Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-stage metabolic remodelling in macrophages in response to lipopolysaccharide and interferon-γ stimulation

Abstract

In response to signals associated with infection or tissue damage, macrophages undergo a series of dynamic phenotypic changes. Here we show that during the response to lipopolysaccharide and interferon-γ stimulation, metabolic reprogramming in macrophages is also highly dynamic. Specifically, the tricarboxylic acid cycle undergoes a two-stage remodelling: the early stage is characterized by a transient accumulation of intermediates including succinate and itaconate, whereas the late stage is marked by the subsidence of these metabolites. The metabolic transition into the late stage is largely driven by the inhibition of the pyruvate dehydrogenase complex (PDHC) and the oxoglutarate dehydrogenase complex (OGDC), which is controlled by the dynamic changes in the lipoylation state of both PDHC and OGDC E2 subunits and phosphorylation of the PDHC E1 subunit. This dynamic metabolic reprogramming results in a transient metabolic state that strongly favours hypoxia-inducible factor-1α (HIF-1α) stabilization during the early stage, which subsides by the late stage; consistently, HIF-1α levels follow this trend. This study elucidates a dynamic and mechanistic picture of metabolic reprogramming in lipopolysaccharide and interferon-γ stimulated macrophages, and provides insights into how changing metabolism can regulate the functional transitions in macrophages over the course of an immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Macrophages undergo dynamic metabolomic and functional changes in response to LPS and IFN-γ stimulation.
Fig. 2: Glucose labelling reveals dynamic reprogramming of TCA cycle flux in LPS and IFN-γ stimulated macrophages.
Fig. 3: Glutamine labelling reveals remodelling of TCA cycle flux at the late stage.
Fig. 4: Activities of PDHC and OGDC decrease in response to LPS and IFN-γ exposure.
Fig. 5: Changes in key metabolite levels correlate with changes in HIF-1α protein and histone methylation.
Fig. 6: Dynamic regulation of PDHC and OGDC in LPS and IFN-γ stimulated macrophages.
Fig. 7: Alternative substrate use in LPS and IFN-γ stimulated macrophages.
Fig. 8: Two-stage remodelling of the TCA cycle in LPS and IFN-γ stimulated macrophages.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Janeway, C. A. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liew, F. Y., Xu, D., Brint, E. K. & O’Neill, L. A. J. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Ivashkiv, L. B. Inflammatory signaling in macrophages: transitions from acute to tolerant and alternative activation states. Eur. J. Immunol. 41, 2477–2481 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Foster, S. L., Hargreaves, D. C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Medvedev, A. E., Kopydlowski, K. M. & Vogel, S. N. Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. J. Immunol. 164, 5564–5574 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Ziegler-Heitbrock, H. Molecular mechanism in tolerance to lipopolysaccharide. J. Inflamm. 45, 13–26 (1994).

    Google Scholar 

  8. Kumar, V. Targeting macrophage immunometabolism: dawn in the darkness of sepsis. Int. Immunopharmacol. 58, 173–185 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Navegantes, K. C. et al. Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J. Transl. Med. 15, 36 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Kelly, B. & O’Neill, L. A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25, 771–784 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cordes, T. et al. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J. Biol. Chem. 291, 14274–14284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470.e13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, P. S. et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Williams, N. C. & O’Neill, L. A. J. A role for the krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol. 9, 141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dominguez-Andres, J. et al. The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metab. 29, 211–220.e5 (2018).

    Article  PubMed  Google Scholar 

  19. Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bambouskova, M. et al. Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis. Nature 556, 501–504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9, 692–703 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Ivashkiv, L. B. Epigenetic regulation of macrophage polarization and function. Trends Immunol. 34, 216–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Novakovic, B. et al. β-Glucan reverses the epigenetic state of LPS-Induced immunological tolerance. Cell 167, 1354–1368.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mentch, S. J. et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22, 861–873 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Etchegaray, J.-P. & Mostoslavsky, R. Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol. Cell 62, 695–711 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Newsholme, P., Curi, R., Gordon, S. & Newsholme, E. A. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem. J. 239, 121–125 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fan, J., Krautkramer, K. A., Feldman, J. L. & Denu, J. M. Metabolic regulation of histone post-translational modifications. ACS Chem. Biol. 10, 95–108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Munder, M., Eichmann, K. & Modolell, M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+T cells correlates with Th1/Th2 phenotype. J. Immunol. 160, 5347–5354 (1998).

    CAS  PubMed  Google Scholar 

  29. Corraliza, I. M., Soler, G., Eichmann, K. & Modolell, M. Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochem. Biophys. Res. Commun. 206, 667–673 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Hard, G. C. Some biochemical aspects of the immune macrophage. Br. J. Exp. Pathol. 51, 97–105 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cekic, C. & Linden, J. Purinergic regulation of the immune system. Nat. Rev. Immunol. 16, 177–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Strelko, C. L. et al. Itaconic acid is a mammalian metabolite induced during macrophage activation. J. Am. Chem. Soc. 133, 16386–16389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA 110, 7820–7825 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ackermann, W. W. & Potter, V. R. Enzyme inhibition in relation to chemotherapy. Exp. Biol. Med. 72, 1–9 (1949).

    Article  CAS  Google Scholar 

  35. Xiao, M. et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Safran, M. et al. Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc. Natl Acad. Sci. USA 103, 105–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Ramakrishnan, S. K. et al. Loss of von hippel-lindau protein (VHL) increases systemic cholesterol levels through targeting hypoxia-inducible factor 2 and regulation of bile acid homeostasis. Mol. Cell. Biol. 34, 1208–1220 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mentch, S. J. & Locasale, J. W. One-carbon metabolism and epigenetics: understanding the specificity. Ann. N. Y. Acad. Sci. 1363, 91–98 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Chowdhury, R. et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 12, 463–469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483, 484–488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meiser, J. et al. Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression. J. Biol. Chem. 291, 3932–3946 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).

    Article  PubMed  Google Scholar 

  45. Lu, C. W., Lin, S. C., Chen, K. F., Lai, Y. Y. & Tsai, S. J. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J. Biol. Chem. 283, 28106–28114 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Comerford, S. A. et al. Acetate dependence of tumors. Cell 159, 1591–1602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamphorst, J. J., Chung, M. K., Fan, J. & Rabinowitz, J. D. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2, 23 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mills, E. L. & O’Neill, L. A. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol. 46, 13–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Drapier, J. C. & Hibbs, J. B. Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible. J. Clin. Invest 78, 790–797 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kennedy, M. C., Antholine, W. E. & Beinert, H. An EPR investigation of the products of the reaction of cytosolic and mitochondrial aconitases with nitric oxide. J. Biol. Chem. 272, 20340–30347 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Shi, L. & Tu, B. P. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr. Opin. Cell Biol. 33, 125–131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, Z. et al. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 7, 58–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Cameron, A. M., Lawless, S. J. & Pearce, E. J. Metabolism and acetylation in innate immune cell function and fate. Semin. Immunol. 28, 408–416 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–226 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tong, W. H. et al. TLR-activated repression of Fe-S cluster biogenesis drives a metabolic shift and alters histone and tubulin acetylation. Blood Adv. 2, 1146–1156 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mathias, R. A. et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159, 1615–1625 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Humphries, K. M. & Szweda, L. I. Selective inactivation of α-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 37, 15835–15841 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. O’Brien, M., Chalker, J., Slade, L., Gardiner, D. & Mailloux, R. J. Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex. Free Radic. Biol. Med. 106, 302–314 (2017).

    Article  PubMed  Google Scholar 

  60. McLain, A. L., Cormier, P. J., Kinter, M. & Szweda, L. I. Glutathionylation of α-ketoglutarate dehydrogenase: the chemical nature and relative susceptibility of the cofactor lipoic acid to modification. Free Radic. Biol. Med. 61, 161–169 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Clasquin, M. F., Melamud, E. & Rabinowitz, J. D. LC-MS data processing with MAVEN: a metabolomic analysis and visualization engine. Curr. Protoc. Bioinformatics 37, 14.11 (2012).

    Google Scholar 

  62. Melamud, E., Vastag, L. & Rabinowitz, J. D. Metabolomic analysis and visualization engine for LC−MS data. Anal. Chem. 82, 9818–9826 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Allen, E. L. et al. Differential aspartate usage identifies a subset of cancer cells particularly dependent on OGDH. Cell Rep. 17, 876–890 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Hewitson, K. S., Schofield, C. J. & Ratcliffe, P. J. Hypoxia-Inducible factor prolyl-hydroxylase: purification and assays of PHD2. Methods Enzymol. 435, 25–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Fan, J., Baeza, J. & Denu, J. M. Investigating histone acetylation stoichiometry and turnover rate. Methods Enzymol. 574, 125–148 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is primarily supported by the Morgridge Institute for Research (start-up fund for J.F.). Additionally, R.S.E. is supported by NIH grant no. R01DK66600, D.J.P. is supported by NIH grant no. R35GM130294. The authors would like to thank the University of Wisconsin Carbone Cancer Center. This is supported in part by NIH/NCI grant no. P30CA014520—UW Cancer Center Support Grant. The authors would also like to thank Yatrik Shah at the University of Michigan for sharing the ODD-luc mice.

Author information

Authors and Affiliations

Authors

Contributions

J.F. and G.L.S. designed the study and analyzed data. E.C.B. performed and analyzed data from DCA treatment experiments. S.V.J. carried out and analyzed data from palmitic-acid labeling studies. F.J.Y. performed some cytokine assays and qPCR. A.R.J. carried out the isolation and analysis of histones. G.L.S. performed all remaining experiments. R.S.E. contributed to the investigation of the role of metabolites in regulating HIF-1α. D.J.P. contributed to the identification of changing lipoylation as a mechanism for PDHC and OGDC regulation. G.L.S. and J.F. wrote the manuscript. R.S.E. and D.J.P. edited the manuscript.

Corresponding author

Correspondence to Jing Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Primary Handling Editor: Ana Mateus

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seim, G.L., Britt, E.C., John, S.V. et al. Two-stage metabolic remodelling in macrophages in response to lipopolysaccharide and interferon-γ stimulation. Nat Metab 1, 731–742 (2019). https://doi.org/10.1038/s42255-019-0083-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-019-0083-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research