Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control

Abstract

Elevated branched-chain amino acids (BCAAs) are associated with obesity and insulin resistance. How long-term dietary BCAAs impact late-life health and lifespan is unknown. Here, we show that when dietary BCAAs are varied against a fixed, isocaloric macronutrient background, long-term exposure to high BCAA diets leads to hyperphagia, obesity and reduced lifespan. These effects are not due to elevated BCAA per se or hepatic mammalian target of rapamycin activation, but instead are due to a shift in the relative quantity of dietary BCAAs and other amino acids, notably tryptophan and threonine. Increasing the ratio of BCAAs to these amino acids results in hyperphagia and is associated with central serotonin depletion. Preventing hyperphagia by calorie restriction or pair-feeding averts the health costs of a high-BCAA diet. Our data highlight a role for amino acid quality in energy balance and show that health costs of chronic high BCAA intakes need not be due to intrinsic toxicity but instead are a consequence of hyperphagia driven by amino acid imbalance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dietary BCAA imbalance drives hyperphagia and obesity, and shortens lifespan.
Fig. 2: Trp and Thr supplementation prevents hyperphagia.
Fig. 3: Hyperphagia in BCAA200 mice is linked to Trp-mediated serotonin (5-HT) depletion.
Fig. 4: The ratio of dietary BCAA to non-BCAA influences hypothalamic gene expression.
Fig. 5: Dietary BCAA imbalance promotes hepatosteatosis and de novo lipogenesis.
Fig. 6: Dietary amino acid imbalance alters whole-body metabolism.
Fig. 7: Preventing hyperphagia on high BCAA diets averts metabolic and lifespan costs.

Similar content being viewed by others

Data availability

RNA-seq data have been deposited with the Gene Expression Omnibus and are accessible through accession number GSE114855. The data that support the plots within this article and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: a Unifying Framework from Animal Adaption to Human Obesity (Princeton University Press, 2012).

  2. Gosby, A. K. et al. Testing protein leverage in lean humans: a randomised controlled experimental study. PLoS ONE 6, e25929 (2011).

    Article  CAS  Google Scholar 

  3. Simpson, S. J. & Raubenheimer, D. Obesity: the protein leverage hypothesis. Obes. Rev. 6, 133–142 (2005).

    Article  CAS  Google Scholar 

  4. Le Couteur, D. G. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell. Mol. Life Sci. 73, 1237–1252 (2016).

    Article  CAS  Google Scholar 

  5. Solon-Biet, S. M. et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 19, 418–430 (2014).

    Article  CAS  Google Scholar 

  6. Solon-Biet, S. M. et al. Macronutrient balance, reproductive function, and lifespan in aging mice. Proc. Natl Acad. Sci. USA 112, 3481–3486 (2015).

    Article  CAS  Google Scholar 

  7. Wahl, D. et al. Comparing the effects of low-protein and high-carbohydrate diets and caloric restriction on brain aging in mice. Cell Rep. 25, 2234–2243.e6 (2018).

    Article  CAS  Google Scholar 

  8. Grandison, R. C., Piper, M. D. & Partridge, L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462, 1061–1064 (2009).

    Article  CAS  Google Scholar 

  9. Miller, R. A. et al. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4, 119–125 (2005).

    Article  CAS  Google Scholar 

  10. Harper, A. E. & Rogers, Q. R. Amino acid imbalance. Proc. Nutr. Soc. 24, 173–190 (1965).

    Article  CAS  Google Scholar 

  11. Hasek, B. E. et al. Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R728–R739 (2010).

    Article  CAS  Google Scholar 

  12. Soultoukis, G. A. & Partridge, L. Dietary protein, metabolism, and aging. Annu. Rev. Biochem. 85, 5–34 (2016).

    Article  CAS  Google Scholar 

  13. Fontana, L. et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 16, 520–530 (2016).

    Article  CAS  Google Scholar 

  14. Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311–326 (2009).

    Article  CAS  Google Scholar 

  15. Maida, A. et al. Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution. Mol. Metab. 6, 873–881 (2017).

    Article  CAS  Google Scholar 

  16. She, P. et al. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am. J. Physiol. Endocrinol. Metab. 293, E1552–1563 (2007).

    Article  CAS  Google Scholar 

  17. Lackey, D. E. et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am. J. Physiol. Endocrinol. Metab. 304, E1175–1187 (2013).

    Article  CAS  Google Scholar 

  18. Piccolo, B. D. et al. Whey protein supplementation does not alter plasma branched-chained amino acid profiles but results in unique metabolomics patterns in obese women enrolled in an 8-week weight loss trial. J. Nutr. 145, 691–700 (2015).

    Article  CAS  Google Scholar 

  19. Fiehn, O. et al. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS ONE 5, e15234 (2010).

    Article  Google Scholar 

  20. Huffman, K. M. et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 32, 1678–1683 (2009).

    Article  CAS  Google Scholar 

  21. Rose, W. C. II. The sequence of events leading to the establishment of the amino acid needs of man. Am. J. Public Health Nations Health 58, 2020–2027 (1968).

    Article  CAS  Google Scholar 

  22. Reeds, P. J. Dispensable and indispensable amino acids for humans. J. Nutr. 130, 1835S–1840S (2000).

    Article  CAS  Google Scholar 

  23. Piper, M. D. W. et al. Matching dietary amino acid balance to the in silico-translated exome optimizes growth and reproduction without cost to lifespan. Cell Metab. 25, 1206 (2017).

    Article  CAS  Google Scholar 

  24. Breum, L., Rasmussen, M. H., Hilsted, J. & Fernstrom, J. D. Twenty-four-hour plasma tryptophan concentrations and ratios are below normal in obese subjects and are not normalized by substantial weight reduction. Am. J. Clin. Nutr. 77, 1112–1118 (2003).

    Article  CAS  Google Scholar 

  25. Halford, J. C., Harrold, J. A., Lawton, C. L. & Blundell, J. E. Serotonin (5-HT) drugs: effects on appetite expression and use for the treatment of obesity. Curr. Drug Targets 6, 201–213 (2005).

    Article  CAS  Google Scholar 

  26. Hong, S.-H. et al. Minibrain/Dyrk1a regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in Drosophila and mammals. PLoS Genet. 8, e1002857 (2012).

    Article  CAS  Google Scholar 

  27. Morton, N. M. et al. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes. PLoS ONE 6, e23944 (2011).

    Article  CAS  Google Scholar 

  28. Cai, D. & Liu, T. Hypothalamic inflammation: a double-edged sword to nutritional diseases. Ann. NY Acad. Sci. 1243, E1–E39 (2011).

    Article  Google Scholar 

  29. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  Google Scholar 

  30. O’Sullivan, J. F. et al. Dimethylguanidino valeric acid is a marker of liver fat and predicts diabetes. J. Clin. Invest. 127, 4394–4402 (2017).

    Article  Google Scholar 

  31. Green, C. R. et al. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat. Chem. Biol. 12, 15–21 (2016).

    Article  CAS  Google Scholar 

  32. White, P. J. et al. The BCKDH kinase and phosphatase integrate BCAA and lipid metabolism via regulation of ATP-citrate lyase. Cell Metab. 27, 1281–1293.e7 (2018).

    Article  CAS  Google Scholar 

  33. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

    Article  Google Scholar 

  34. Shah, S. H. et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 55, 321–330 (2012).

    Article  CAS  Google Scholar 

  35. Connelly, M. A., Wolak-Dinsmore, J. & Dullaart, R. P. F. Branched chain amino acids are associated with insulin resistance independent of leptin and adiponectin in subjects with varying degrees of glucose tolerance. Metab. Syndr. Relat. Disord. 15, 183–186 (2017).

    Article  CAS  Google Scholar 

  36. Zheng, Y. et al. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. Int. J. Epidemiol. 45, 1482–1492 (2016).

    Article  Google Scholar 

  37. Felig, P., Marliss, E. & Cahill, G. F. Jr. Plasma amino acid levels and insulin secretion in obesity. N. Engl. J. Med. 281, 811–816 (1969).

    Article  CAS  Google Scholar 

  38. Lake, A. D. et al. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids 47, 603–615 (2015).

    Article  CAS  Google Scholar 

  39. Goffredo, M. et al. A branched-chain amino acid-related metabolic signature characterizes obese adolescents with non-alcoholic fatty liver disease. Nutrients 9, E642 (2017).

    Article  Google Scholar 

  40. Isanejad, M. et al. Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women’s Health Initiative. Br. J. Nutr. 117, 1523–1530 (2017).

    Article  CAS  Google Scholar 

  41. Elshorbagy, A. K. et al. Food overconsumption in healthy adults triggers early and sustained increases in serum branched-chain amino acids and changes in cysteine linked to fat gain. J. Nutr. 148, 1073–1080 (2018).

    PubMed  Google Scholar 

  42. Stöckli, J. et al. Metabolomic analysis of insulin resistance across different mouse strains and diets. J. Biol. Chem. 292, 19135–19145 (2017).

    Article  Google Scholar 

  43. Gietzen, D. W., Hao, S. & Anthony, T. G. Mechanisms of food intake repression in indispensable amino acid deficiency. Annu. Rev. Nutr. 27, 63–78 (2007).

    Article  CAS  Google Scholar 

  44. Rose, W. C. Feeding experiments with mixtures of highly purified amino acids. I. The inadequacy of diets containing nineteen amino acids. J. Biol. Chem 94, 155–165 (1931).

    CAS  Google Scholar 

  45. Lynch, C. J. & Adams, S. H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 10, 723–736 (2014).

    Article  CAS  Google Scholar 

  46. Newgard, C. B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 15, 606–614 (2012).

    Article  CAS  Google Scholar 

  47. She, P. et al. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab. 6, 181–194 (2007).

    Article  CAS  Google Scholar 

  48. Zhang, Y. et al. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 56, 1647–1654 (2007).

    Article  CAS  Google Scholar 

  49. Hiroshige, K., Sonta, T., Suda, T., Kanegae, K. & Ohtani, A. Oral supplementation of branched‐chain amino acid improves nutritional status in elderly patients on chronic haemodialysis. Nephrol. Dial. Transplant. 16, 1856–1862 (2001).

    Article  CAS  Google Scholar 

  50. D’Antona, G. et al. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab. 12, 362–372 (2010).

    Article  Google Scholar 

  51. Crane, J. D. et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat. Med. 21, 166–172 (2015).

    Article  CAS  Google Scholar 

  52. Fernstrom, J. D. Branched-chain amino acids and brain function. J. Nutr. 135, 1539S–1546S (2005).

    Article  CAS  Google Scholar 

  53. Gietzen, D. W., Rogers, Q. R., Leung, P. M., Semon, B. & Piechota, T. Serotonin and feeding responses of rats to amino acid imbalance: initial phase. Am. J. Physiol. 253, R763–R771 (1987).

    CAS  PubMed  Google Scholar 

  54. Neinast, M. D. et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. 29, 417–429.e4 (2019).

    Article  CAS  Google Scholar 

  55. Dangin, M. et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am. J. Physiol. Endocrinol. Metab. 280, E340–E348 (2001).

    Article  CAS  Google Scholar 

  56. Taylor, I. L., Byrne, W. J., Christie, D. L., Ament, M. E. & Walsh, J. H. Effect of individual l-amino acids on gastric acid secretion and serum gastrin and pancreatic polypeptide release in humans. Gastroenterology 83, 273–278 (1982).

    CAS  PubMed  Google Scholar 

  57. Tordoff, M. G., Pearson, J. A., Ellis, H. T. & Poole, R. L. Does eating good-tasting food influence body weight? Physiol. Behav. 170, 27–31 (2017).

    Article  CAS  Google Scholar 

  58. Chong, J. et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486–W494 (2018).

    Article  CAS  Google Scholar 

  59. Xia, J. & Wishart, D. S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc. 6, 743–760 (2011).

    Article  CAS  Google Scholar 

  60. Xia, J. & Wishart, D. S. Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Curr. Protoc. Bioinformatics 34, 14.10.1–14.10.48 (2011).

    Article  Google Scholar 

  61. Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  Google Scholar 

  62. Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, 2000).

Download references

Acknowledgements

We thank F. Held and P. Telleria Teixeira for their technical and administrative support. We thank the Laboratory Animal Services at the University of Sydney, N. Sunn of Sydney Imaging, W. Potts from Specialty Feeds, L. McQuade from the Australian Proteome Analysis Facility and the Diagnostic Pathology Unit at Concord Hospital. This work is supported by a National Health and Medical Research Council (NHMRC) project grant (GNT1084267 to D.R., D.L.C. and S.J.S.), the Ageing and Alzheimers Institute and the Sydney Food and Nutrition Network. S.S.B. is supported by the NHMRC Peter Doherty Biomedical Fellowship (no. GNT1110098) and the University of Sydney SOAR fellowship. A.M.S. was supported by a Discovery Early Career Researcher Award from the Australian Research Council (DE180101520). V.C.C. is supported by a University of Sydney Equity Fellowship. L.P. and P.J. were supported by the Max Planck Society and acknowledge funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7, 2007–2013)/ERC grant agreement no. 268739 and the Wellcome Trust (098565/Z/12/).

Author information

Authors and Affiliations

Authors

Contributions

D.L.C., S.J.S. and L.P. conceived the study. S.S.B., S.J.S. and D.L.C. wrote the manuscript. D.R., L.P. and A.J.R. reviewed and assisted in writing the manuscript. S.S.B., V.C.C. and T.P. ran the study. G.J.C., D.W., X.C., A.E.B., E.B., G.C.G., R.P., J.O.S., Y.C.K., M.K., B.Y., C.A., G.S., T.D., J.A.W. and P.J. ran the experiments. S.S.B., A.M.S., Q.-P.W., K.B.A., M.D.W.P. and P.J. analysed the data.

Corresponding authors

Correspondence to Samantha M. Solon-Biet or Stephen J. Simpson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Supplementary Tables 1–4 and Supplementary Table 6

Reporting Summary

Supplementary Table 5

Statistical summary for the effects of diet, sex or diet–sex interaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solon-Biet, S.M., Cogger, V.C., Pulpitel, T. et al. Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat Metab 1, 532–545 (2019). https://doi.org/10.1038/s42255-019-0059-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-019-0059-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing