Abstract

Elevated branched-chain amino acids (BCAAs) are associated with obesity and insulin resistance. How long-term dietary BCAAs impact late-life health and lifespan is unknown. Here, we show that when dietary BCAAs are varied against a fixed, isocaloric macronutrient background, long-term exposure to high BCAA diets leads to hyperphagia, obesity and reduced lifespan. These effects are not due to elevated BCAA per se or hepatic mammalian target of rapamycin activation, but instead are due to a shift in the relative quantity of dietary BCAAs and other amino acids, notably tryptophan and threonine. Increasing the ratio of BCAAs to these amino acids results in hyperphagia and is associated with central serotonin depletion. Preventing hyperphagia by calorie restriction or pair-feeding averts the health costs of a high-BCAA diet. Our data highlight a role for amino acid quality in energy balance and show that health costs of chronic high BCAA intakes need not be due to intrinsic toxicity but instead are a consequence of hyperphagia driven by amino acid imbalance.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

RNA-seq data have been deposited with the Gene Expression Omnibus and are accessible through accession number GSE114855. The data that support the plots within this article and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: a Unifying Framework from Animal Adaption to Human Obesity (Princeton University Press, 2012).

  2. 2.

    Gosby, A. K. et al. Testing protein leverage in lean humans: a randomised controlled experimental study. PLoS ONE 6, e25929 (2011).

  3. 3.

    Simpson, S. J. & Raubenheimer, D. Obesity: the protein leverage hypothesis. Obes. Rev. 6, 133–142 (2005).

  4. 4.

    Le Couteur, D. G. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell. Mol. Life Sci. 73, 1237–1252 (2016).

  5. 5.

    Solon-Biet, S. M. et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 19, 418–430 (2014).

  6. 6.

    Solon-Biet, S. M. et al. Macronutrient balance, reproductive function, and lifespan in aging mice. Proc. Natl Acad. Sci. USA 112, 3481–3486 (2015).

  7. 7.

    Wahl, D. et al. Comparing the effects of low-protein and high-carbohydrate diets and caloric restriction on brain aging in mice. Cell Rep. 25, 2234–2243.e6 (2018).

  8. 8.

    Grandison, R. C., Piper, M. D. & Partridge, L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462, 1061–1064 (2009).

  9. 9.

    Miller, R. A. et al. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4, 119–125 (2005).

  10. 10.

    Harper, A. E. & Rogers, Q. R. Amino acid imbalance. Proc. Nutr. Soc. 24, 173–190 (1965).

  11. 11.

    Hasek, B. E. et al. Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R728–R739 (2010).

  12. 12.

    Soultoukis, G. A. & Partridge, L. Dietary protein, metabolism, and aging. Annu. Rev. Biochem. 85, 5–34 (2016).

  13. 13.

    Fontana, L. et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 16, 520–530 (2016).

  14. 14.

    Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311–326 (2009).

  15. 15.

    Maida, A. et al. Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution. Mol. Metab. 6, 873–881 (2017).

  16. 16.

    She, P. et al. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am. J. Physiol. Endocrinol. Metab. 293, E1552–1563 (2007).

  17. 17.

    Lackey, D. E. et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am. J. Physiol. Endocrinol. Metab. 304, E1175–1187 (2013).

  18. 18.

    Piccolo, B. D. et al. Whey protein supplementation does not alter plasma branched-chained amino acid profiles but results in unique metabolomics patterns in obese women enrolled in an 8-week weight loss trial. J. Nutr. 145, 691–700 (2015).

  19. 19.

    Fiehn, O. et al. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS ONE 5, e15234 (2010).

  20. 20.

    Huffman, K. M. et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 32, 1678–1683 (2009).

  21. 21.

    Rose, W. C. II. The sequence of events leading to the establishment of the amino acid needs of man. Am. J. Public Health Nations Health 58, 2020–2027 (1968).

  22. 22.

    Reeds, P. J. Dispensable and indispensable amino acids for humans. J. Nutr. 130, 1835S–1840S (2000).

  23. 23.

    Piper, M. D. W. et al. Matching dietary amino acid balance to the in silico-translated exome optimizes growth and reproduction without cost to lifespan. Cell Metab. 25, 1206 (2017).

  24. 24.

    Breum, L., Rasmussen, M. H., Hilsted, J. & Fernstrom, J. D. Twenty-four-hour plasma tryptophan concentrations and ratios are below normal in obese subjects and are not normalized by substantial weight reduction. Am. J. Clin. Nutr. 77, 1112–1118 (2003).

  25. 25.

    Halford, J. C., Harrold, J. A., Lawton, C. L. & Blundell, J. E. Serotonin (5-HT) drugs: effects on appetite expression and use for the treatment of obesity. Curr. Drug Targets 6, 201–213 (2005).

  26. 26.

    Hong, S.-H. et al. Minibrain/Dyrk1a regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in Drosophila and mammals. PLoS Genet. 8, e1002857 (2012).

  27. 27.

    Morton, N. M. et al. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes. PLoS ONE 6, e23944 (2011).

  28. 28.

    Cai, D. & Liu, T. Hypothalamic inflammation: a double-edged sword to nutritional diseases. Ann. NY Acad. Sci. 1243, E1–E39 (2011).

  29. 29.

    Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

  30. 30.

    O’Sullivan, J. F. et al. Dimethylguanidino valeric acid is a marker of liver fat and predicts diabetes. J. Clin. Invest. 127, 4394–4402 (2017).

  31. 31.

    Green, C. R. et al. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat. Chem. Biol. 12, 15–21 (2016).

  32. 32.

    White, P. J. et al. The BCKDH kinase and phosphatase integrate BCAA and lipid metabolism via regulation of ATP-citrate lyase. Cell Metab. 27, 1281–1293.e7 (2018).

  33. 33.

    Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

  34. 34.

    Shah, S. H. et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 55, 321–330 (2012).

  35. 35.

    Connelly, M. A., Wolak-Dinsmore, J. & Dullaart, R. P. F. Branched chain amino acids are associated with insulin resistance independent of leptin and adiponectin in subjects with varying degrees of glucose tolerance. Metab. Syndr. Relat. Disord. 15, 183–186 (2017).

  36. 36.

    Zheng, Y. et al. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. Int. J. Epidemiol. 45, 1482–1492 (2016).

  37. 37.

    Felig, P., Marliss, E. & Cahill, G. F. Jr. Plasma amino acid levels and insulin secretion in obesity. N. Engl. J. Med. 281, 811–816 (1969).

  38. 38.

    Lake, A. D. et al. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids 47, 603–615 (2015).

  39. 39.

    Goffredo, M. et al. A branched-chain amino acid-related metabolic signature characterizes obese adolescents with non-alcoholic fatty liver disease. Nutrients 9, E642 (2017).

  40. 40.

    Isanejad, M. et al. Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women’s Health Initiative. Br. J. Nutr. 117, 1523–1530 (2017).

  41. 41.

    Elshorbagy, A. K. et al. Food overconsumption in healthy adults triggers early and sustained increases in serum branched-chain amino acids and changes in cysteine linked to fat gain. J. Nutr. 148, 1073–1080 (2018).

  42. 42.

    Stöckli, J. et al. Metabolomic analysis of insulin resistance across different mouse strains and diets. J. Biol. Chem. 292, 19135–19145 (2017).

  43. 43.

    Gietzen, D. W., Hao, S. & Anthony, T. G. Mechanisms of food intake repression in indispensable amino acid deficiency. Annu. Rev. Nutr. 27, 63–78 (2007).

  44. 44.

    Rose, W. C. Feeding experiments with mixtures of highly purified amino acids. I. The inadequacy of diets containing nineteen amino acids. J. Biol. Chem 94, 155–165 (1931).

  45. 45.

    Lynch, C. J. & Adams, S. H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 10, 723–736 (2014).

  46. 46.

    Newgard, C. B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 15, 606–614 (2012).

  47. 47.

    She, P. et al. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab. 6, 181–194 (2007).

  48. 48.

    Zhang, Y. et al. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 56, 1647–1654 (2007).

  49. 49.

    Hiroshige, K., Sonta, T., Suda, T., Kanegae, K. & Ohtani, A. Oral supplementation of branched‐chain amino acid improves nutritional status in elderly patients on chronic haemodialysis. Nephrol. Dial. Transplant. 16, 1856–1862 (2001).

  50. 50.

    D’Antona, G. et al. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab. 12, 362–372 (2010).

  51. 51.

    Crane, J. D. et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat. Med. 21, 166–172 (2015).

  52. 52.

    Fernstrom, J. D. Branched-chain amino acids and brain function. J. Nutr. 135, 1539S–1546S (2005).

  53. 53.

    Gietzen, D. W., Rogers, Q. R., Leung, P. M., Semon, B. & Piechota, T. Serotonin and feeding responses of rats to amino acid imbalance: initial phase. Am. J. Physiol. 253, R763–R771 (1987).

  54. 54.

    Neinast, M. D. et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. 29, 417–429.e4 (2019).

  55. 55.

    Dangin, M. et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am. J. Physiol. Endocrinol. Metab. 280, E340–E348 (2001).

  56. 56.

    Taylor, I. L., Byrne, W. J., Christie, D. L., Ament, M. E. & Walsh, J. H. Effect of individual l-amino acids on gastric acid secretion and serum gastrin and pancreatic polypeptide release in humans. Gastroenterology 83, 273–278 (1982).

  57. 57.

    Tordoff, M. G., Pearson, J. A., Ellis, H. T. & Poole, R. L. Does eating good-tasting food influence body weight? Physiol. Behav. 170, 27–31 (2017).

  58. 58.

    Chong, J. et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486–W494 (2018).

  59. 59.

    Xia, J. & Wishart, D. S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc. 6, 743–760 (2011).

  60. 60.

    Xia, J. & Wishart, D. S. Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Curr. Protoc. Bioinformatics 34, 14.10.1–14.10.48 (2011).

  61. 61.

    Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

  62. 62.

    Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, 2000).

Download references

Acknowledgements

We thank F. Held and P. Telleria Teixeira for their technical and administrative support. We thank the Laboratory Animal Services at the University of Sydney, N. Sunn of Sydney Imaging, W. Potts from Specialty Feeds, L. McQuade from the Australian Proteome Analysis Facility and the Diagnostic Pathology Unit at Concord Hospital. This work is supported by a National Health and Medical Research Council (NHMRC) project grant (GNT1084267 to D.R., D.L.C. and S.J.S.), the Ageing and Alzheimers Institute and the Sydney Food and Nutrition Network. S.S.B. is supported by the NHMRC Peter Doherty Biomedical Fellowship (no. GNT1110098) and the University of Sydney SOAR fellowship. A.M.S. was supported by a Discovery Early Career Researcher Award from the Australian Research Council (DE180101520). V.C.C. is supported by a University of Sydney Equity Fellowship. L.P. and P.J. were supported by the Max Planck Society and acknowledge funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7, 2007–2013)/ERC grant agreement no. 268739 and the Wellcome Trust (098565/Z/12/).

Author information

Affiliations

  1. Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia

    • Samantha M. Solon-Biet
    • , Victoria C. Cogger
    • , Tamara Pulpitel
    • , Devin Wahl
    • , Ximonie Clark
    • , Elena E. Bagley
    • , Gabrielle C. Gregoriou
    • , Alistair M. Senior
    • , Qiao-Ping Wang
    • , Amanda E. Brandon
    • , Ruth Perks
    • , John O’Sullivan
    • , Yen Chin Koay
    • , Kim Bell-Anderson
    • , Melkam Kebede
    • , Belinda Yau
    • , Clare Atkinson
    • , Tim Dodgson
    • , Jibran A. Wali
    • , David Raubenheimer
    • , Gregory J. Cooney
    • , David G. Le Couteur
    •  & Stephen J. Simpson
  2. School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia

    • Samantha M. Solon-Biet
    • , Ximonie Clark
    • , Alistair M. Senior
    • , Qiao-Ping Wang
    • , Kim Bell-Anderson
    • , Melkam Kebede
    • , Belinda Yau
    • , Clare Atkinson
    • , Tim Dodgson
    • , Jibran A. Wali
    • , David Raubenheimer
    •  & Stephen J. Simpson
  3. Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia

    • Victoria C. Cogger
    • , Tamara Pulpitel
    • , Devin Wahl
    • , Amanda E. Brandon
    • , Gregory J. Cooney
    •  & David G. Le Couteur
  4. Ageing and Alzheimers Institute and Centre for Education and Research on Ageing, Concord Hospital, Sydney, New South Wales, Australia

    • Victoria C. Cogger
    • , Devin Wahl
    •  & David G. Le Couteur
  5. ANZAC Research Institute, The University of Sydney, Sydney, New South Wales, Australia

    • Victoria C. Cogger
    •  & David G. Le Couteur
  6. School of Medical Sciences, Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia

    • Elena E. Bagley
    •  & Gabrielle C. Gregoriou
  7. School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, China

    • Qiao-Ping Wang
  8. Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia

    • John O’Sullivan
    •  & Yen Chin Koay
  9. Department of Medical Biology, The Arctic University of Tromsø, Tromsø, Norway

    • Gunbjorg Svineng
  10. School of Biological Sciences, Monash University Clayton Campus, Melbourne, Victoria, Australia

    • Matthew D. W. Piper
  11. Max Planck Institute for Biology of Ageing, Cologne, Germany

    • Paula Juricic
    •  & Linda Partridge
  12. Monash Biomedicine Discovery Institute, Monash University Clayton Campus, Melbourne, Victoria, Australia

    • Adam J. Rose

Authors

  1. Search for Samantha M. Solon-Biet in:

  2. Search for Victoria C. Cogger in:

  3. Search for Tamara Pulpitel in:

  4. Search for Devin Wahl in:

  5. Search for Ximonie Clark in:

  6. Search for Elena E. Bagley in:

  7. Search for Gabrielle C. Gregoriou in:

  8. Search for Alistair M. Senior in:

  9. Search for Qiao-Ping Wang in:

  10. Search for Amanda E. Brandon in:

  11. Search for Ruth Perks in:

  12. Search for John O’Sullivan in:

  13. Search for Yen Chin Koay in:

  14. Search for Kim Bell-Anderson in:

  15. Search for Melkam Kebede in:

  16. Search for Belinda Yau in:

  17. Search for Clare Atkinson in:

  18. Search for Gunbjorg Svineng in:

  19. Search for Tim Dodgson in:

  20. Search for Jibran A. Wali in:

  21. Search for Matthew D. W. Piper in:

  22. Search for Paula Juricic in:

  23. Search for Linda Partridge in:

  24. Search for Adam J. Rose in:

  25. Search for David Raubenheimer in:

  26. Search for Gregory J. Cooney in:

  27. Search for David G. Le Couteur in:

  28. Search for Stephen J. Simpson in:

Contributions

D.L.C., S.J.S. and L.P. conceived the study. S.S.B., S.J.S. and D.L.C. wrote the manuscript. D.R., L.P. and A.J.R. reviewed and assisted in writing the manuscript. S.S.B., V.C.C. and T.P. ran the study. G.J.C., D.W., X.C., A.E.B., E.B., G.C.G., R.P., J.O.S., Y.C.K., M.K., B.Y., C.A., G.S., T.D., J.A.W. and P.J. ran the experiments. S.S.B., A.M.S., Q.-P.W., K.B.A., M.D.W.P. and P.J. analysed the data.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Samantha M. Solon-Biet or Stephen J. Simpson.

Supplementary information

  1. Supplementary Information

    Supplementary Figs. 1–6, Supplementary Tables 1–4 and Supplementary Table 6

  2. Reporting Summary

  3. Supplementary Table 5

    Statistical summary for the effects of diet, sex or diet–sex interaction

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s42255-019-0059-2