Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adipose circular RNAs exhibit dynamic regulation in obesity and functional role in adipogenesis

Abstract

Non-coding RNAs are emerging as novel regulators in adipocyte differentiation and function. Circular RNAs (circRNAs) are a new class of non-coding transcripts generated across all eukaryotic tissues, but their function in adipose biology remains unknown. Here we perform deep sequencing of visceral and subcutaneous fat to discover thousands of adipose circRNAs, many of which are species conserved, tissue specific and dynamically regulated during adipogenesis and obesity. We identify circTshz2-1 and circArhgap5-2 as indispensable regulators of adipogenesis in vitro. To characterize the function of circRNAs in vivo, we deliver adenoviral shRNA targeting circArhgap5-2 into mouse inguinal tissue and show that the expression of this circRNA is essential in maintaining the global adipocyte transcriptional programme involved in lipid biosynthesis and metabolism. We also demonstrate that the pro-adipogenic function of circArhgap5-2 is conserved in human adipocytes. Our results provide important evidence that circRNAs serve as important regulators in adipocyte differentiation and metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global expression analysis of circular RNAs.
Fig. 2: Validation, tissue specificity and cellular localization of adipose circRNAs.
Fig. 3: CircRNA expression during adipogenesis and obesity.
Fig. 4: Knockdown of circTshz2-1 inhibits adipogenesis.
Fig. 5: Knockdown of circArhgap5-2 inhibits adipogenesis.
Fig. 6: circArhgap5-2 maintains the global adipogenic gene programme.
Fig. 7: In vivo knockdown of circArhgap5-2 downregulates adipogenic genes.
Fig. 8: circARHGAP5-1 function is conserved in human adipocytes.

Similar content being viewed by others

Data availability

The RNA-seq data generated in this study to build a database of adipose circRNAs in human and mouse adipose tissue, and to assess the global transcriptional impact of circArhgap5-2 knockdown in vivo and in vitro, are available in the NCBI Gene Expression Omnibus (GEO) database (Accession no: GSE118762). All other data generated and/or analysed to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781 (2014).

    Article  Google Scholar 

  2. Arner, P. & Kulyte, A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat. Rev. Endocrinol. 11, 276–288 (2015).

    Article  CAS  Google Scholar 

  3. Kim, H. J. et al. MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes. Diabetes 63, 4045–4056 (2014).

    Article  CAS  Google Scholar 

  4. Sun, L. et al. Long noncoding RNAs regulate adipogenesis. Proc. Natl Acad. Sci. USA 110, 3387–3392 (2013).

    Article  CAS  Google Scholar 

  5. Knoll, M., Lodish, H. F. & Sun, L. Long non-coding RNAs as regulators of the endocrine system. Nat. Rev. Endocrinol. 11, 151–160 (2015).

    Article  CAS  Google Scholar 

  6. Zhao, X. Y., Li, S., Wang, G. X., Yu, Q. & Lin, J. D. A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation. Mol. Cell 55, 372–382 (2014).

    Article  CAS  Google Scholar 

  7. Alvarez-Dominguez, J. R. et al. De novo reconstruction of adipose tissue transcriptomes reveals long non-coding RNA regulators of brown adipocyte development. Cell Metab. 21, 764–776 (2015).

    Article  CAS  Google Scholar 

  8. Yang, L. et al. Integrative transcriptome analyses of metabolic responses in mice define pivotal lncRNA metabolic regulators. Cell Metab. 24, 627–639 (2016).

    Article  CAS  Google Scholar 

  9. Ding, C. et al. De novo reconstruction of human adipose transcriptome reveals conserved lncRNAs as regulators of brown adipogenesis. Nat. Commun. 9, 1329 (2018).

    Article  Google Scholar 

  10. Bai, Z. et al. Dynamic transcriptome changes during adipose tissue energy expenditure reveal critical roles for long noncoding RNA regulators. PLoS Biol. 15, e2002176 (2017).

    Article  Google Scholar 

  11. Lo, K. A. et al. Adipocyte long-noncoding RNA transcriptome analysis of obese mice identified lnc-leptin, which regulates leptin. Diabetes 67, 1045–1056 (2018).

    Article  CAS  Google Scholar 

  12. Starke, S. et al. Exon circularization requires canonical splice signals. Cell Rep. 10, 103–111 (2015).

    Article  CAS  Google Scholar 

  13. Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7, e30733 (2012).

    Article  CAS  Google Scholar 

  14. Capel, B. et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73, 1019–1030 (1993).

    Article  CAS  Google Scholar 

  15. Cocquerelle, C., Daubersies, P., Majerus, M. A., Kerckaert, J. P. & Bailleul, B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J. 11, 1095–1098 (1992).

    Article  CAS  Google Scholar 

  16. Nigro, J. M. et al. Scrambled exons. Cell 64, 607–613 (1991).

    Article  CAS  Google Scholar 

  17. Wang, P. L. et al. Circular RNA is expressed across the eukaryotic tree of life. PLoS ONE 9, e90859 (2014).

    Article  Google Scholar 

  18. Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L. & Brown, P. O. Cell-type specific features of circular RNA expression. PLoS Genet. 9, e1003777 (2013).

    Article  CAS  Google Scholar 

  19. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    Article  CAS  Google Scholar 

  20. Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013).

    Article  CAS  Google Scholar 

  21. Chen, L. L. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 17, 205–211 (2016).

    Article  CAS  Google Scholar 

  22. Li, Z. et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264 (2015).

    Article  Google Scholar 

  23. Zhang, Y. et al. Circular intronic long noncoding RNAs. Mol. Cell 51, 792–806 (2013).

    Article  CAS  Google Scholar 

  24. Zhang, Y. et al. The biogenesis of nascent circular RNAs. Cell Rep. 15, 611–624 (2016).

    Article  CAS  Google Scholar 

  25. Ashwal-Fluss, R. et al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66 (2014).

    Article  CAS  Google Scholar 

  26. Ivanov, A. et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10, 170–177 (2015).

    Article  CAS  Google Scholar 

  27. Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).

    Article  CAS  Google Scholar 

  28. Kramer, M. C. et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 29, 2168–2182 (2015).

    Article  CAS  Google Scholar 

  29. Rybak-Wolf, A. et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 58, 870–885 (2015).

    Article  CAS  Google Scholar 

  30. Zheng, Q. et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 7, 11215 (2016).

    Article  CAS  Google Scholar 

  31. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  CAS  Google Scholar 

  32. Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526 (2017).

    Article  Google Scholar 

  33. Du, W. W. et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44, 2846–2858 (2016).

    Article  Google Scholar 

  34. Legnini, I. et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66, 22–37.e29 (2017).

    Article  CAS  Google Scholar 

  35. Pamudurti, N. R. et al. Translation of circRNAs. Mol. Cell 66, 9–21.e27 (2017).

    Article  CAS  Google Scholar 

  36. Yang, Y. et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27, 626–641 (2017).

    Article  CAS  Google Scholar 

  37. Chen, Y., Li, C., Tan, C. & Liu, X. Circular RNAs: a new frontier in the study of human diseases. J. Med. Genet. 53, 359–365 (2016).

    Article  CAS  Google Scholar 

  38. Guarnerio, J. et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 166, 1055–1056 (2016).

    Article  CAS  Google Scholar 

  39. Li, Y. et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 25, 981–984 (2015).

    Article  CAS  Google Scholar 

  40. Memczak, S., Papavasileiou, P., Peters, O. & Rajewsky, N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS ONE 10, e0141214 (2015).

    Article  Google Scholar 

  41. Viereck, J. & Thum, T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ. Res. 120, 381–399 (2017).

    Article  CAS  Google Scholar 

  42. Xu, H., Guo, S., Li, W. & Yu, P. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci. Rep. 5, 12453 (2015).

    Article  Google Scholar 

  43. Shan, K. et al. Circular non-coding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation 136, 1629–1642 (2017).

    Article  CAS  Google Scholar 

  44. Li, A., Huang, W., Zhang, X., Xie, L. & Miao, X. Identification and characterization of circRNAs of two pig breeds as a new biomarker in metabolism-related diseases. Cell. Physiol. Biochem. 47, 2458–2470 (2018).

    Article  CAS  Google Scholar 

  45. Gao, Y., Wang, J. & Zhao, F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 16, 4 (2015).

    Article  CAS  Google Scholar 

  46. Zheng, Y. & Zhao, F. Detection and reconstruction of circular RNAs from transcriptomic data. Methods Mol. Biol. 1724, 1–8 (2018).

    Article  CAS  Google Scholar 

  47. Reilly, S. M. & Saltiel, A. R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 13, 633–643 (2017).

    Article  CAS  Google Scholar 

  48. Yamamoto, M., Cid, E., Bru, S. & Yamamoto, F. Rare and frequent promoter methylation, respectively, of TSHZ2 and 3 genes that are both downregulated in expression in breast and prostate cancers. PLoS ONE 6, e17149 (2011).

    Article  CAS  Google Scholar 

  49. Santos, J. S., Fonseca, N. A., Vieira, C. P., Vieira, J. & Casares, F. Phylogeny of the teashirt-related zinc finger (tshz) gene family and analysis of the developmental expression of tshz2 and tshz3b in the zebrafish. Dev. Dyn. 239, 1010–1018 (2010).

    Article  CAS  Google Scholar 

  50. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  CAS  Google Scholar 

  51. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Article  CAS  Google Scholar 

  52. Holdt, L. M. et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun. 7, 12429 (2016).

    Article  CAS  Google Scholar 

  53. Abdelmohsen, K. et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14, 361–369 (2017).

    Article  Google Scholar 

  54. Xue, R. et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat. Med. 21, 760–768 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Tanoto Initiative in Diabetes Research (to L.S.), National Medical Research Council’s Cooperative Basic Research Grant (NMRC/CBRG/0101/2016), Open Fund-Individual Research Grant (NMRC/OFIRG/0062/2017) and Ministry of Education Tier 2 grant (MOE2017-T2-2-015). Support was also provided by RNA Biology Center at CSI Singapore, NUS, from funding by the Singapore Ministry of Education’s Tier 3 grants, grant number MOE2014-T3-1-006. We thank S. Y. Chia, B. Pan, Z. Tiang and H. Hamadee for their technical assistance, Y.-H. Tseng (Joslin Diabetes Center) for providing cell lines and B. Lim and J. Li who offered their insight and expertise for this research.

Author information

Authors and Affiliations

Authors

Contributions

L.S. and R.F. conceived and designed the study and acquired funds. C.A., W.T., D.X. and W.F. performed data analysis and developed and implemented the methodology. Data generation, curation and laboratory experiments were performed by C.A., W.T., W.F., T.P.D., D.T.C.S., U.D. and D.X. L.S., R.F., C.A. and W.T. wrote the manuscript and all authors contributed, read and approved the final version.

Corresponding authors

Correspondence to Dan Xu, Roger Foo or Lei Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Primary Handling Editor: Elena Bellafante.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Supplementary Note

Reporting Summary

Supplementary Table 1

Supplementary Table 1

Supplementary Table 2

Supplementary Table 2

Supplementary Table 3

Supplementary Table 3

Supplementary Table 4

Supplementary Table 4

Supplementary Table 5

Supplementary Table 5

Supplementary Table 6

Supplementary Table 6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcinas, C., Tan, W., Fang, W. et al. Adipose circular RNAs exhibit dynamic regulation in obesity and functional role in adipogenesis. Nat Metab 1, 688–703 (2019). https://doi.org/10.1038/s42255-019-0078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-019-0078-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing