Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gpnmb secreted from liver promotes lipogenesis in white adipose tissue and aggravates obesity and insulin resistance

Abstract

Metabolism in mammals is regulated by complex interplay among different organs. Fatty acid synthesis is increased in white adipose tissue (WAT) when it is inhibited in the liver. Here we identify glycoprotein non-metastatic melanoma protein B (Gpnmb) as one liver–WAT cross-talk factor involved in lipogenesis. Inhibition of the hepatic sterol regulatory element-binding protein pathway leads to increased transcription of Gpnmb and promotes processing of the membrane protein to a secreted form. Gpnmb stimulates lipogenesis in WAT and exacerbates diet-induced obesity and insulin resistance. In humans, Gpnmb is tightly associated with body mass index and is a strong risk factor for obesity. Gpnmb inhibition by a neutralizing antibody or liver-specific knockdown improves metabolic parameters, including weight gain reduction and increased insulin sensitivity, probably by promoting the beiging of WAT. These results suggest that Gpnmb is a liver-secreted factor regulating lipogenesis in WAT, and that Gpnmb inhibition may provide a therapeutic strategy in obesity and diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Compensatory elevation of lipogenic genes in WAT from L-Scap−/− or L-gp78−/− mice.
Fig. 2: Gpnmb is proteolytically cleaved and secreted from the liver, and adenovirus-mediated expression of Gpnmb drives fatty-acid-synthesis gene expression in WAT.
Fig. 3: Gpnmb-ECD stimulates the AKT signalling pathway via CD44 in adipocytes.
Fig. 4: Gpnmb increases lipogenesis in WAT.
Fig. 5: Gpnmb promotes diet-induced obesity and insulin resistance.
Fig. 6: Effects of Gpnmb neutralization on DIO mice.

Similar content being viewed by others

Data availability

The microarray dataset described in the paper has been deposited in the Gene Expression Omnibus database with accession number GSE129283. The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Finucane, M. M. et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377, 557–567 (2011).

    Article  Google Scholar 

  2. Brown, M. S. & Goldstein, J. L. Lipoprotein receptors in the liver. Control signals for plasma cholesterol traffic. J. Clin. Invest. 72, 743–747 (1983).

    Article  CAS  Google Scholar 

  3. Kuriyama, H. et al. Compensatory increase in fatty acid synthesis in adipose tissue of mice with conditional deficiency of SCAP in liver. Cell Metab. 1, 41–51 (2005).

    Article  CAS  Google Scholar 

  4. Stefan, N. & Haring, H. U. The role of hepatokines in metabolism. Nat. Rev. Endocrinol. 9, 144–152 (2013).

    Article  CAS  Google Scholar 

  5. Meex, R. C. et al. Fetuin B is a secreted hepatocyte factor linking steatosis to impaired glucose metabolism. Cell Metab. 22, 1078–1089 (2015).

    Article  CAS  Google Scholar 

  6. Gong, Y. et al. Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake. Cell Metab. 3, 15–24 (2006).

    Article  CAS  Google Scholar 

  7. Brown, M. S. & Goldstein, J. L. Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J. Lipid Res. 50, S15–S27 (2009).

    Article  Google Scholar 

  8. Sun, L. P., Seemann, J., Goldstein, J. L. & Brown, M. S. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins. Proc. Natl Acad. Sci. USA 104, 6519–6526 (2007).

    Article  CAS  Google Scholar 

  9. Horton, J. D. Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis. Biochem. Soc. Trans. 30, 1091–1095 (2002).

    Article  CAS  Google Scholar 

  10. Hua, X. et al. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc. Natl Acad. Sci. USA 90, 11603–11607 (1993).

    Article  CAS  Google Scholar 

  11. Miserez, A. R., Cao, G., Probst, L. C. & Hobbs, H. H. Structure of the human gene encoding sterol regulatory element binding protein 2 (SREBF2). Genomics 40, 31–40 (1997).

    Article  CAS  Google Scholar 

  12. Liu, T. F. et al. Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis. Cell Metab. 16, 213–225 (2012).

    Article  CAS  Google Scholar 

  13. Lee, J. N., Song, B., DeBose-Boyd, R. A. & Ye, J. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. J. Biol. Chem. 281, 39308–39315 (2006).

    Article  CAS  Google Scholar 

  14. Song, B. L., Sever, N. & DeBose-Boyd, R. A. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell 19, 829–840 (2005).

    Article  CAS  Google Scholar 

  15. Meex, R. C. R. & Watt, M. J. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat. Rev. Endocrinol. 13, 509–520 (2017).

    Article  CAS  Google Scholar 

  16. Azimifar, S. B., Nagaraj, N., Cox, J. & Mann, M. Cell-type-resolved quantitative proteomics of murine liver. Cell Metab. 20, 1076–1087 (2014).

    Article  CAS  Google Scholar 

  17. Rose, A. A. et al. ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS ONE 5, e12093 (2010).

    Article  Google Scholar 

  18. Yu, B., Sondag, G. R., Malcuit, C., Kim, M. H. & Safadi, F. F. Macrophage-associated osteoactivin/GPNMB mediates mesenchymal stem cell survival, proliferation, and migration via a CD44-dependent mechanism. J. Cell Biochem. 117, 1511–1521 (2016).

    Article  CAS  Google Scholar 

  19. Takashima, M., Ogawa, W., Emi, A. & Kasuga, M. Regulation of SREBP1c expression by mTOR signaling in hepatocytes. Kobe J. Med. Sci. 55, E45–E52 (2009).

    CAS  PubMed  Google Scholar 

  20. Yecies, J. L. et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14, 21–32 (2011).

    Article  CAS  Google Scholar 

  21. Duncan, R. E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E. & Sul, H. S. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 27, 79–101 (2007).

    Article  CAS  Google Scholar 

  22. Feng, B. et al. Clodronate liposomes improve metabolic profile and reduce visceral adipose macrophage content in diet-induced obese mice. PLoS ONE 6, e24358 (2011).

    Article  CAS  Google Scholar 

  23. Gao, G. P. et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl Acad. Sci. USA 99, 11854–11859 (2002).

    Article  CAS  Google Scholar 

  24. Hong, J. et al. Genetic susceptibility, birth weight and obesity risk in young Chinese. Int. J. Obes. 37, 673–677 (2013).

    Article  CAS  Google Scholar 

  25. Rao, R. R. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).

    Article  CAS  Google Scholar 

  26. Kodama, K. et al. Expression-based genome-wide association study links the receptor CD44 in adipose tissue with type 2 diabetes. Proc. Natl Acad. Sci. USA 109, 7049–7054 (2012).

    Article  CAS  Google Scholar 

  27. Weiss, L. et al. Induction of resistance to diabetes in non-obese diabetic mice by targeting CD44 with a specific monoclonal antibody. Proc. Natl Acad. Sci. USA 97, 285–290 (2000).

    Article  CAS  Google Scholar 

  28. Kodama, K., Toda, K., Morinaga, S., Yamada, S. & Butte, A. J. Anti-CD44 antibody treatment lowers hyperglycemia and improves insulin resistance, adipose inflammation, and hepatic steatosis in diet-induced obese mice. Diabetes 64, 867–875 (2015).

    Article  CAS  Google Scholar 

  29. Dodd, G. T. et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell 160, 88–104 (2015).

    Article  CAS  Google Scholar 

  30. Ruan, H. B. et al. O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 159, 306–317 (2014).

    Article  CAS  Google Scholar 

  31. Zhu, Y. et al. Connexin 43 mediates white adipose tissue beiging by facilitating the propagation of sympathetic neuronal signals. Cell Metab. 24, 420–433 (2016).

    Article  CAS  Google Scholar 

  32. Zhou, Q. L. et al. Membrane Trafficking Protein CDP138 Regulates Fat Browning and Insulin Sensitivity through Controlling Catecholamine Release. Mol. Cell. Biol. 38, e00153-17 (2018).

    Article  Google Scholar 

  33. Kitamura, T. et al. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol. Cell. Biol. 19, 6286–6296 (1999).

    Article  CAS  Google Scholar 

  34. Dickson, L. M., Gandhi, S., Layden, B. T., Cohen, R. N. & Wicksteed, B. Protein kinase A induces UCP1 expression in specific adipose depots to increase energy expenditure and improve metabolic health. Am. J Physiol. Regul. Integr. Comp. Physiol. 311, R79–R88 (2016).

    Article  Google Scholar 

  35. Fredriksson, J. M. et al. Analysis of inhibition by H89 of UCP1 gene expression and thermogenesis indicates protein kinase A mediation of beta(3)-adrenergic signalling rather than beta(3)-adrenoceptor antagonism by H89. Biochim. Biophys. Acta 1538, 206–217 (2001).

    Article  CAS  Google Scholar 

  36. Anderson, M. G. et al. Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat. Genet. 30, 81–85 (2002).

    Article  CAS  Google Scholar 

  37. Ripoll, V. M. et al. Microphthalmia transcription factor regulates the expression of the novel osteoclast factor GPNMB. Gene 413, 32–41 (2008).

    Article  CAS  Google Scholar 

  38. Abdelmagid, S. M. et al. Osteoactivin acts as downstream mediator of BMP-2 effects on osteoblast function. J. Cell. Physiol. 210, 26–37 (2007).

    Article  CAS  Google Scholar 

  39. Schwarzbich, M. A. et al. The immune inhibitory receptor osteoactivin is upregulated in monocyte-derived dendritic cells by BCR-ABL tyrosine kinase inhibitors. Cancer Immunol. Immunother. 61, 193–202 (2012).

    Article  CAS  Google Scholar 

  40. Choi, M. S. et al. High-fat diet decreases energy expenditure and expression of genes controlling lipid metabolism, mitochondrial function and skeletal system development in the adipose tissue, along with increased expression of extracellular matrix remodelling- and inflammation-related genes. Br. J. Nutr. 113, 867–877 (2015).

    Article  CAS  Google Scholar 

  41. Kuan, C. T. et al. Glycoprotein nonmetastatic melanoma protein B, a potential molecular therapeutic target in patients with glioblastoma multiforme. Clin. Cancer Res. 12, 1970–1982 (2006).

    Article  CAS  Google Scholar 

  42. Okamoto, I. et al. Seven novel and stable translocations associated with oncogenic gene expression in malignant melanoma. Neoplasia 7, 303–311 (2005).

    Article  CAS  Google Scholar 

  43. Rose, A. A. et al. Osteoactivin promotes breast cancer metastasis to bone. Mol. Cancer Res. 5, 1001–1014 (2007).

    Article  CAS  Google Scholar 

  44. Zhou, L. T. et al. Gpnmb/osteoactivin, an attractive target in cancer immunotherapy. Neoplasma 59, 1–5 (2012).

    Article  CAS  Google Scholar 

  45. Choi, C. H. J. & Cohen, P. Adipose crosstalk with other cell types in health and disease. Exp. Cell Res. 360, 6–11 (2017).

    Article  CAS  Google Scholar 

  46. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  Google Scholar 

  47. Maeda, K. et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221, 286–289 (1996).

    Article  CAS  Google Scholar 

  48. Long, J. Z. et al. The secreted enzyme PM20D1 regulates lipidated amino acid uncouplers of mitochondria. Cell 166, 424–435 (2016).

    Article  CAS  Google Scholar 

  49. Feve, B., Bastard, C., Fellahi, S., Bastard, J. P. & Capeau, J. New adipokines. Ann. Endocrinol. (Paris) 77, 49–56 (2016).

    Article  Google Scholar 

  50. Bostrom, P. et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    Article  Google Scholar 

  51. Hondares, E. et al. Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab. 11, 206–212 (2010).

    Article  CAS  Google Scholar 

  52. Fisher, F. M. et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281 (2012).

    Article  CAS  Google Scholar 

  53. Xie, T. & Leung, P. S. Fibroblast growth factor 21: a regulator of metabolic disease and health span. Am. J. Physiol. Endocrinol. Metab. 313, E292–E302 (2017).

    Article  Google Scholar 

  54. Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 121, 96–105 (2011).

    Article  CAS  Google Scholar 

  55. Liao, Y. C. et al. The non-canonical NF-kappa B pathway promotes NPC2 expression and regulates intracellular cholesterol trafficking. Sci. China Life Sci. 61, 1222–1232 (2018).

    Article  CAS  Google Scholar 

  56. Ferre, P., Leturque, A., Burnol, A. F., Penicaud, L. & Girard, J. A method to quantify glucose utilization in vivo in skeletal muscle and white adipose tissue of the anaesthetized rat. Biochem. J. 228, 103–110 (1985).

    Article  CAS  Google Scholar 

  57. Liu, R. et al. Rare loss-of-function variants in NPC1 predispose to human obesity. Diabetes 66, 935–947 (2017).

    Article  CAS  Google Scholar 

  58. Wang, J. et al. Ablation of LGR4 promotes energy expenditure by driving white-to-brown fat switch. Nat. Cell Biol. 15, 1455–1463 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H.-H. Miao, Y.-X. Qu, J. Xu, D. Liang, B.-Y. Xiang and Y.Y. Liu for technical assistance, Y.-K. Sun for human sample collection and Y. He for statistical analysis. This work was supported by grants from the National Natural Science Foundation (China; Nos. 31430044, 31690102, 91857000 and 81522011), Ministry of Science and Technology (China; No. 2016YFA0500100), the Science and Technology Department of Hubei Province (No. 2016CFA012) and the 111 Project of the Ministry of Education of China (No. B16036).

Author information

Authors and Affiliations

Authors

Contributions

B.-L.S. conceived the project. X.-M.G., Y.-F.L., G.N., J.-Q.W., J.W., B.-L.L., W.Q. and B.-L.S. designed the experiments. X.-M.G., Y.-F.L., J.-Q.W., T.X., J.W., C.X. and J.H. performed the experiments. X.-M.G., Y.-F.L., J.L. and B.-L.S. analyzed the data. J.-Q.W. provided and analyzed the human serum samples. X.-M.G., Y.-F.L., J.L., W.Q. and B.-L.S. wrote the paper, with input from others.

Corresponding authors

Correspondence to Wei Qi or Bao-Liang Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Supplementary Tables 1–3

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, XM., Li, YF., Luo, J. et al. Gpnmb secreted from liver promotes lipogenesis in white adipose tissue and aggravates obesity and insulin resistance. Nat Metab 1, 570–583 (2019). https://doi.org/10.1038/s42255-019-0065-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-019-0065-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing