Hypothalamic dopamine signalling regulates brown fat thermogenesis

Abstract

Dopamine signalling is a crucial part of the brain reward system and can affect feeding behaviour. Dopamine receptors are also expressed in the hypothalamus, which is known to control energy metabolism in peripheral tissues. Here we show that pharmacological or chemogenetic stimulation of dopamine receptor 2 (D2R) expressing cells in the lateral hypothalamic area (LHA) and the zona incerta (ZI) decreases body weight and stimulates brown fat activity in rodents in a feeding-independent manner. LHA/ZI D2R stimulation requires an intact sympathetic nervous system and orexin system to exert its action and involves inhibition of PI3K in the LHA/ZI. We further demonstrate that, as early as 3 months after the onset of treatment, patients treated with the D2R agonist cabergoline experience an increase in energy expenditure that persists for one year, leading to total body weight and fat loss through a prolactin-independent mechanism. Our results may provide a mechanistic explanation for how clinically used D2R agonists act in the central nervous system to regulate energy balance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Chronic central infusion of bromocriptine reduces diet-induced obesity.
Fig. 2: Stimulation of D2R in the LHA/ZI stimulates BAT activity.
Fig. 3: Knockdown of D2R in the LHA/ZI blunts bromocriptine-induced weight loss.
Fig. 4: D2R action in GABAergic neurons requires orexin to modulate BAT.
Fig. 5: PKA mediates the effects of bromocriptine on BAT.
Fig. 6: S6 mediates the effects of bromocriptine on BAT.
Fig. 7: Cabergoline decreases body weight and increases REE in patients.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. 1.

    Palmiter, R. D. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci. 30, 375–381 (2007).

    CAS  PubMed  Google Scholar 

  2. 2.

    Mirmohammadsadeghi, Z., Shareghi Brojeni, M., Haghparast, A. & Eliassi, A. Role of paraventricular hypothalamic dopaminergic D1 receptors in food intake regulation of food-deprived rats. Eur. J. Pharmacol. 818, 43–49 (2018).

    CAS  PubMed  Google Scholar 

  3. 3.

    Zhu, X., Ottenheimer, D. & DiLeone, R. J. Activity of D1/2 receptor expressing neurons in the nucleus accumbens regulates running, locomotion, and food intake. Front. Behav. Neurosci. 10, 66 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Land, B. B. et al. Medial prefrontal D1 dopamine neurons control food intake. Nat. Neurosci. 17, 248–253 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Fetissov, S. O., Meguid, M. M., Sato, T. & Zhang, L. H. Expression of dopaminergic receptors in the hypothalamus of lean and obese zucker rats and food intake. Am. J. Physiol. Regulatory, Integr. Comp. Physiol. 283, R905–R910 (2002).

    Google Scholar 

  6. 6.

    Johnson, P. M. & Kenny, P. J. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat. Neurosci. 13, 635–641 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Volkow, N. D., Wang, G. J. & Baler, R. D. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn. Sci. 15, 37–46 (2011).

    CAS  PubMed  Google Scholar 

  8. 8.

    Wang, G. J., Volkow, N. D. & Fowler, J. S. The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin. Ther. Targets 6, 601–609 (2002).

    CAS  PubMed  Google Scholar 

  9. 9.

    Holt, R. I., Barnett, A. H. & Bailey, C. J. Bromocriptine: old drug, new formulation and new indication. Diabetes, Obes. Metab. 12, 1048–1057 (2010).

    CAS  Google Scholar 

  10. 10.

    Cincotta, A. H. & Meier, A. H. Bromocriptine (Ergoset) reduces body weight and improves glucose tolerance in obese subjects. Diabetes Care 19, 667–670 (1996).

    CAS  PubMed  Google Scholar 

  11. 11.

    Pijl, H. et al. Bromocriptine: a novel approach to the treatment of type 2 diabetes. Diabetes Care 23, 1154–1161 (2000).

    CAS  PubMed  Google Scholar 

  12. 12.

    Gaziano, J. M. et al. Randomized clinical trial of quick-release bromocriptine among patients with type 2 diabetes on overall safety and cardiovascular outcomes. Diabetes Care 33, 1503–1508 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Wang, G. J. et al. Brain dopamine and obesity. Lancet 357, 354–357 (2001).

    CAS  PubMed  Google Scholar 

  14. 14.

    Bray, G. A., Fruhbeck, G., Ryan, D. H. & Wilding, J. P. Management of obesity. Lancet 387, 1947–1956 (2016).

    PubMed  Google Scholar 

  15. 15.

    Henderson, D. C., Vincenzi, B., Andrea, N. V., Ulloa, M. & Copeland, P. M. Pathophysiological mechanisms of increased cardiometabolic risk in people with schizophrenia and other severe mental illnesses. Lancet Psychiatry 2, 452–464 (2015).

    PubMed  Google Scholar 

  16. 16.

    Noble, E. P. et al. D2 dopamine receptor gene and obesity. Int. J. Eat. Disord. 15, 205–217 (1994).

    CAS  PubMed  Google Scholar 

  17. 17.

    Sun, X., Luquet, S. & Small, D. M. DRD2: Bridging the genome and ingestive behavior. Trends Cogn. Sci. 21, 372–384 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Meier, A. H., Cincotta, A. H. & Lovell, W. C. Timed bromocriptine administration reduces body fat stores in obese subjects and hyperglycemia in type II diabetics. Experientia 48, 248–253 (1992).

    CAS  PubMed  Google Scholar 

  19. 19.

    Gibson, C. D., Karmally, W., McMahon, D. J., Wardlaw, S. L. & Korner, J. Randomized pilot study of cabergoline, a dopamine receptor agonist: effects on body weight and glucose tolerance in obese adults. Diabetes, Obes. Metab. 14, 335–340 (2012).

    CAS  Google Scholar 

  20. 20.

    Liu, X. et al. The mechanism and pathways of dopamine and dopamine agonists in prolactinomas. Front. Endocrinol. 9, 768 (2018).

    Google Scholar 

  21. 21.

    Al-Massadi, O. et al. Pharmacological and genetic manipulation of p53 in brown fat at adult but not embryonic stages regulates thermogenesis and body weight in male mice. Endocrinology 157, 2735–2749 (2016).

    CAS  PubMed  Google Scholar 

  22. 22.

    Fruhbeck, G., Mendez-Gimenez, L., Fernandez-Formoso, J. A., Fernandez, S. & Rodriguez, A. Regulation of adipocyte lipolysis. Nutr. Res. Rev. 27, 63–93 (2014).

    PubMed  Google Scholar 

  23. 23.

    Hankir, M. K., Cowley, M. A. & Fenske, W. K. A BAT-centric approach to the treatment of diabetes: Turn on the brain. Cell Metab. 24, 31–40 (2016).

    CAS  PubMed  Google Scholar 

  24. 24.

    Folgueira, C. et al. Uroguanylin action in the brain reduces weight gain in obese mice via different efferent autonomic pathways. Diabetes 65, 421–432 (2016).

    CAS  PubMed  Google Scholar 

  25. 25.

    Martinez-Sanchez, N. et al. Hypothalamic AMPK-ER stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance. Cell Metab. 26, 212–229 e212 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Weiner, D. M. et al. D1 and D2 dopamine receptor mRNA in rat brain. Proc. Natl Acad. Sci. USA 88, 1859–1863 (1991).

    CAS  PubMed  Google Scholar 

  27. 27.

    Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357, 503–507 (2017).

    CAS  PubMed  Google Scholar 

  28. 28.

    Stagkourakis, S., Kim, H., Lyons, D. J. & Broberger, C. Dopamine autoreceptor regulation of a hypothalamic dopaminergic network. Cell Rep. 15, 735–747 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Puighermanal, E. et al. drd2-cre:ribotag mouse line unravels the possible diversity of dopamine d2 receptor-expressing cells of the dorsal mouse hippocampus. Hippocampus 25, 858–875 (2015).

    CAS  PubMed  Google Scholar 

  30. 30.

    Segal-Lieberman, G. et al. Melanin-concentrating hormone is a critical mediator of the leptin-deficient phenotype. Proc. Natl Acad. Sci. USA 100, 10085–10090 (2003).

    CAS  PubMed  Google Scholar 

  31. 31.

    Tupone, D., Madden, C. J., Cano, G. & Morrison, S. F. An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. J. Neurosci. 31, 15944–15955 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Martins, L. et al. A functional link between AMPK and orexin mediates the effect of BMP8B on energy balance. Cell Rep. 16, 2231–2242 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Yamaguchi, T. et al. Role of PKA signaling in D2 receptor-expressing neurons in the core of the nucleus accumbens in aversive learning. Proc. Natl Acad. Sci. USA 112, 11383–11388 (2015).

    CAS  PubMed  Google Scholar 

  34. 34.

    Bonito-Oliva, A. et al. Haloperidol promotes mTORC1-dependent phosphorylation of ribosomal protein S6 via dopamine- and cAMP-regulated phosphoprotein of 32 kDa and inhibition of protein phosphatase-1. Neuropharmacology 72, 197–203 (2013).

    CAS  PubMed  Google Scholar 

  35. 35.

    Mighiu, P. I. et al. Hypothalamic glucagon signaling inhibits hepatic glucose production. Nat. Med. 19, 766–772 (2013).

    CAS  PubMed  Google Scholar 

  36. 36.

    Quinones, M. et al. Hypothalamic CaMKKbeta mediates glucagon anorectic effect and its diet-induced resistance. Mol. Metab. 4, 961–970 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Meacci, E. et al. Molecular cloning and expression of human myocardial cGMP-inhibited cAMP phosphodiesterase. Proc. Natl Acad. Sci. USA 89, 3721–3725 (1992).

    CAS  PubMed  Google Scholar 

  38. 38.

    Zhao, A. Z., Huan, J. N., Gupta, S., Pal, R. & Sahu, A. A phosphatidylinositol 3-kinase phosphodiesterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding. Nat. Neurosci. 5, 727–728 (2002).

    CAS  PubMed  Google Scholar 

  39. 39.

    Sahu, M., Anamthathmakula, P. & Sahu, A. Hypothalamic phosphodiesterase 3B pathway mediates anorectic and body weight-reducing effects of insulin in male mice. Neuroendocrinology 104, 145–156 (2017).

    CAS  PubMed  Google Scholar 

  40. 40.

    Sahu, M., Anamthathmakula, P. & Sahu, A. Phosphodiesterase-3B-cAMP pathway of leptin signalling in the hypothalamus is impaired during the development of diet-induced obesity in FVB/N mice. J. Neuroendocrinol. 27, 293–302 (2015).

    CAS  PubMed  Google Scholar 

  41. 41.

    Moore, C. E., Xie, J., Gomez, E. & Herbert, T. P. Identification of cAMP-dependent kinase as a third in vivo ribosomal protein S6 kinase in pancreatic beta-cells. J. Mol. Biol. 389, 480–494 (2009).

    CAS  PubMed  Google Scholar 

  42. 42.

    Valjent, E. et al. Haloperidol regulates the state of phosphorylation of ribosomal protein S6 via activation of PKA and phosphorylation of DARPP-32. Neuropsychopharmacol. 36, 2561–2570 (2011).

    CAS  Google Scholar 

  43. 43.

    Blouet, C., Ono, H. & Schwartz, G. J. Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metab. 8, 459–467 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Richard, D. Cognitive and autonomic determinants of energy homeostasis in obesity. Nat. Rev. Endocrinol. 11, 489–501 (2015).

    PubMed  Google Scholar 

  45. 45.

    Meguid, M. M., Yang, Z. J. & Montante, A. Lateral hypothalamic dopaminergic neural activity in response to total parenteral nutrition. Surgery 114, 400–405 (1993). discussion 405-406.

    CAS  PubMed  Google Scholar 

  46. 46.

    Meguid, M. M., Yang, Z. J. & Koseki, M. Eating induced rise in LHA-dopamine correlates with meal size in normal and bulbectomized rats. Brain Res. Bull. 36, 487–490 (1995).

    CAS  PubMed  Google Scholar 

  47. 47.

    Yang, Z. J., Koseki, M., Meguid, M. M. & Laviano, A. Eating-related increase of dopamine concentration in the LHA with oronasal stimulation. Am. J. Physiol. 270, R315–R318 (1996).

    CAS  PubMed  Google Scholar 

  48. 48.

    Najam, N. Involvement of dopaminergic systems in the ventromedial hypothalamic hyperphagia. Brain Res. Bull. 21, 571–574 (1988).

    CAS  PubMed  Google Scholar 

  49. 49.

    Baptista, T., Parada, M. & Hernandez, L. Long term administration of some antipsychotic drugs increases body weight and feeding in rats. Are D2 dopamine receptors involved? Pharmacol. Biochem. Behav. 27, 399–405 (1987).

    CAS  PubMed  Google Scholar 

  50. 50.

    Meguid, M. M., Yang, Z. J. & Laviano, A. Meal size and number: relationship to dopamine levels in the ventromedial hypothalamic nucleus. Am. J. Physiol. 272, R1925–R1930 (1997).

    CAS  PubMed  Google Scholar 

  51. 51.

    Meguid, M. M. et al. Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition 16, 843–857 (2000).

    CAS  PubMed  Google Scholar 

  52. 52.

    Zhang, X. & van den Pol, A. N. Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis. Nat. Neurosci. 19, 1341–1347 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Labouesse, M. A. et al. Striatal dopamine 2 receptor upregulation during development predisposes to diet-induced obesity by reducing energy output in mice. Proc. Natl Acad. Sci. USA 115, 10493–10498 (2018).

    CAS  PubMed  Google Scholar 

  54. 54.

    Carlin, J., Hill-Smith, T. E., Lucki, I. & Reyes, T. M. Reversal of dopamine system dysfunction in response to high-fat diet. Obesity 21, 2513–2521 (2013).

    CAS  PubMed  Google Scholar 

  55. 55.

    Friend, D. M. et al. Basal ganglia dysfunction contributes to physical inactivity in obesity. Cell Metab. 25, 312–321 (2017).

    CAS  PubMed  Google Scholar 

  56. 56.

    Lopez, M., Nogueiras, R., Tena-Sempere, M. & Dieguez, C. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat. Rev. Endocrinol. 12, 421–432 (2016).

    CAS  PubMed  Google Scholar 

  57. 57.

    Kohlie, R. et al. Dopamine directly increases mitochondrial mass and thermogenesis in brown adipocytes. J. Mol. Endocrinol. 58, 57–66 (2017).

    CAS  PubMed  Google Scholar 

  58. 58.

    Burt, J., Alberto, C. O., Parsons, M. P. & Hirasawa, M. Local network regulation of orexin neurons in the lateral hypothalamus. Am. J. Physiol. Regulatory, Integr. Comp. Physiol. 301, R572–R580 (2011).

    CAS  Google Scholar 

  59. 59.

    Bubser, M. et al. Dopaminergic regulation of orexin neurons. Eur. J. Neurosci. 21, 2993–3001 (2005).

    PubMed  Google Scholar 

  60. 60.

    Yasuda, T. et al. Dual regulatory effects of orexins on sympathetic nerve activity innervating brown adipose tissue in rats. Endocrinology 146, 2744–2748 (2005).

    CAS  PubMed  Google Scholar 

  61. 61.

    Sellayah, D., Bharaj, P. & Sikder, D. Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab. 14, 478–490 (2011).

    CAS  PubMed  Google Scholar 

  62. 62.

    Stoof, J. C. & Kebabian, J. W. Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 294, 366–368 (1981).

    CAS  PubMed  Google Scholar 

  63. 63.

    Yang, L. & McKnight, G. S. Hypothalamic PKA regulates leptin sensitivity and adiposity. Nat. Commun. 6, 8237 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Cummings, D. E. et al. Genetically lean mice result from targeted disruption of the RII beta subunit of protein kinase A. Nature 382, 622–626 (1996).

    CAS  PubMed  Google Scholar 

  65. 65.

    Zheng, R. et al. Deficiency of the RIIbeta subunit of PKA affects locomotor activity and energy homeostasis in distinct neuronal populations. Proc. Natl Acad. Sci. USA 110, E1631–E1640 (2013).

    CAS  PubMed  Google Scholar 

  66. 66.

    Inancli, S. S. et al. Effect of cabergoline on insulin sensitivity, inflammation, and carotid intima media thickness in patients with prolactinoma. Endocrine 44, 193–199 (2013).

    CAS  PubMed  Google Scholar 

  67. 67.

    Pala, N. A., Laway, B. A., Misgar, R. A. & Dar, R. A. Metabolic abnormalities in patients with prolactinoma: response to treatment with cabergoline. Diabetol. Metab. Syndr. 7, 99 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Lamos, E. M., Levitt, D. L. & Munir, K. M. A review of dopamine agonist therapy in type 2 diabetes and effects on cardio-metabolic parameters. Prim. Care Diabetes 10, 60–65 (2016).

    CAS  PubMed  Google Scholar 

  69. 69.

    Nogueiras, R. et al. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. J. Neurosci. 29, 5916–5925 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Nogueiras, R. et al. The central melanocortin system directly controls peripheral lipid metabolism. J. Clin. Investig. 117, 3475–3488 (2007).

    CAS  PubMed  Google Scholar 

  71. 71.

    Gangarossa, G. et al. Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus. Hippocampus 22, 2199–2207 (2012).

    CAS  PubMed  Google Scholar 

  72. 72.

    Beiroa, D. et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 3346–3358 (2014).

    CAS  PubMed  Google Scholar 

  73. 73.

    Contreras, C. et al. Central ceramide-induced hypothalamic lipotoxicity and ER stress regulate energy balance. Cell Rep. 9, 366–377 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Czyzyk, T. A. et al. Mice lacking delta-opioid receptors resist the development of diet-induced obesity. FASEB J. 26, 3483–3492 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Alvarez-Crespo, M. et al. Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance. Mol. Metab. 5, 271–282 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Imbernon, M. et al. Hypothalamic kappa opioid receptor mediates both diet-induced and melanin concentrating hormone-induced liver damage through inflammation and endoplasmic reticulum stress. Hepatology 64, 1086–1104 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Alvarez-Crespo, M. et al. The orexigenic effect of orexin-A revisited: dependence of an intact growth hormone axis. Endocrinology 154, 3589–3598 (2013).

    CAS  PubMed  Google Scholar 

  78. 78.

    de Jong, J. W. et al. Reducing ventral tegmental dopamine D2 receptor expression selectively boosts incentive motivation. Neuropsychopharmacol. 40, 2085–2095 (2015).

    Google Scholar 

  79. 79.

    Messina, A. et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat. Neurosci. 19, 835–844 (2016).

    CAS  PubMed  Google Scholar 

  80. 80.

    Konner, A. C. et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 5, 438–449 (2007).

    PubMed  Google Scholar 

  81. 81.

    Lopez, M. et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 16, 1001–1008 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Imbernon, M. et al. Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways. Gastroenterology 144, 636–649 e636 (2013).

    CAS  PubMed  Google Scholar 

  83. 83.

    Seoane, L. M. et al. Agouti-related peptide, neuropeptide Y, and somatostatin-producing neurons are targets for ghrelin actions in the rat hypothalamus. Endocrinology 144, 544–551 (2003).

    CAS  PubMed  Google Scholar 

  84. 84.

    Melmed, S. et al. Diagnosis and treatment of hyperprolactinemia: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 273–288 (2011).

    CAS  PubMed  Google Scholar 

  85. 85.

    Webster, J. et al. A comparison of cabergoline and bromocriptine in the treatment of hyperprolactinemic amenorrhea. Cabergoline comparative study group. N. Engl. J. Med. 331, 904–909 (1994).

    CAS  PubMed  Google Scholar 

  86. 86.

    Gómez-Ambrosi, J. et al. Body adiposity and type 2 diabetes: increased risk with a high body fat percentage even having a normal BMI. Obesity 19, 1439–1444 (2011).

    PubMed  Google Scholar 

  87. 87.

    Sabater, M. et al. Circulating pigment epithelium-derived factor levels are associated with insulin resistance and decrease after weight loss. J. Clin. Endocrinol. Metab. 95, 4720–4728 (2010).

    CAS  PubMed  Google Scholar 

  88. 88.

    Gómez-Ambrosi, J. et al. Involvement of leptin in the association between percentage of body fat and cardiovascular risk factors. Clin. Biochem. 35, 315–320 (2002).

    PubMed  Google Scholar 

  89. 89.

    Miller, J. Reaction time analysis with outlier exclusion: bias varies with sample size. Q. J. Exp. Psychol. A, Hum. Exp. Psychol. 43, 907–912 (1991).

    CAS  Google Scholar 

  90. 90.

    Razali, N. M. & Wah, Y. B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J. Stat. Modeling Analytics 2, 21–33 (2011).

    Google Scholar 

  91. 91.

    Student. The probable error of a mean. Biometrika 6, 1–25 (1908).

  92. 92.

    Fay, D. S. & Gerow, K. A biologist’s guide to statistical thinking and analysis. WormBook: the Online Review of C. elegans Biology (2013); https://doi.org/10.1895/wormbook.1891.1159.1891

  93. 93.

    Charan, J. & Biswas, T. How to calculate sample size for different study designs in medical research? Indian J. Psychological Med. 35, 121–126 (2013).

    Google Scholar 

  94. 94.

    Kao, L. S. & Green, C. E. Analysis of variance: Is there a difference in means and what does it mean? J. Surgical Res. 144, 158–170 (2008).

    Google Scholar 

  95. 95.

    Bridge, P. D. & Sawilowsky, S. S. Increasing physicians’ awareness of the impact of statistics on research outcomes. J. Clin. Epidemiol. 52, 229–235 (1999).

    CAS  PubMed  Google Scholar 

  96. 96.

    Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252 (1964).

    Google Scholar 

  97. 97.

    Campbell, G. & Skillings, J. H. Nonparametric stepwise multiple comparison procedures. J. Am. Stat. Assoc. 80, 998–1003 (1985).

    Google Scholar 

Download references

Acknowledgements

We would like to thank L. Casas for her excellent technical assistance. This work has been supported by grants from FEDER, Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación (C.D.: BFU2017-87721; M.L.: SAF2015-71026-R and BFU2015-70454-REDT/Adipoplast; R.N.: BFU2015-70664R), and Centro Singular de Investigación de Galicia accreditation 2016–2019, ED431G/05) and the European Regional Development Fund (ERDF), Xunta de Galicia (M.L.: 2015-CP079 and 2016-PG068; R.N.: 2015-CP080 and 2016-PG057), Fundación BBVA (R.N.), Fundación Atresmedia (M.L. and R.N.), Instituto de Salud Carlos III and cofunded by FEDER (L.M.S.:PI15/01272 and PI18/01890). The research leading to these results has also received funding from the European Community’s H2020 Framework Programme under the following grant: ERC Synergy Grant-2019-WATCH-810331 to V.P. and R.N. Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBERobn). CIBERobn is an initiative of the Instituto de Salud Carlos III (ISCIII) of Spain, which is supported by FEDER funds. This work was supported by Inserm, Fondation pour la Recherche Médicale, ANR-EPITRACES (E.V.).

Author information

Affiliations

Authors

Contributions

C.F., D.B., B.P., M.D., E.P., M.F.-F., S.B.-F., R.G., R.H.-B., C.C., A.S., P.S.-C., N.G.-L., P.A., D.G., M.F., A.R.-R., I.K. and Z.L. carried out the experiments. R.A., C.B., J.L.L.-B. and F.J. generated viral vectors and animal models. J.S. and G.F. performed the assays in patients. C.F., V.P., C.D., M.L., E.V., L.M.S. and R.N. designed and planned the study. All authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Luisa M. Seoane or Ruben Nogueiras.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Primary Handling Editor: Elena Bellafante

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11

Reporting Summary

Supplementary Table 1

Antisense oligonucleotide for rat MCH and rat prepro-OX.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Folgueira, C., Beiroa, D., Porteiro, B. et al. Hypothalamic dopamine signalling regulates brown fat thermogenesis. Nat Metab 1, 811–829 (2019). https://doi.org/10.1038/s42255-019-0099-7

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing