Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prostaglandin signals from adult germline stem cells delay somatic ageing of Caenorhabditis elegans

Abstract

A moderate reduction in body temperature can induce a remarkable lifespan extension. Here we examine the link between cold temperature, germline fitness and organismal longevity. We show that low temperature reduces age-associated exhaustion of germline stem cells (GSCs) in Caenorhabditis elegans, a process modulated by thermosensory neurons. Notably, robust self-renewal of adult GSCs delays reproductive ageing and is required for extended lifespan at cold temperatures (10 °C, 15 °C). These cells release prostaglandin E2 (PGE2) to induce cbs-1 expression in the intestine, increasing the somatic production of hydrogen sulfide, a gaseous signalling molecule that prolongs lifespan. Loss of adult GSCs reduces intestinal cbs-1 expression and cold-induced longevity, whereas application of exogenous PGE2 rescues these phenotypes. Importantly, tissue-specific intestinal overexpression of cbs-1 mimics cold-temperature conditions and extends longevity even at warm temperatures (25 °C). Thus, our results indicate that GSCs communicate with somatic tissues to coordinate extended reproductive capacity with longevity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The germline is essential for cold-induced longevity during adulthood.
Fig. 2: Cold temperature delays exhaustion of GSCs and reproductive ageing.
Fig. 3: Thermosensory neurons regulate cold-induced longevity and GSC proliferation.
Fig. 4: Adult GSC proliferation determines cold-induced longevity.
Fig. 5: cbs-1 and other factors modulate the long lifespan induced by adult GSCs at low temperatures.
Fig. 6: Tissue-specific knockdown of cbs-1 in the intestine or muscle reduces cold-induced longevity.
Fig. 7: GSCs induce cbs-1 expression in somatic tissues at cold temperatures.
Fig. 8: Release of PGE2 by GSCs promotes cold-induced longevity.
Fig. 9: Application of exogenous PGE2 rescues cbs-1 expression and cold-induced longevity in GSC-impaired worms.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within the article and its supplementary files. Transcriptome data have been deposited in Gene Expression Omnibus (GEO) under the accession code GSE123054. All the other data are also available from the corresponding author upon request.

References

  1. Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span–from yeast to humans. Science 328, 321–326 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010).

    CAS  PubMed  Google Scholar 

  3. Robinson, J. D. & Powell, J. R. Long-term recovery from acute cold shock in Caenorhabditis elegans. BMC Cell Biol. 17, 2 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Conti, B. Considerations on temperature, longevity and aging. Cell Mol. Life Sci. 65, 1626–1630 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hosono, R., Mitsui, Y., Sato, Y., Aizawa, S. & Miwa, J. Life span of the wild and mutant nematode Caenorhabditis elegans. Effects of sex, sterilization, and temperature. Exp. Gerontol. 17, 163–172 (1982).

    CAS  PubMed  Google Scholar 

  6. Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977).

    CAS  PubMed  Google Scholar 

  7. Wu, D., Rea, S. L., Cypser, J. R. & Johnson, T. E. Mortality shifts in Caenorhabditis elegans: remembrance of conditions past. Aging Cell 8, 666–675 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lamb, M. J. Temperature and lifespan in Drosophila. Nature 220, 808–809 (1968).

    CAS  PubMed  Google Scholar 

  9. Liu, R. K. & Walford, R. L. Increased growth and life-span with lowered ambient temperature in annual fish Cynolebias adloffi. Nature 212, 1277 (1966). &.

    Google Scholar 

  10. Valenzano, D. R., Terzibasi, E., Cattaneo, A., Domenici, L. & Cellerino, A. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri. Aging Cell 5, 275–278 (2006).

    CAS  PubMed  Google Scholar 

  11. Lee, S. J. & Kenyon, C. Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans. Curr. Biol. 19, 715–722 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Xiao, R. et al. A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152, 806–817 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Conti, B. et al. Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825–828 (2006).

    CAS  PubMed  Google Scholar 

  14. Loeb, J. & Northrop, J. H. Is there a temperature coefficient for the duration of life? Proc. Natl Acad. Sci. USA 2, 456–457 (1916).

    CAS  PubMed  Google Scholar 

  15. Zhang, B. et al. Environmental temperature differentially modulates C. elegans longevity through a thermosensitive TRP channel. Cell Rep. 11, 1414–1424 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, B. et al. Brain-gut communications via distinct neuroendocrine signals bidirectionally regulate longevity in C. elegans. Genes Dev. 32, 258–270 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Horikawa, M., Sural, S., Hsu, A. L. & Antebi, A. Co-chaperone p23 regulates C. elegans lifespan in response to temperature. PLoS Genet. 11, e1005023 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Partridge, L., Gems, D. & Withers, D. J. Sex and death: what is the connection? Cell 120, 461–472 (2005).

    CAS  PubMed  Google Scholar 

  19. Kirkwood, T. B. Evolution of ageing. Nature 270, 301–304 (1977).

    CAS  PubMed  Google Scholar 

  20. Arantes-Oliveira, N., Apfeld, J., Dillin, A. & Kenyon, C. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295, 502–505 (2002).

    CAS  PubMed  Google Scholar 

  21. Hsin, H. & Kenyon, C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399, 362–366 (1999).

    CAS  PubMed  Google Scholar 

  22. Vilchez, D. et al. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489, 263–268 (2012).

    CAS  PubMed  Google Scholar 

  23. Berman, J. R. & Kenyon, C. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124, 1055–1068 (2006).

    CAS  PubMed  Google Scholar 

  24. Lapierre, L. R., Gelino, S., Melendez, A. & Hansen, M. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr. Biol. 21, 1507–1514 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Noormohammadi, A. et al. Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan. Nat. Commun. 7, 13649 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shemesh, N., Shai, N. & Ben-ZviA. Germline stem cell arrest inhibits the collapse of somatic proteostasis early in Caenorhabditis elegans adulthood. Aging Cell 12, 814–822 (2013).

    CAS  PubMed  Google Scholar 

  27. Hine, C. et al. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160, 132–144 (2015).

    CAS  PubMed  Google Scholar 

  28. Miller, D. L. & Roth, M. B. Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proc. Natl Acad. Sci. U S A 104, 20618–20622 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Priess, J. R., Schnabel, H. & Schnabel, R. The glp-1 locus and cellular interactions in early C. elegans embryos. Cell 51, 601–611 (1987).

    CAS  PubMed  Google Scholar 

  30. Curran, S. P., Wu, X., Riedel, C. G. & Ruvkun, G. A soma-to-germline transformation in long-lived Caenorhabditis elegans mutants. Nature 459, 1079–1084 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Syntichaki, P., Troulinaki, K. & Tavernarakis, N. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445, 922–926 (2007).

    CAS  PubMed  Google Scholar 

  32. Andux, S. & Ellis, R. E. Apoptosis maintains oocyte quality in aging Caenorhabditis elegans females. PLoS Genet. 4, e1000295 (2008).

    PubMed  PubMed Central  Google Scholar 

  33. Barton, M. K. & Kimble, J. fog-1, a regulatory gene required for specification of spermatogenesis in the germ line of Caenorhabditis elegans. Genetics 125, 29–39 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. L’Hernault, S. W. Spermatogenesis. WormBook 2006, 1–14 (2006).

    Google Scholar 

  35. Schedl, T. & Kimble, J. fog-2, a germ-line-specific sex determination gene required for hermaphrodite spermatogenesis in Caenorhabditis elegans. Genetics 119, 43–61 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Varkey, J. P., Muhlrad, P. J., Minniti, A. N., Do, B. & Ward, S. The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar to the actin-associated proteins kelch and scruin. Genes Dev. 9, 1074–1086 (1995).

    CAS  PubMed  Google Scholar 

  37. Hubbard, E. J., & Greenstein, D. Introduction to the germ line.WormBook 2005, 1–4 (2005).

    Google Scholar 

  38. Crittenden, S. L., Leonhard, K. A., Byrd, D. T. & Kimble, J. Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Mol. Biol. Cell 17, 3051–3061 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kimble, J. & Seidel, H. C. elegans germline stem cells and their niche. StemBook https://dx.doi.org/10.3824/stembook.1.95.1 (Harvard Stem Cell Institute, 2008).

  40. Morita, Y. & Tilly, J. L. Oocyte apoptosis: like sand through an hourglass. Dev. Biol. 213, 1–17 (1999).

    CAS  PubMed  Google Scholar 

  41. Hodgkin, J. & Barnes, T. M. More is not better: brood size and population growth in a self-fertilizing nematode. Proc. Biol. Sci. 246, 19–24 (1991).

    CAS  PubMed  Google Scholar 

  42. Garrity, P. A., Goodman, M. B., Samuel, A. D. & Sengupta, P. Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and drosophila. Genes Dev. 24, 2365–2382 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Glauser, D. A. et al. Heat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans. Genetics 188, 91–U150 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kindt, K. S. et al. Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nat. Neurosci. 10, 568–577 (2007).

    CAS  PubMed  Google Scholar 

  45. Perkins, L. A., Hedgecock, E. M., Thomson, J. N. & Culotti, J. G. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev. Biol. 117, 456–487 (1986).

    CAS  PubMed  Google Scholar 

  46. Satterlee, J. S. et al. Specification of thermosensory neuron fate in C. elegans requires ttx-1, a homolog of otd/Otx. Neuron 31, 943–956 (2001).

    CAS  PubMed  Google Scholar 

  47. Joshi, P. M., Riddle, M. R., Djabrayan, N. J. & Rothman, J. H. Caenorhabditis elegans as a model for stem cell biology. Dev. Dyn. 239, 1539–1554 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Graham, P. L., Schedl, T. & Kimble, J. More mog genes that influence the switch from spermatogenesis to oogenesis in the hermaphrodite germ line of Caenorhabditis elegans. Dev. Genet. 14, 471–484 (1993).

    CAS  PubMed  Google Scholar 

  49. Puoti, A. & Kimble, J. The Caenorhabditis elegans sex determination gene mog-1 encodes a member of the DEAH-Box protein family. Mol. Cell Biol. 19, 2189–2197 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Puoti, A. & Kimble, J. The hermaphrodite sperm/oocyte switch requires the Caenorhabditis elegans homologs of PRP2 and PRP22. Proc. Natl Acad. Sci. USA 97, 3276–3281 (2000).

    CAS  PubMed  Google Scholar 

  51. Kawasaki, I. et al. The PGL family proteins associate with germ granules and function redundantly in Caenorhabditis elegans germline development. Genetics 167, 645–661 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kawasaki, I. et al. PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell 94, 635–645 (1998).

    CAS  PubMed  Google Scholar 

  53. Kuznicki, K. A. et al. Combinatorial RNA interference indicates GLH-4 can compensate for GLH-1; these two P granule components are critical for fertility in C. elegans. Development 127, 2907–2916 (2000).

    CAS  PubMed  Google Scholar 

  54. Hanazawa, M. et al. The Caenorhabditis elegans eukaryotic initiation factor 5A homologue, IFF-1, is required for germ cell proliferation, gametogenesis and localization of the P-granule component PGL-1. Mech. Dev. 121, 213–224 (2004).

    CAS  PubMed  Google Scholar 

  55. Green, R. A. et al. A high-resolution C. elegans essential gene network based on phenotypic profiling of a complex tissue. Cell 145, 470–482 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Francis, R., Barton, M. K., Kimble, J. & Schedl, T. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 139, 579–606 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Marin, V. A. & Evans, T. C. Translational repression of a C. elegans notch mRNA by the STAR/KH domain protein GLD-1. Development 130, 2623–2632 (2003).

    CAS  PubMed  Google Scholar 

  58. Pinkston, J. M., Garigan, D., Hansen, M. & Kenyon, C. Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313, 971–975 (2006).

    CAS  PubMed  Google Scholar 

  59. Van Voorhies, W. A. & Ward, S. Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc. Natl Acad. Sci. USA 96, 11399–11403 (1999).

    PubMed  Google Scholar 

  60. Vozdek, R., Hnizda, A., Krijt, J., Kostrouchova, M. & Kozich, V. Novel structural arrangement of nematode cystathionine beta-synthases: characterization of Caenorhabditis elegans CBS-1. Biochem J 443, 535–547 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, G. et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322, 587–590 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Paul, B. D. & Snyder, S. H. H2S signalling through protein sulfhydration and beyond. Nat. Rev. Mol. Cell Biol. 13, 499–507 (2012).

    CAS  PubMed  Google Scholar 

  63. Kudo, I. & Murakami, M. Prostaglandin E synthase, a terminal enzyme for prostaglandin E2 biosynthesis. J. Biochem. Mol. Biol. 38, 633–638 (2005).

    CAS  PubMed  Google Scholar 

  64. Tanioka, T. et al. Regulation of cytosolic prostaglandin E2 synthase by 90-kDa heat shock protein. Biochem. Biophys. Res. Commun. 303, 1018–1023 (2003).

    CAS  PubMed  Google Scholar 

  65. Lovgren, A. K., Kovarova, M. & Koller, B. H. cPGES/p23 is required for glucocorticoid receptor function and embryonic growth but not prostaglandin E-2 synthesis. Mol. Cell Biol. 27, 4416–4430 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kochel, T. J. & Fulton, A. M. Multiple drug resistance-associated protein 4 (MRP4), prostaglandin transporter (PGT), and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) as determinants of PGE2 levels in cancer. Prostaglandins Other Lipid Mediat. 116-117, 99–103 (2015).

    CAS  PubMed  Google Scholar 

  67. Taylor, R. C., Berendzen, K. M. & Dillin, A. Systemic stress signalling: understanding the cell non-autonomous control of proteostasis. Nat. Rev. Mol. Cell Biol. 15, 211–217 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Khodakarami, A., Mels, J., Saez, I. & Vilchez, D. Mediation of organismal aging and somatic proteostasis by the germline.Front. Mol. Biosci. 2, 3 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. Prahlad, V., Cornelius, T. & Morimoto, R. I. Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320, 811–814 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gandhi, S., Santelli, J., Mitchell, D. H., Stiles, J. W. & Raosanadi, D. A simple method for maintaining large, aging populations of Caenorhabditis elegans. Mech. Ageing Dev. 12, 137–150 (1980).

    CAS  PubMed  Google Scholar 

  71. Mitchell, D. H., Stiles, J. W., Santelli, J. & Rao, S. D. Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. J. Gerontol. 34, 28–36 (1979).

    CAS  PubMed  Google Scholar 

  72. Van Raamsdonk, J. M. & Hekimi, S. FUdR causes a twofold increase in the lifespan of the mitochondrial mutant gas-1. Mech. Ageing Dev. 132, 519–521 (2011).

    PubMed  PubMed Central  Google Scholar 

  73. Feldman, N., Kosolapov, L. & Ben-Zvi, A. Fluorodeoxyuridine improves Caenorhabditis elegans proteostasis independent of reproduction onset. PLoS One 9, e85964 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Scott, T. A. et al. Host-microbe co-metabolism dictates cancer drug efficacy in C. elegans. Cell 169, 442–456 e418 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wei, Y. & Kenyon, C. Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 113, E2832–E2841 (2016).

    CAS  PubMed  Google Scholar 

  76. O’Rourke, E. J., Kuballa, P., Xavier, R. & Ruvkun, G. Omega-6 polyunsaturated fatty acids extend life span through the activation of autophagy. Genes Dev. 27, 429–440 (2013).

    PubMed  PubMed Central  Google Scholar 

  77. Gold, E. B. The timing of the age at which natural menopause occurs. Obstet. Gynecol. Clin. North Am. 38, 425–440 (2011).

    PubMed  PubMed Central  Google Scholar 

  78. Ossewaarde, M. E. et al. Age at menopause, cause-specific mortality and total life expectancy. Epidemiology 16, 556–562 (2005).

    PubMed  Google Scholar 

  79. Shadyab, A. H. et al. Ages at menarche and menopause and reproductive lifespan as predictors of exceptional longevity in women: the Women’s health initiative. Menopause 24, 35–44 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yigit, E. et al. Analysis of the C. elegans argonaute family reveals that distinct argonautes act sequentially during RNAi. Cell 127, 747–757 (2006).

    CAS  PubMed  Google Scholar 

  82. Espelt, M. V., Estevez, A. Y., Yin, X. & Strange, K. Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5-trisphosphate receptor and phospholipases C beta and gamma. J. Gen. Physiol. 126, 379–392 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Marre, J., Traver, E. C. & Jose, A. M. Extracellular RNA is transported from one generation to the next in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 113, 12496–12501 (2016).

    CAS  PubMed  Google Scholar 

  84. Calixto, A., Chelur, D., Topalidou, I., Chen, X. & Chalfie, M. Enhanced neuronal RNAi in C. elegans using SID-1. Nat. Methods 7, 554–559 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zou, L. et al. Construction of a germline-specific RNAi tool in C. elegans. Sci. Rep. 9, 2354 (2019).

    PubMed  PubMed Central  Google Scholar 

  86. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang, J. S. et al. OASIS: online application for the survival analysis of lifespan assays performed in aging research. PLoS One 6, e23525 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteomics 13, 2513–2526 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wagle, P., Nikolic, M. & Frommolt, P. QuickNGS elevates next-generation sequencing data analysis to a new level of automation. BMC Genomics 16, 487 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Hoogewijs, D., Houthoofd, K., Matthijssens, F., Vandesompele, J. & Vanfleteren, J. R. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol. Biol. 9, 9 (2008).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (ERC Starting Grant-677427 StemProteostasis) and the Deutsche Forschungsgemeinschaft (DFG) (VI742/1-2 and CECAD). We are grateful to E. Llamas for the graphical model and the germline scheme. We thank U. Pham and N. Fritsma for their help in BrdU and lifespan experiments, respectively. We thank J. P. Derks for data analysis and preparation of heatmap figures with R stats package of proteomics experiments. We also thank J. Horák for generation of the tissue-specific cbs-1 expression plasmids. We thank T. Hoppe for critical comments on the manuscript. We are grateful to the CECAD Proteomics and Imaging Facilities for their advice and contribution to proteomics and imaging experiments, respectively. We also thank P. Wagle from the CECAD Bionformatics Facility for data analysis of RNA-sequencing experiments. This work was also supported by the grant of the German Research Council through Collaborative Research Centre 1218 (SFB1218 - TP B01) to A.T.

Author information

Authors and Affiliations

Authors

Contributions

H. J. L., A. N. and D. V. performed most of the experiments, data analysis and interpretation. S. K. assessed knockdown levels and contributed to lifespan assays and other experiments. G. C. performed some of the BrdU assays and helped with other experiments. M. S. S. generated the plasmids for tissue-specific overexpression that were used to clone cbs-1. M. H. performed oxygen consumption experiments. A. T. contributed expertise on metabolic rates and provided critical advice on the project. The manuscript was written by D. V. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to David Vilchez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Primary Handling Editor: Pooja Jha.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–33 and Supplementary Tables 1 and 2.

Reporting Summary

Supplementary Dataset 1

Differentially expressed proteins following iff-1 RNAi treatment or temperature increase. Log2-fold change of differentially expressed proteins in iff-1 RNAi-treated worms at 15 °C and EV RNAi-treated worms at 20 °C compared with EV RNAi-treated worms at 15 °C. The fer-15(b26);fem-1(hc17) control strain was raised at the restrictive temperature (25 °C) during development to obtain sterile worms with a proliferating germline, which were then shifted to the indicated temperatures and RNAi treatment until day 6 of adulthood. Statistical comparisons were made by two-tailed Student’s t-test (n=3, P value <0.05 was considered significant).

Supplementary Dataset 2

Transcriptome analysis of extruded germlines from worms following iff-1 RNAi treatment or temperature increase. Differentially expressed transcripts changed in the same direction in the germline of both iff-1 RNAi-treated worms at 15 °C and empty vector (EV) RNAi-treated worms at 20 °C compared with the germline of EV RNAi-treated worms at 15 °C. Statistical comparisons were made by two-tailed t-test, n=3 (each replicate contains 150 extruded germ lines from N2 wild-type worms), P <0.01 was considered significant. Germlines were extruded at day 6 of adulthood.

Supplementary Dataset 3

Statistical analysis and replicate data of lifespan experiments. All statistical comparisons were made by two-sided log-rank test, n=96 worms per condition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.J., Noormohammadi, A., Koyuncu, S. et al. Prostaglandin signals from adult germline stem cells delay somatic ageing of Caenorhabditis elegans. Nat Metab 1, 790–810 (2019). https://doi.org/10.1038/s42255-019-0097-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-019-0097-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing