Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metabolic Messengers: adiponectin

Abstract

Adiponectin, first described in the mid-1990s, is one of the most widely studied adipokines to date. Studies of its regulation, biogenesis and physiological effects have yielded great insight and improved understanding of the mechanisms that ensure systemic metabolic homeostasis. Here, we provide a brief overview of the current state of the adiponectin field, describing adiponectin’s history, sites and mechanisms of action, and the critical questions that must be addressed in the future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Timeline of the discovery of adiponectin.
Fig. 2: Target tissues and biological activity of adiponectin.
Fig. 3: Downstream signalling cascade of AdipoRs.

References

  1. 1.

    Berg, A. H., Combs, T. P., Du, X., Brownlee, M. & Scherer, P. E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7, 947–953 (2001).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Rutkowski, J. M. et al. Adiponectin promotes functional recovery after podocyte ablation. J. Am. Soc. Nephrol. 24, 268–282 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Ye, R. et al. Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes β-cell regeneration. eLife 3, e03851 (2014).

    PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Okamoto, Y. et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 106, 2767–2770 (2002).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Qi, Y. et al. Adiponectin acts in the brain to decrease body weight. Nat. Med. 10, 524–529 (2004).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Oshima, K. et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem. Biophys. Res. Commun. 331, 520–526 (2005).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Takemura, Y., Walsh, K. & Ouchi, N. Adiponectin and cardiovascular inflammatory responses. Curr. Atheroscler. Rep. 9, 238–243 (2007).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Halberg, N. et al. Systemic fate of the adipocyte-derived factor adiponectin. Diabetes 58, 1961–1970 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Stern, J. H., Rutkowski, J. M. & Scherer, P. E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 23, 770–784 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Ye, R. & Scherer, P. E. Adiponectin, driver or passenger on the road to insulin sensitivity? Mol. Metab. 2, 133–141 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Scherer, P. E. Adiponectin: basic and clinical aspects. Best. Pract. Res. Clin. Endocrinol. Metab. 28, 1–2 (2014).

    PubMed  Article  Google Scholar 

  13. 13.

    Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697–10703 (1996).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Maeda, K. et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221, 286–289 (1996).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Nakano, Y., Tobe, T., Choi-Miura, N. H., Mazda, T. & Tomita, M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem. 120, 803–812 (1996).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Arita, Y. et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79–83 (1999).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Berg, A. H., Combs, T. P. & Scherer, P. E. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol. Metab. 13, 84–89 (2002).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Shapiro, L. & Scherer, P. E. The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr. Biol. 8, 335–338 (1998).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Maeda, N. et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 8, 731–737 (2002).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Kubota, N. et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 277, 25863–25866 (2002).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Ma, K. et al. Increased beta-oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J. Biol. Chem. 277, 34658–34661 (2002).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Xia, J. Y. et al. Acute loss of adipose tissue-derived adiponectin triggers immediate metabolic deterioration in mice. Diabetologia 61, 932–941 (2018).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Hotta, K. et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 50, 1126–1133 (2001).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Weyer, C. et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930–1935 (2001).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Yamauchi, T. et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 13, 332–339 (2007).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Okada-Iwabu, M. et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503, 493–499 (2013).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Tanabe, H. et al. Crystal structures of the human adiponectin receptors. Nature 520, 312–316 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Vasiliauskaite-Brooks, I. et al. Structural insights into adiponectin receptors suggest ceramidase activity. Nature 544, 120–123 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55–63 (2011).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Holland, W. L. & Scherer, P. E. Structural biology: receptors grease the metabolic wheels. Nature 544, 42–44 (2017).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Scherer, P. E. The multifaceted roles of adipose tissue-therapeutic targets for diabetes and beyond: the 2015 Banting lecture. Diabetes 65, 1452–1461 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Hotta, K. et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595–1599 (2000).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Spranger, J. et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet 361, 226–228 (2003).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Ouchi, N. et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100, 2473–2476 (1999).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Pischon, T. et al. Plasma adiponectin levels and risk of myocardial infarction in men. J. Am. Med. Assoc. 291, 1730–1737 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    Turer, A. T. & Scherer, P. E. Adiponectin: mechanistic insights and clinical implications. Diabetologia 55, 2319–2326 (2012).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Maeda, N. et al. PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50, 2094–2099 (2001).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Kusminski, C. M. et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat. Med. 18, 1539–1549 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Kim, J. Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Makowski, L. et al. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat. Med. 7, 699–705 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Elmasri, H. et al. Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J. 23, 3865–3873 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Shan, T., Liu, W. & Kuang, S. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues. FASEB J. 27, 277–287 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Wang, Y. et al. Cardiomyocyte-derived adiponectin is biologically active in protecting against myocardial ischemia-reperfusion injury. Am. J. Physiol. Endocrinol. Metab. 298, E663–E670 (2010).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Shafiei, M. S., Shetty, S., Scherer, P. E. & Rockey, D. C. Adiponectin regulation of stellate cell activation via PPARγ-dependent and -independent mechanisms. Am. J. Pathol. 178, 2690–2699 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Ding, X. et al. The roles of leptin and adiponectin: a novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am. J. Pathol. 166, 1655–1669 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Jasinski-Bergner, S., Büttner, M., Quandt, D., Seliger, B. & Kielstein, H. Adiponectin and its receptors are differentially expressed in human tissues and cell lines of distinct origin. Obes. Facts 10, 569–583 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Das, K., Lin, Y., Widen, E., Zhang, Y. & Scherer, P. E. Chromosomal localization, expression pattern, and promoter analysis of the mouse gene encoding adipocyte-specific secretory protein Acrp30. Biochem. Biophys. Res. Commun. 280, 1120–1129 (2001).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Wang, Q. A. et al. Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nat. Cell Biol. 17, 1099–1111 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Segawa, K. et al. Identification of a novel distal enhancer in human adiponectin gene. J. Endocrinol. 200, 107–116 (2009).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Wang, Z. V., Deng, Y., Wang, Q. A., Sun, K. & Scherer, P. E. Identification and characterization of a promoter cassette conferring adipocyte-specific gene expression. Endocrinology 151, 2933–2939 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Kim, H. B. et al. NFATc4 and ATF3 negatively regulate adiponectin gene expression in 3T3-L1 adipocytes. Diabetes 55, 1342–1352 (2006).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Park, S. K. et al. CCAAT/enhancer binding protein and nuclear factor-Y regulate adiponectin gene expression in adipose tissue. Diabetes 53, 2757–2766 (2004).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Iwaki, M. et al. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52, 1655–1663 (2003).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Seo, J. B. et al. Adipocyte determination- and differentiation-dependent factor 1/sterol regulatory element-binding protein 1c regulates mouse adiponectin expression. J. Biol. Chem. 279, 22108–22117 (2004).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Combs, T. P. et al. Induction of adipocyte complement-related protein of 30 kilodaltons by PPARγ agonists: a potential mechanism of insulin sensitization. Endocrinology 143, 998–1007 (2002).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Fasshauer, M., Klein, J., Neumann, S., Eszlinger, M. & Paschke, R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 290, 1084–1089 (2002).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Halleux, C. M. et al. Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue. Biochem. Biophys. Res. Commun. 288, 1102–1107 (2001).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Wang, Z. V. & Scherer, P. E. DsbA-L is a versatile player in adiponectin secretion. Proc. Natl Acad. Sci. USA 105, 18077–18078 (2008).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Kondo, H. et al. Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome. Diabetes 51, 2325–2328 (2002).

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Kadowaki, T. et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116, 1784–1792 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Pajvani, U. B. et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073–9085 (2003).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Holland, W. L. et al. Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol. Metab. 6, 267–275 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Tsuchida, A. et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J. Biol. Chem. 279, 30817–30822 (2004).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Hug, C. et al. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc. Natl Acad. Sci. USA 101, 10308–10313 (2004).

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Yamauchi, T., Iwabu, M., Okada-Iwabu, M. & Kadowaki, T. Adiponectin receptors: a review of their structure, function and how they work. Best. Pract. Res. Clin. Endocrinol. Metab. 28, 15–23 (2014).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  69. 69.

    Matsuda, K. et al. Positive feedback regulation between adiponectin and T-cadherin impacts adiponectin levels in tissue and plasma of male mice. Endocrinology 156, 934–946 (2015).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Kelesidis, I., Kelesidis, T. & Mantzoros, C. S. Adiponectin and cancer: a systematic review. Br. J. Cancer 94, 1221–1225 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Barb, D., Williams, C. J., Neuwirth, A. K. & Mantzoros, C. S. Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence. Am. J. Clin. Nutr. 86, s858–s866 (2007).

    PubMed  Article  Google Scholar 

  72. 72.

    Taliaferro-Smith, L. et al. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and inhibition of migration and invasion of breast cancer cells. Oncogene 28, 2621–2633 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Landskroner-Eiger, S. et al. Proangiogenic contribution of adiponectin toward mammary tumor growth in vivo. Clin. Cancer Res. 15, 3265–3276 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Denzel, M. S. et al. Adiponectin deficiency limits tumor vascularization in the MMTV-PyV-mT mouse model of mammary cancer. Clin. Cancer Res. 15, 3256–3264 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Masamoto, Y. et al. Adiponectin enhances antibacterial activity of hematopoietic cells by suppressing bone marrow inflammation. Immunity 44, 1422–1433 (2016).

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Mandal, P., Pratt, B. T., Barnes, M., McMullen, M. R. & Nagy, L. E. Molecular mechanism for adiponectin-dependent M2 macrophage polarization: link between the metabolic and innate immune activity of full-length adiponectin. J. Biol. Chem. 286, 13460–13469 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Ohashi, K. et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem. 285, 6153–6160 (2010).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Combs, T. P. et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145, 367–383 (2004).

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Marangoni, R. G. et al. Adiponectin is an endogenous anti-fibrotic mediator and therapeutic target. Sci. Rep. 7, 4397 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. 80.

    Wang, Y. et al. Adiponectin inhibits tumor necrosis factor-α-induced vascular inflammatory response via caveolin-mediated ceramidase recruitment and activation. Circ. Res. 114, 792–805 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Vasiliauskaité-Brooks, I. et al. Structure of a human intramembrane ceramidase explains enzymatic dysfunction found in leukodystrophy. Nat. Commun. 9, 5437 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. 82.

    Kupchak, B. R., Garitaonandia, I., Villa, N. Y., Smith, J. L. & Lyons, T. J. Antagonism of human adiponectin receptors and their membrane progesterone receptor paralogs by TNFα and a ceramidase inhibitor. Biochemistry 48, 5504–5506 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Sharma, A. X. & Holland, W. L. Adiponectin and its hydrolase-activated receptors. J. Nat. Sci. 3, e396 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Schmitz-Peiffer, C., Craig, D. L. & Biden, T. J. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J. Biol. Chem. 274, 24202–24210 (1999).

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Holland, W. L. & Summers, S. A. Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr. Rev. 29, 381–402 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Hosch, S. E., Olefsky, J. M. & Kim, J. J. APPLied mechanics: uncovering how adiponectin modulates insulin action. Cell Metab. 4, 5–6 (2006).

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Mao, X. et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat. Cell Biol. 8, 516–523 (2006).

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Mitsuuchi, Y. et al. Identification of a chromosome 3p14.3-21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2. Oncogene 18, 4891–4898 (1999).

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Zhou, L. et al. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. J. Biol. Chem. 284, 22426–22435 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Iwabu, M. et al. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature 464, 1313–1319 (2010).

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Cantó, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. 92.

    Awazawa, M. et al. Adiponectin suppresses hepatic SREBP1c expression in an AdipoR1/LKB1/AMPK dependent pathway. Biochem. Biophys. Res. Commun. 382, 51–56 (2009).

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Shibata, R. et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat. Med. 11, 1096–1103 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors were supported by US National Institutes of Health grants R01-DK55758, R01-DK099110, P01-DK088761 and P01-AG051459 as well as by an unrestricted Novo Nordisk Foundation grant (to P.E.S.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philipp E. Scherer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Straub, L.G., Scherer, P.E. Metabolic Messengers: adiponectin. Nat Metab 1, 334–339 (2019). https://doi.org/10.1038/s42255-019-0041-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing