Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Leptin and the endocrine control of energy balance

Abstract

The discovery of leptin changed the view of adipose tissue from that of a passive vessel that stores fat to that of a dynamic endocrine organ that actively regulates behaviour and metabolism. Secreted by adipose tissue, leptin functions as an afferent signal in a negative feedback loop, acting primarily on neurons in the hypothalamus and regulating feeding and many other functions. The leptin endocrine system serves a critical evolutionary function by maintaining the relative constancy of adipose tissue mass, thereby protecting individuals from the risks associated with being too thin (starvation and infertility) or too obese (predation). In this Review, the biology of leptin is summarized, and a conceptual framework is established for studying the pathogenesis of obesity, which, analogously to diabetes, can result from either leptin hyposecretion or leptin resistance. Herein, these two states are distinguished with the terms ‘type 1 obesity’ and ‘type 2 obesity’: type 1 obesity describes a subset of obese individuals with low endogenous plasma leptin levels who respond to leptin therapy, whereas type 2 obesity describes most obese individuals, who are leptin resistant but might respond to leptin therapy in combination with other drugs, such as leptin sensitizers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Leptin loop and target tissues.
Fig. 2: Leptin-receptor signalling.

References

  1. 1.

    Bray, G. A. Obesity: historical development of scientific and cultural ideas. Int. J. Obes. 14, 909–926 (1990).

    CAS  PubMed  Google Scholar 

  2. 2.

    Friedman, J. M. A war on obesity, not the obese. Science 299, 856–858 (2003).

    CAS  PubMed  Google Scholar 

  3. 3.

    Adolph, E. F. Urges to eat and drink in rats. Am. J. Physiol. 151, 110–125 (1947).

    CAS  PubMed  Google Scholar 

  4. 4.

    Kennedy, G. C. The role of depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. Lond. 140, 578–596 (1953).

    CAS  PubMed  Google Scholar 

  5. 5.

    Neel, J. V. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress. Am. J. Hum. Genet. 14, 353–362 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Diamond, J. The double puzzle of diabetes. Nature 423, 599–602 (2003).

    CAS  PubMed  Google Scholar 

  7. 7.

    Speakman, J. R. A nonadaptive scenario explaining the genetic predisposition to obesity: the “predation release” hypothesis. Cell Metab. 6, 5–12 (2007).

    CAS  PubMed  Google Scholar 

  8. 8.

    Speakman, J. R. The evolution of body fatness: trading off disease and predation risk. J. Exp. Biol. 221(Suppl. 1), jeb167254 (2018).

    PubMed  Google Scholar 

  9. 9.

    Ingalls, A. M., Dickie, M. M. & Snell, G. D. Obese, a new mutation in the house mouse. J. Hered. 41, 317–318 (1950).

    CAS  PubMed  Google Scholar 

  10. 10.

    Hummel, K. P., Dickie, M. M. & Coleman, D. L. Diabetes, a new mutation in the mouse. Science 153, 1127–1128 (1966).

    CAS  PubMed  Google Scholar 

  11. 11.

    Coleman, D. L. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14, 141–148 (1978).

    CAS  PubMed  Google Scholar 

  12. 12.

    Zucker, L. M. & Zucker, T. F. Fatty, a new mutation in the rat. J. Hered. 52, 275–278 (1961).

    Google Scholar 

  13. 13.

    Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    CAS  PubMed  Google Scholar 

  14. 14.

    Hetherington, A. W. & Ranson, S. W. The spontaneous activity and food intake of rats with hypothalamic lesions. Am. J. Physiol. 136, 609–617 (1942).

    CAS  Google Scholar 

  15. 15.

    Hervey, G. R. The effects of lesions in the hypothalamus in parabiotic rats. J. Physiol. (Lond.) 145, 336–352 (1959).

    CAS  Google Scholar 

  16. 16.

    Coleman, D. L. & Hummel, K. P. Effects of parabiosis of normal with genetically diabetic mice. Am. J. Physiol. 217, 1298–1304 (1969).

    CAS  PubMed  Google Scholar 

  17. 17.

    Harris, R. B. S., Hervey, E., Hervey, G. R. & Tobin, G. Body composition of lean and obese Zucker rats in parabiosis. Int. J. Obes. 11, 275–283 (1987).

    CAS  PubMed  Google Scholar 

  18. 18.

    Coleman, D. L. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9, 294–298 (1973).

    CAS  PubMed  Google Scholar 

  19. 19.

    Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    CAS  PubMed  Google Scholar 

  20. 20.

    Maffei, M. et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1, 1155–1161 (1995).

    CAS  PubMed  Google Scholar 

  21. 21.

    Maffei, M. et al. Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc. Natl Acad. Sci. USA 92, 6957–6960 (1995).

    CAS  PubMed  Google Scholar 

  22. 22.

    Halaas, J. L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546 (1995).

    CAS  PubMed  Google Scholar 

  23. 23.

    Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R. & Burn, P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269, 546–549 (1995).

    CAS  PubMed  Google Scholar 

  24. 24.

    Pelleymounter, M. A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995).

    CAS  PubMed  Google Scholar 

  25. 25.

    Tartaglia, L. A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995).

    CAS  PubMed  Google Scholar 

  26. 26.

    Lee, G. H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–635 (1996).

    CAS  PubMed  Google Scholar 

  27. 27.

    Chen, H. et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84, 491–495 (1996).

    CAS  PubMed  Google Scholar 

  28. 28.

    Fei, H. et al. Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc. Natl Acad. Sci. USA 94, 7001–7005 (1997).

    CAS  PubMed  Google Scholar 

  29. 29.

    Lee, G. et al. Leptin receptor mutations in 129 db 3J /db 3J mice and NIH fa cp/fa cp rats. Mamm. Genome 8, 445–447 (1997).

    CAS  PubMed  Google Scholar 

  30. 30.

    Vaisse, C. et al. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat. Genet. 14, 95–97 (1996).

    CAS  PubMed  Google Scholar 

  31. 31.

    Halaas, J. L. et al. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc. Natl Acad. Sci. USA 94, 8878–8883 (1997).

    CAS  PubMed  Google Scholar 

  32. 32.

    Cohen, P. et al. Selective deletion of leptin receptor in neurons leads to obesity. J. Clin. Invest. 108, 1113–1121 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Kowalski, T. J., Liu, S.-M., Leibel, R. L. & Chua, S. C. Jr. Transgenic complementation of leptin-receptor deficiency. I. Rescue of the obesity/diabetes phenotype of LEPR-null mice expressing a LEPR-B transgene. Diabetes 50, 425–435 (2001).

    CAS  PubMed  Google Scholar 

  34. 34.

    Lord, G. M. et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901 (1998).

    CAS  PubMed  Google Scholar 

  35. 35.

    Mackey-Lawrence, N. M. & Petri, W. A. Jr. Leptin and mucosal immunity. Mucosal Immunol. 5, 472–479 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Reis, B. S. et al. Leptin receptor signaling in T cells is required for Th17 differentiation. J. Immunol. 194, 5253–5260 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Ghilardi, N. et al. Defective STAT signaling by the leptin receptor in diabetic mice. Proc. Natl Acad. Sci. USA 93, 6231–6235 (1996).

    CAS  PubMed  Google Scholar 

  38. 38.

    Bates, S. H. et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856–859 (2003).

    CAS  PubMed  Google Scholar 

  39. 39.

    Gao, Q. et al. Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc. Natl Acad. Sci. USA 101, 4661–4666 (2004).

    CAS  PubMed  Google Scholar 

  40. 40.

    Robertson, S. et al. Insufficiency of Janus kinase 2-autonomous leptin receptor signals for most physiologic leptin actions. Diabetes 59, 782–790 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Cota, D. et al. Hypothalamic mTOR signaling regulates food intake. Science 312, 927–930 (2006).

    CAS  PubMed  Google Scholar 

  42. 42.

    Hill, J. W. et al. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J. Clin. Invest. 118, 1796–1805 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Leshan, R. L., Greenwald-Yarnell, M., Patterson, C. M., Gonzalez, I. E. & Myers, M. G. Jr. Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance. Nat. Med. 18, 820–823 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Mori, H. et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat. Med. 10, 739–743 (2004).

    CAS  PubMed  Google Scholar 

  45. 45.

    Bence, K. K. et al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat. Med. 12, 917–924 (2006).

    CAS  PubMed  Google Scholar 

  46. 46.

    Björnholm, M. et al. Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J. Clin. Invest. 117, 1354–1360 (2007).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Bjørbaek, C., Elmquist, J. K., Frantz, J. D., Shoelson, S. E. & Flier, J. S. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell 1, 619–625 (1998).

    PubMed  Google Scholar 

  48. 48.

    Friedman, J. M. The alphabet of weight control. Nature 385, 119–120 (1997).

    CAS  PubMed  Google Scholar 

  49. 49.

    Stephens, T. W. et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 377, 530–532 (1995).

    CAS  PubMed  Google Scholar 

  50. 50.

    Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    CAS  PubMed  Google Scholar 

  51. 51.

    Elias, C. F. et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23, 775–786 (1999).

    CAS  PubMed  Google Scholar 

  52. 52.

    Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42, 983–991 (2004).

    CAS  PubMed  Google Scholar 

  53. 53.

    Gao, Y. et al. TrpC5 mediates acute leptin and serotonin effects via Pomc neurons. Cell Rep. 18, 583–592 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Smith, M. A. et al. Calcium channel CaV2.3 subunits regulate hepatic glucose production by modulating leptin-induced excitation of arcuate pro-opiomelanocortin neurons. Cell Rep. 25, 278–287.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Caron, A. et al. POMC neurons expressing leptin receptors coordinate metabolic responses to fasting via suppression of leptin levels. eLife 7, e33710 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Xu, J. et al. Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature 556, 505–509 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Baver, S. B. et al. Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus. J. Neurosci. 34, 5486–5496 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Takahashi, K. A. & Cone, R. D. Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus neuropeptide Y/Agouti-related protein neurons. Endocrinology 146, 1043–1047 (2005).

    CAS  PubMed  Google Scholar 

  59. 59.

    Spanswick, D., Smith, M. A., Groppi, V. E., Logan, S. D. & Ashford, M. L. J. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390, 521–525 (1997).

    CAS  PubMed  Google Scholar 

  60. 60.

    Pinto, S. et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304, 110–115 (2004).

    CAS  PubMed  Google Scholar 

  61. 61.

    Bouret, S. G., Draper, S. J. & Simerly, R. B. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110 (2004).

    CAS  PubMed  Google Scholar 

  62. 62.

    Wu, Q., Boyle, M. P. & Palmiter, R. D. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137, 1225–1234 (2009).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Betley, J. N. et al. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521, 180–185 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Domingos, A. I. et al. Leptin regulates the reward value of nutrient. Nat. Neurosci. 14, 1562–1568 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Lu, X.-Y., Kim, C. S., Frazer, A. & Zhang, W. Leptin: a potential novel antidepressant. Proc. Natl Acad. Sci. USA 103, 1593–1598 (2006).

    CAS  PubMed  Google Scholar 

  67. 67.

    Scott, M. M. et al. Leptin targets in the mouse brain. J. Comp. Neurol. 514, 518–532 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Leshan, R. L., Björnholm, M., Münzberg, H. & Myers, M. G. Jr. Leptin receptor signaling and action in the central nervous system. Obesity (Silver Spring) 14(Suppl. 5), 208S–212S (2006).

    CAS  Google Scholar 

  69. 69.

    Williams, K. W., Zsombok, A. & Smith, B. N. Rapid inhibition of neurons in the dorsal motor nucleus of the vagus by leptin. Endocrinology 148, 1868–1881 (2007).

    CAS  PubMed  Google Scholar 

  70. 70.

    Williams, K. W. & Smith, B. N. Rapid inhibition of neural excitability in the nucleus tractus solitarii by leptin: implications for ingestive behaviour. J. Physiol. (Lond.) 573, 395–412 (2006).

    CAS  Google Scholar 

  71. 71.

    Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49, 191–203 (2006).

    CAS  PubMed  Google Scholar 

  72. 72.

    Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Leinninger, G. M. et al. Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab. 14, 313–323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Andermann, M. L. & Lowell, B. B. Toward a wiring diagram understanding of appetite control. Neuron 95, 757–778 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Peng, Y. et al. A general method for insertion of functional proteins within proteins via combinational selection of permissive junctions. Chem. Biol. 22, 1134–1143 (2015).

    CAS  PubMed  Google Scholar 

  76. 76.

    Banks, W. A. & Farrell, C. L. Impaired transport of leptin across the blood-brain barrier in obesity is acquired and reversible. Am. J. Physiol. Endocrinol. Metab. 285, E10–E15 (2003).

    CAS  PubMed  Google Scholar 

  77. 77.

    Balland, E. et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 19, 293–301 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Yoo, S., Cha, D., Kim, D. W., Hoang, T. V. & Blackshaw, S. Tanycyte-independent control of hypothalamic leptin signaling. Front. Neurosci. 13, 240 (2019).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Yoo, S. et al. Ablation of tanycytes of the arcuate nucleus and median eminence increases visceral adiposity and decreases insulin sensitivity in male mice. Preprint at bioRxiv https://doi.org/10.1101/637587 (2019).

  80. 80.

    Ceccarini, G. et al. PET imaging of leptin biodistribution and metabolism in rodents and primates. Cell Metab. 10, 148–159 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Tinbergen, N. The Hierarchical Organization of Nervous Mechanisms Underlying Instinctive Behaviour. Symp. Soc. Exp. Biol. 4, 305–312 (1950).

    Google Scholar 

  82. 82.

    Sherrington, C. S. The Integrative Action of the Nervous System (Yale University Press, 1906).

  83. 83.

    Burke, R. E. Sir Charles Sherrington’s the integrative action of the nervous system: a centenary appreciation. Brain 130, 887–894 (2007).

    PubMed  Google Scholar 

  84. 84.

    Han, W. et al. Integrated control of predatory hunting by the central nucleus of the amygdala. Cell 168, 311–324.e18 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Miroschnikow, A. et al. Convergence of monosynaptic and polysynaptic sensory paths onto common motor outputs in a Drosophila feeding connectome. eLife 7, e40247 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Barash, I. A. et al. Leptin is a metabolic signal to the reproductive system. Endocrinology 137, 3144–3147 (1996).

    CAS  PubMed  Google Scholar 

  87. 87.

    Chehab, F. F., Lim, M. E. & Lu, R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat. Genet. 12, 318–320 (1996).

    CAS  PubMed  Google Scholar 

  88. 88.

    Chehab, F. F., Mounzih, K., Lu, R. & Lim, M. E. Early onset of reproductive function in normal female mice treated with leptin. Science 275, 88–90 (1997).

    CAS  PubMed  Google Scholar 

  89. 89.

    Farooqi, I. S. et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).

    CAS  PubMed  Google Scholar 

  91. 91.

    Zeng, W. et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163, 84–94 (2015).

    CAS  PubMed  Google Scholar 

  92. 92.

    Singh, A. et al. Leptin-mediated changes in hepatic mitochondrial metabolism, structure, and protein levels. Proc. Natl Acad. Sci. USA 106, 13100–13105 (2009).

    CAS  PubMed  Google Scholar 

  93. 93.

    Clemmensen, C. et al. Gut-brain cross-talk in metabolic control. Cell 168, 758–774 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Mayer, E. A. Gut feelings: the emerging biology of gut-brain communication. Nat. Rev. Neurosci. 12, 453–466 (2011).

    CAS  PubMed  Google Scholar 

  95. 95.

    Berthoud, H. R. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol. Motil. 20(Suppl. 1), 64–72 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Ravussin, Y. et al. Evidence for a non-leptin system that defends against weight gain in overfeeding. Cell Metab. 28, 289–299.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Jansson, J. O. et al. Body weight homeostat that regulates fat mass independently of leptin in rats and mice. Proc. Natl Acad. Sci. USA 115, 427–432 (2018).

    CAS  PubMed  Google Scholar 

  98. 98.

    Ioffe, E., Moon, B., Connolly, E. & Friedman, J. M. Abnormal regulation of the leptin gene in the pathogenesis of obesity. Proc. Natl Acad. Sci. USA 95, 11852–11857 (1998).

    CAS  PubMed  Google Scholar 

  99. 99.

    Shimomura, I., Hammer, R. E., Ikemoto, S., Brown, M. S. & Goldstein, J. L. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401, 73–76 (1999).

    CAS  PubMed  Google Scholar 

  100. 100.

    Dallner, O. S. et al. Dysregulation of a long noncoding RNA reduces leptin leading to a leptin-responsive form of obesity. Nat. Med. 25, 507–516 (2019).

    CAS  PubMed  Google Scholar 

  101. 101.

    Frederich, R. C. et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med. 1, 1311–1314 (1995).

    CAS  PubMed  Google Scholar 

  102. 102.

    Barsh, G. S., Farooqi, I. S. & O’Rahilly, S. Genetics of body-weight regulation. Nature 404, 644–651 (2000).

    CAS  PubMed  Google Scholar 

  103. 103.

    Wunderlich, C. M., Hövelmeyer, N. & Wunderlich, F. T. Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity. JAK-STAT 2, e23878 (2013).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Reed, A. S. et al. Functional role of suppressor of cytokine signaling 3 upregulation in hypothalamic leptin resistance and long-term energy homeostasis. Diabetes 59, 894–906 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Bjorbak, C. et al. SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J. Biol. Chem. 275, 40649–40657 (2000).

    CAS  PubMed  Google Scholar 

  106. 106.

    Ottaway, N. et al. Diet-induced obese mice retain endogenous leptin action. Cell Metab. 21, 877–882 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Enriori, P. J. et al. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab. 5, 181–194 (2007).

    CAS  PubMed  Google Scholar 

  108. 108.

    Roth, J. D. et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc. Natl Acad. Sci. USA 105, 7257–7262 (2008).

    CAS  PubMed  Google Scholar 

  109. 109.

    Liu, J., Lee, J., Salazar Hernandez, M. A., Mazitschek, R. & Ozcan, U. Treatment of obesity with celastrol. Cell 161, 999–1011 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Müller, T. D. et al. Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21. J. Pept. Sci. 18, 383–393 (2012).

    PubMed  Google Scholar 

  111. 111.

    Clemmensen, C. et al. GLP-1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet. Diabetes 63, 1422–1427 (2014).

    CAS  PubMed  Google Scholar 

  112. 112.

    Mark, A. L. Selective leptin resistance revisited. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R566–R581 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Pessin, J. E. & Saltiel, A. R. Signaling pathways in insulin action: molecular targets of insulin resistance. J. Clin. Invest. 106, 165–169 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Boucher, J., Kleinridders, A. & Kahn, C. R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 6, a009191 (2014).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Knight, Z. A., Hannan, K. S., Greenberg, M. L. & Friedman, J. M. Hyperleptinemia is required for the development of leptin resistance. PLoS One 5, e11376 (2010).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Nectow, A. R. et al. Identification of a brainstem circuit controlling feeding. Cell 170, 429–442.e11 (2017).

    CAS  PubMed  Google Scholar 

  117. 117.

    Montague, C. T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997).

    CAS  PubMed  Google Scholar 

  118. 118.

    Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

    CAS  PubMed  Google Scholar 

  119. 119.

    Licinio, J. et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behaviour in leptin-deficient adults. Proc. Natl Acad. Sci. USA 101, 4531–4536 (2004).

    CAS  PubMed  Google Scholar 

  120. 120.

    Farooqi, I. S. et al. Leptin regulates striatal regions and human eating behaviour. Science 317, 1355 (2007).

    CAS  PubMed  Google Scholar 

  121. 121.

    Rosenbaum, M. et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J. Clin. Invest. 115, 3579–3586 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Ozata, M., Ozdemir, I. C. & Licinio, J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J. Clin. Endocrinol. Metab. 84, 3686–3695 (1999).

    CAS  PubMed  Google Scholar 

  123. 123.

    Oral, E. A. et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med. 346, 570–578 (2002).

    CAS  PubMed  Google Scholar 

  124. 124.

    Yu, X., Park, B. H., Wang, M. Y., Wang, Z. V. & Unger, R. H. Making insulin-deficient type 1 diabetic rodents thrive without insulin. Proc. Natl Acad. Sci. USA 105, 14070–14075 (2008).

    CAS  PubMed  Google Scholar 

  125. 125.

    Cochran, E. et al. Efficacy of recombinant methionyl human leptin therapy for the extreme insulin resistance of the Rabson-Mendenhall syndrome. J. Clin. Endocrinol. Metab. 89, 1548–1554 (2004).

    CAS  PubMed  Google Scholar 

  126. 126.

    Brown, R. J. et al. Metreleptin-mediated improvements in insulin sensitivity are independent of food intake in humans with lipodystrophy. J. Clin. Invest. 128, 3504–3516 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Brown, R. J. et al. Effects of metreleptin in pediatric patients with lipodystrophy. J. Clin. Endocrinol. Metab. 102, 1511–1519 (2017).

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Lee, H. L. et al. Effects of metreleptin on proteinuria in patients with lipodystrophy. J. Clin. Endocrinol. Metab. https://doi.org/10.1210/jc.2019-00200 (2019).

    Google Scholar 

  129. 129.

    Asilmaz, E. et al. Site and mechanism of leptin action in a rodent form of congenital lipodystrophy. J. Clin. Invest. 113, 414–424 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Welt, C. K. et al. Recombinant human leptin in women with hypothalamic amenorrhea. N. Engl. J. Med. 351, 987–997 (2004).

    CAS  PubMed  Google Scholar 

  131. 131.

    Chou, S. H. et al. Leptin is an effective treatment for hypothalamic amenorrhea. Proc. Natl Acad. Sci. USA 108, 6585–6590 (2011).

    CAS  PubMed  Google Scholar 

  132. 132.

    Köpp, W. et al. Low leptin levels predict amenorrhea in underweight and eating disordered females. Mol. Psychiatry 2, 335–340 (1997).

    PubMed  Google Scholar 

  133. 133.

    Hebebrand, J. et al. Leptin levels in patients with anorexia nervosa are reduced in the acute stage and elevated upon short-term weight restoration. Mol. Psychiatry 2, 330–334 (1997).

    CAS  PubMed  Google Scholar 

  134. 134.

    Sienkiewicz, E. et al. Long-term metreleptin treatment increases bone mineral density and content at the lumbar spine of lean hypoleptinemic women. Metabolism 60, 1211–1221 (2011).

    CAS  PubMed  Google Scholar 

  135. 135.

    Ravussin, E. et al. Relatively low plasma leptin concentrations precede weight gain in Pima Indians. Nat. Med. 3, 238–240 (1997).

    CAS  PubMed  Google Scholar 

  136. 136.

    Heymsfield, S. B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. J. Am. Med. Assoc. 282, 1568–1575 (1999).

    CAS  Google Scholar 

  137. 137.

    Depaoli, A., Long, A., Fine, G.M., Stewart, M. & O’Rahilly, S. Efficacy of metreleptin for weight loss in overweight and obese adults with low leptin levels. Diabetes https://doi.org/10.2337/db18-296-LB (2018).

    Google Scholar 

  138. 138.

    Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    CAS  PubMed  Google Scholar 

  139. 139.

    Kilpeläinen, T. O. et al. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels. Nat. Commun. 7, 10494 (2016).

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Dhurandhar, E. J. The food-insecurity obesity paradox: A resource scarcity hypothesis. Physiol. Behav. 162, 88–92 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Prentice, A. M., Hennig, B. J. & Fulford, A. J. Evolutionary origins of the obesity epidemic: natural selection of thrifty genes or genetic drift following predation release? Int. J. Obes. (Lond). 32, 1607–1610 (2008).

    CAS  Google Scholar 

  143. 143.

    Diamond, J. M. Guns, Germs, and Steel: the Fates of Human Societies (W. W. Norton, 1997).

  144. 144.

    West, D. B., Boozer, C. N., Moody, D. L. & Atkinson, R. L. Dietary obesity in nine inbred mouse strains. Am. J. Physiol. 262, R1025–R1032 (1992).

    CAS  PubMed  Google Scholar 

  145. 145.

    Clee, S. M. & Attie, A. D. The genetic landscape of type 2 diabetes in mice. Endocr. Rev. 28, 48–83 (2007).

    CAS  PubMed  Google Scholar 

  146. 146.

    Friedman, J. M. Obesity is genetic. Newsweek (9 September 2009).

  147. 147.

    Friedman, J. M. Modern science versus the stigma of obesity. Nat. Med. 10, 563–569 (2004).

    CAS  PubMed  Google Scholar 

  148. 148.

    Park, H. K. & Ahima, R. S. Leptin signaling. F1000Prime Rep. 6, 73 (2014).

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Diamond, J. M. Diabetes running wild. Nature 357, 362–363 (1992).

    CAS  PubMed  Google Scholar 

  150. 150.

    Mayer-Davis, E. J. et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012. N. Engl. J. Med. 376, 1419–1429 (2017).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Hawkes, K. Human longevity: the grandmother effect. Nature 428, 128–129 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the JPB Foundation and the Rockefeller Foundation for supporting this research. The funding sources were not involved in the research or manuscript preparation. We would like to thank D. Wan for creating figures and I. Piscitello for assistance in preparing this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Friedman.

Ethics declarations

Competing interests

Per institutional policy, J.M.F. and the other inventors receive a portion of the royalty payments for the sale of leptin.

Additional information

Peer review information: Primary Handling Editor: Christoph Schmitt

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Friedman, J.M. Leptin and the endocrine control of energy balance. Nat Metab 1, 754–764 (2019). https://doi.org/10.1038/s42255-019-0095-y

Download citation

Further reading

Search

Quick links