google Scholar 

  56. 56.

    Puar, T. et al. Genotype-dependent brown adipose tissue activation in patients with pheochromocytoma and paraganglioma. J. Clin. Endocrinol. Metab. 101, 224–232 (2016).

    CAS  PubMed  Google Scholar 

  57. 57.

    Wang, Q. et al. Brown adipose tissue in humans is activated by elevated plasma catecholamines levels and is inversely related to central obesity. PLoS One 6, e21006 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Manieri, M., Murano, I., Fianchini, A., Brunelli, A. & Cinti, S. Morphological and immunohistochemical features of brown adipocytes and preadipocytes in a case of human hibernoma. Nutr. Metab. Cardiovasc. Dis. 20, 567–574 (2010).

    CAS  PubMed  Google Scholar 

  59. 59.

    Gadea, E. et al. Hibernoma: a clinical model for exploring the role of brown adipose tissue in the regulation of body weight? J. Clin. Endocrinol. Metab. 99, 1–6 (2014).

    CAS  PubMed  Google Scholar 

  60. 60.

    Søndergaard, E. et al. Chronic adrenergic stimulation induces brown adipose tissue differentiation in visceral adipose tissue. Diabet. Med 32, e4–e8 (2015).

    PubMed  Google Scholar 

  61. 61.

    Orava, J. et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 14, 272–279 (2011).

    CAS  PubMed  Google Scholar 

  62. 62.

    Golozoubova, V. et al. Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J. 15, 2048–2050 (2001).

    CAS  PubMed  Google Scholar 

  63. 63.

    Cinti, S., Zingaretti, M. C., Cancello, R., Ceresi, E. & Ferrara, P. Morphologic techniques for the study of brown adipose tissue and white adipose tissue. Methods Mol. Biol. 155, 21–51 (2001).

    CAS  PubMed  Google Scholar 

  64. 64.

    Petrovic, N., Shabalina, I. G., Timmons, J. A., Cannon, B. & Nedergaard, J. Thermogenically competent nonadrenergic recruitment in brown preadipocytes by a PPARγ agonist. Am. J. Physiol. Endocrinol. Metab. 295, E287–E296 (2008).

    CAS  PubMed  Google Scholar 

  65. 65.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Hartley, S. W. & Mullikin, J. C. QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments. BMC Bioinformatics 16, 224 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS  PubMed  Google Scholar 

  71. 71.

    Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  Google Scholar 

  73. 73.

    Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).

    PubMed  Google Scholar 

  74. 74.

    Cock, P. J. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors acknowledge support from the Swedish Research Council (VR-2017-01379 and VR-2017-04715), Knut and Alice Wallenberg Foundation (WA2015-0009), the Novo Nordisk Foundation (NNF17C0027058), Magnus Bergvalls Stiftelse (2017-02199 and 2018-02969), Diabetesfonden (DIA 2018-381) and European Union Collaborative projects ADAPT (EU201100) and DIABAT (EU278373). The authors thank the Experimental Core Facility staff for breeding the mice and the Imaging Facility at Stockholm University for the help with confocal microscopy. The authors also thank A. Smialowska and O. Dethlefsen for valuable advice regarding the bioinformatics analyses and M. Jastroch and F. Perocchi for their help with interpreting the browning probability results obtained with the PROFAT online tool.

Author information




J.J., J.N., C.W. and N.P. designed the research. J.J., W.S., A.Frontini, A.W.F. and N.P. performed the experiments. J.J., W.S., N.D.P., M.B., K.P., A.Feizi, M.H.B. and N.P. performed the bioinformatics analyses. A.Frontini, T.N., P.N., S.C., K.V., N.Z.J., S.N., C.S. and C.W. provided essential materials and made comments on the manuscript. J.J., B.C., J.N. and N.P. wrote the manuscript. N.P. supervised the research.

Corresponding author

Correspondence to Natasa Petrovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Primary Handling Editor: Elena Bellafante.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Table 1

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Jong, J.M.A., Sun, W., Pires, N.D. et al. Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice. Nat Metab 1, 830–843 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing