Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Entry of glucose- and glutamine-derived carbons into the citric acid cycle supports early steps of HIV-1 infection in CD4 T cells


The susceptibility of CD4 T cells to human immunodeficiency virus 1 (HIV-1) infection is regulated by glucose and glutamine metabolism, but the relative contributions of these nutrients to infection are not known. Here we show that glutaminolysis is the major pathway fuelling the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in T-cell receptor-stimulated naïve, as well as memory CD4, subsets and is required for optimal HIV-1 infection. Under conditions of attenuated glutaminolysis, the α-ketoglutarate (α-KG) TCA rescues early steps in infection; exogenous α-KG promotes HIV-1 reverse transcription, rendering both naïve and memory cells more sensitive to infection. Blocking the glycolytic flux of pyruvate to lactate results in altered glucose carbon allocation to TCA and pentose phosphate pathway intermediates, an increase in OXPHOS and augmented HIV-1 reverse transcription. Moreover, HIV-1 infection is significantly higher in CD4 T cells selected on the basis of high mitochondrial biomass and OXPHOS activity. Therefore, the OXPHOS/aerobic glycolysis balance is a major regulator of HIV-1 infection in CD4 T lymphocytes.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: TCR stimulation of naïve and memory CD4 T cells results in a rapid induction of glucose and glutamine metabolism that is required for optimal T-cell proliferation and HIV-1 infection.
Fig. 2: Exogenous nucleosides promote the proliferation of glutamine-deprived CD4 T cells without enhancing HIV-1 infection.
Fig. 3: The metabolic state of activated human CD4 T cells is regulated by the relative utilization of extracellular glucose and glutamine.
Fig. 4: Inhibiting glycolysis results in increased susceptibility of CD4 T cells to HIV-1 infection.
Fig. 5: Under conditions of glutamine deprivation, α-ketoglutarate rescues early steps in HIV-1 infection.
Fig. 6: Enhanced respiratory capacity is associated with increased levels of HIV-1 infection.
Fig. 7: Mitochondrial biomass regulates the susceptibility of CD4 T cells to HIV-1 infection.

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.


  1. 1.

    Zack, J. A., Kim, S. G. & Vatakis, D. N. HIV restriction in quiescent CD4+ T cells. Retrovirology 10, 37 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Rathmell, J. C., Elstrom, R. L., Cinalli, R. M. & Thompson, C. B. Activated Akt promotes increased resting T cell size, CD28-independent T cell growth, and development of autoimmunity and lymphoma. Eur. J. Immunol. 33, 2223–2232 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    Manel, N. et al. The HTLV receptor is an early T-cell activation marker whose expression requires de novo protein synthesis. Blood 101, 1913–1918 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    Curi, R. et al. Glutamine, gene expression, and cell function. Front. Biosci. 12, 344–357 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Fuchs, B. C., Finger, R. E., Onan, M. C. & Bode, B. P. ASCT2 silencing regulates mammalian target-of-rapamycin growth and survival signaling in human hepatoma cells. Am. J. Physiol. Cell Physiol. 293, C55–C63 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    Sundrud, M. S. et al. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science 324, 1334–1338 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Nicklin, P. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521–534 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    Findlay, J. S. & Ulaeto, D. Semliki Forest virus and Sindbis virus, but not vaccinia virus, require glycolysis for optimal replication. J. Gen. Virol. 96, 2693–2696 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Fontaine, K. A., Sanchez, E. L., Camarda, R. & Lagunoff, M. Dengue virus induces and requires glycolysis for optimal replication. J. Virol. 89, 2358–2366 (2015).

    Article  Google Scholar 

  11. 11.

    Fontaine, K. A., Camarda, R. & Lagunoff, M. Vaccinia virus requires glutamine but not glucose for efficient replication. J. Virol. 88, 4366–4374 (2014).

    Article  Google Scholar 

  12. 12.

    Li, C. Y., Wang, Y. J., Huang, S. W., Cheng, C. S. & Wang, H. C. Replication of the shrimp virus wssv depends on glutamate-driven anaplerosis. PLoS ONE 11, e0146902 (2016).

    Article  Google Scholar 

  13. 13.

    Thai, M. et al. MYC-induced reprogramming of glutamine catabolism supports optimal virus replication. Nat. Commun. 6, 8873 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Yu, Y., Clippinger, A. J. & Alwine, J. C. Viral effects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection. Trends Microbiol. 19, 360–367 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Chambers, J. W., Maguire, T. G. & Alwine, J. C. Glutamine metabolism is essential for human cytomegalovirus infection. J. Virol. 84, 1867–1873 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    Loisel-Meyer, S. et al. Glut1-mediated glucose transport regulates HIV infection. Proc. Natl Acad. Sci. USA 109, 2549–2554 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Palmer, C. S. et al. Increased glucose metabolic activity is associated with CD4+ T-cell activation and depletion during chronic HIV infection. AIDS 28, 297–309 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Kavanagh Williamson, M. et al. Upregulation of glucose uptake and hexokinase activity of primary human CD4+ T cells in response to infection with HIV-1. Viruses 10, 114 (2018).

    Article  Google Scholar 

  19. 19.

    Hegedus, A., Kavanagh Williamson, M. & Huthoff, H. HIV-1 pathogenicity and virion production are dependent on the metabolic phenotype of activated CD4+ T cells. Retrovirology 11, 98 (2014).

    Article  Google Scholar 

  20. 20.

    Palmer, C. S. et al. Metabolically active CD4+ T cells expressing Glut1 and OX40 preferentially harbor HIV during in vitro infection. FEBS Lett. 591, 3319–3332 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Hegedus, A. et al. Evidence for altered glutamine metabolism in human immunodeficiency virus type 1 infected primary human CD4+ T cells. AIDS Res. Hum. Retroviruses 33, 1236–1247 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Xiao, Nakaya,M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    Article  Google Scholar 

  24. 24.

    Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Hukelmann, J. L. et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat. Immunol. 17, 104–112 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Cretenet, G. et al. Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions. Sci. Rep. 6, 24129 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Loftus, R. M. & Finlay, D. K. Immunometabolism: cellular metabolism turns immune regulator. J. Biol. Chem. 291, 1–10 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Lane, A. N. & Fan, T. W. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 43, 2466–2485 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Korin, Y. D. & Zack, J. A. Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J. Virol. 73, 6526–6532 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Baldauf, H. M. et al. SAMHD1 restricts HIV-1 infection in resting CD4+ T cells. Nat. Med. 18, 1682–1687 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Lahouassa, H. et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 13, 223–228 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Craveiro, M., Clerc, I., Sitbon, M. & Taylor, N. Metabolic pathways as regulators of HIV infection. Curr. Opin. HIV AIDS 8, 182–189 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010).

    CAS  Article  Google Scholar 

  36. 36.

    Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Klysz, D. et al. Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8, ra97 (2015).

    Article  Google Scholar 

  38. 38.

    Laplante, M. & Sabatini, D. M. An emerging role of mTOR in lipid biosynthesis. Curr. Biol. 19, R1046–R1052 (2009).

    CAS  Article  Google Scholar 

  39. 39.

    Laplante, M. & Sabatini, D. M. mTOR signaling at a glance. J. Cell. Sci. 122, 3589–3594 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    Sengupta, S., Peterson, T. R. & Sabatini, D. M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 40, 310–322 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    Billiard, J. et al. Quinoline 3-sulfonamides inhibit lactate dehydrogenase A and reverse aerobic glycolysis in cancer cells. Cancer Metab. 1, 19 (2013).

    Article  Google Scholar 

  43. 43.

    Duran, R. V. et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell 47, 349–358 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    Cavrois, M., De Noronha, C. & Greene, W. C. A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes. Nat. Biotechnol. 20, 1151–1154 (2002).

    CAS  Article  Google Scholar 

  45. 45.

    Mamede, J. I. & Hope, T. J. Detection and tracking of dual-labeled HIV particles using wide-field live cell imaging to follow viral core integrity. Methods Mol. Biol. 1354, 49–59 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    Fendt, S. M. et al. Reductive glutamine metabolism is a function of the alpha-ketoglutarate to citrate ratio in cells. Nat. Commun. 4, 2236 (2013).

    Article  Google Scholar 

  47. 47.

    Mullen, A. R. et al. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep. 7, 1679–1690 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    Almeida, L., Lochner, M., Berod, L. & Sparwasser, T. Metabolic pathways in T cell activation and lineage differentiation. Semin. Immunol. 28, 514–524 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Yong, C. S. et al. Metabolic orchestration of T lineage differentiation and function. FEBS Lett. 591, 3104–3118 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Valle-Casuso, J. C. et al. Cellular metabolism is a major determinant of HIV-1 reservoir seeding in CD4+ T cells and offers an opportunity to tackle infection. Cell Metab. 29, 611–626 e615 (2019).

    CAS  Article  Google Scholar 

  51. 51.

    Devadas, S., Zaritskaya, L., Rhee, S. G., Oberley, L. & Williams, M. S. Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression. J. Exp. Med. 195, 59–70 (2002).

    CAS  Article  Google Scholar 

  52. 52.

    Kwon, J. et al. The nonphagocytic NADPH oxidase Duox1 mediates a positive feedback loop during T cell receptor signaling. Sci. Signal. 3, ra59 (2010).

    Article  Google Scholar 

  53. 53.

    Ron-Harel, N. et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 24, 104–117 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013).

    CAS  Article  Google Scholar 

  55. 55.

    van der Windt, G. J. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl Acad. Sci. USA 110, 14336–14341 (2013).

    Article  Google Scholar 

  56. 56.

    Karniely, S. et al. Human cytomegalovirus infection upregulates the mitochondrial transcription and translation machineries. MBio 7, e00029 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    Bukrinskaya, A., Brichacek, B., Mann, A. & Stevenson, M. Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J. Exp. Med. 188, 2113–2125 (1998).

    CAS  Article  Google Scholar 

  58. 58.

    Mandal, D. & Prasad, V. R. Analysis of 2-LTR circle junctions of viral DNA in infected cells. Methods Mol. Biol. 485, 73–85 (2009).

    CAS  Article  Google Scholar 

  59. 59.

    Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011).

    CAS  Article  Google Scholar 

  60. 60.

    Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011).

    CAS  Article  Google Scholar 

  61. 61.

    Descours, B. et al. SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells. Retrovirology 9, 87 (2012).

    CAS  Article  Google Scholar 

  62. 62.

    Matheson, N. J. et al. Cell surface proteomic map of HIV infection reveals antagonism of amino acid metabolism by Vpu and Nef. Cell Host Microbe 18, 409–423 (2015).

    CAS  Article  Google Scholar 

  63. 63.

    Matheson, N. et al. Antagonism of aminoacid transport in primary CD4 T cells by HIV-1 Vpu. Lancet 385, S66 (2015).

    Article  Google Scholar 

  64. 64.

    Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    CAS  Article  Google Scholar 

  65. 65.

    Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    CAS  Article  Google Scholar 

  66. 66.

    Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    CAS  Article  Google Scholar 

  67. 67.

    Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015).

    Article  Google Scholar 

  68. 68.

    Franchi, L. et al. Inhibiting oxidative phosphorylation in vivo restrains Th17 effector responses and ameliorates murine colitis. J. Immunol. 198, 2735–2746 (2017).

    CAS  Article  Google Scholar 

  69. 69.

    Downs-Canner, S. et al. Suppressive IL-17A+Foxp3+ and ex-Th17 IL-17AnegFoxp3+ Treg cells are a source of tumour-associated Treg cells. Nat. Commun. 8, 14649 (2017).

    CAS  Article  Google Scholar 

  70. 70.

    Monteiro, P. et al. Memory CCR6+CD4+ T cells are preferential targets for productive HIV type 1 infection regardless of their expression of integrin β7. J. Immunol. 186, 4618–4630 (2011).

    CAS  Article  Google Scholar 

  71. 71.

    Gosselin, A. et al. Peripheral blood CCR4+CCR6+ and CXCR3+CCR6+CD4+ T cells are highly permissive to HIV-1 infection. J. Immunol. 184, 1604–1616 (2010).

    CAS  Article  Google Scholar 

  72. 72.

    Manel, N. et al. The ubiquitous glucose transporter GLUT-1 Is a receptor for HTLV. Cell 115, 449–459 (2003).

    CAS  Article  Google Scholar 

  73. 73.

    Kim, F. J. et al. HTLV-1 and -2 envelope SU subdomains and critical determinants in receptor binding. Retrovirology 1, 41 (2004).

    CAS  Article  Google Scholar 

  74. 74.

    Swainson, L. et al. Glucose transporter 1 expression identifies a population of cycling CD4+ CD8+ human thymocytes with high CXCR4-induced chemotaxis. Proc. Natl Acad. Sci. USA 102, 12867–12872 (2005).

    CAS  Article  Google Scholar 

  75. 75.

    Kinet, S. et al. Isolated receptor binding domains of HTLV-1 and HTLV-2 envelopes bind Glut-1 on activated CD4+ and CD8+ T cells. Retrovirology 4, 31 (2007).

    Article  Google Scholar 

  76. 76.

    Verhoeyen, E. et al. IL-7 surface-engineered lentiviral vectors promote survival and efficient gene transfer in resting primary T lymphocytes. Blood 101, 2167–2174 (2003).

    CAS  Article  Google Scholar 

  77. 77.

    Oburoglu, L. et al. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell 15, 169–184 (2014).

    CAS  Article  Google Scholar 

Download references


We thank all members of our laboratories for discussions and scientific critique and are indebted to S. Kinet and V. Zimmermann for their continual support in this project. We are indebted to E. Gottlieb for his important input into metabolic experiments and to J. Mamede for his expertise and input into viral fusion assays. C. Goujon and C. June generously provided reagents, as indicated. We are grateful to M. Boyer and S. Gailhac of Montpellier Rio Imaging for support in cytometry experiments. I.C. and D.A.M. were supported by fellowships from Sidaction. Z.V. was supported by a fellowship from the Fondation de la Recherche Medicale (FRM). S.T. is supported by funding from Cancer Research UK (C596/A17196, Award 23982). L.O. was supported by a fellowship from the Ligue Contre le Cancer and the ARC Foundation. M.S. and N.T. are supported by Inserm and V.D. and C.M by the CNRS. This work was supported by generous funding from Sidaction, the ANRS, ARC, FRM, the French national (ANR) research grants (PolarATTACK and GlutStem) and the French laboratory consortiums (Labex) EpiGenMed and GR-EX.

Author information




I.C., C.M. and N.T. conceived the study. I.C., Z.V., D.A.M., C.M., S.T., T.J.H., M.S., V.D. and N.T. were involved in study design. I.C., Z.V., D.A.M., L.O. and C.M. performed experiments. All authors participated in data analysis and discussions. C.M. and N.T. wrote the manuscript with important critical input from I.C., Z.V., D.A.M., S.T., V.D. and M.S.

Corresponding author

Correspondence to Cédric Mongellaz.

Ethics declarations

Competing interests

M.S. and N.T. are inventors on patent WO2010079208. M.S., C.M. and N.T. are inventors on patent WO/2004/096841 and M.S. is an inventor on patent WO/2012/035369. All patents are owned by the CNRS and cover the use of RBD ligands for metabolite transporter detection. N.T. no longer owns any patent rights. M.S. is a co-founder of METAFORA Biosystems.

Additional information

Peer review information: Primary Handling Editor: Ana Mateus

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Supplementary Tables 1–3

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clerc, I., Abba Moussa, D., Vahlas, Z. et al. Entry of glucose- and glutamine-derived carbons into the citric acid cycle supports early steps of HIV-1 infection in CD4 T cells. Nat Metab 1, 717–730 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing