Intestinal insulin/IGF1 signalling through FoxO1 regulates epithelial integrity and susceptibility to colon cancer


Obesity promotes the development of insulin resistance and increases the incidence of colitis-associated cancer (CAC), but whether a blunted insulin action specifically in intestinal epithelial cells (IECs) affects CAC is unknown. Here, we show that obesity impairs insulin sensitivity in IECs and that mice with IEC-specific inactivation of the insulin and IGF1 receptors exhibit enhanced CAC development as a consequence of impaired restoration of gut barrier function. Blunted insulin signalling retains the transcription factor FOXO1 in the nucleus to inhibit expression of Dsc3, thereby impairing desmosome formation and epithelial integrity. Both IEC-specific nuclear FoxO1ADA expression and IEC-specific Dsc3 inactivation recapitulate the impaired intestinal integrity and increased CAC burden. Spontaneous colonic tumour formation and compromised intestinal integrity are also observed upon IEC-specific coexpression of FoxO1ADA and a stable Myc variant, thus suggesting a molecular mechanism through which impaired insulin action and nuclear FOXO1 in IECs promotes CAC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Diet-induced obesity impairs insulin action in cIECs.
Fig. 2: Genetic blunting of insulin action in IECs via IR/IGF1R deficiency promotes CAC by impaired restoration of the gut barrier.
Fig. 3: Insulin-regulated gene expression via FOXO1 increases CAC.
Fig. 4: Deregulated Dsc3 expression in insulin-resistant tumours.
Fig. 5: Compromised desmosome formation in CAC of Ir/Igf1rIEC-KO and FoxO1ADAIEC mice.
Fig. 6: IEC-specific DSC3 inactivation promotes CAC.
Fig. 7: Genetic FOXO1 and MYC overactivation in IECs synergistically regulate colon tumorigenesis.
Fig. 8: Proposed model of how insulin resistance and nuclear FoxO1 impair gut barrier function to promote CAC.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files, or are available upon reasonable request to the authors. Microarray expression data for tumours of C57BL/6 NCD and C57BL/6 HFD mice are available at gene expression omnibus website ( with accession number GSE113303. Microarray expression data for tumours of FoxO1ADAFL and FoxO1ADAIEC mice are available with accession number GSE118639.


  1. 1.

    Calle, E. E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579–591 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    Hotamisligil, G. S. & Spiegelman, B. M. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 43, 1271–1278 (1994).

    CAS  Article  Google Scholar 

  3. 3.

    Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    CAS  Article  Google Scholar 

  4. 4.

    Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    Baltgalvis, K. A., Berger, F. G., Pena, M. M., Davis, J. M. & Carson, J. A. The interaction of a high-fat diet and regular moderate intensity exercise on intestinal polyp development in Apc Min/+mice. Cancer Prev. Res (Phila.) 2, 641–649 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    Schulz, M. D. et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 514, 508–512 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Wunderlich, C. M. et al. Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. Nat. Commun. 9, 1646 (2018).

    Article  Google Scholar 

  8. 8.

    Niessen, C. M. Tight junctions/adherens junctions: basic structure and function. J. Invest. Dermatol. 127, 2525–2532 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    Kowalczyk, A. P. & Green, K. J. Structure, function, and regulation of desmosomes. Prog. Mol. Biol. Transl. Sci. 116, 95–118 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Keku, T. O. et al. Insulin resistance, apoptosis, and colorectal adenoma risk. Cancer Epidemiol. Biomark. Prev. 14, 2076–2081 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    Santoro, M. A. et al. Reduced insulin-like growth factor I receptor and altered insulin receptor isoform mRNAs in normal mucosa predict colorectal adenoma risk. Cancer Epidemiol. Biomark. Prev. 23, 2093–2100 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Andres, S. F. et al. Insulin receptor isoform switching in intestinal stem cells, progenitors, differentiated lineages and tumors: evidence that IR-B limits proliferation. J. Cell. Sci. 126, 5645–5656 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Pierre-Eugene, C. et al. Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2. PLoS One 7, e41992 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    Jensen, S. R. et al. Elucidating the biological roles of insulin and its receptor in murine intestinal growth and function. Endocrinology 158, 2453–2469 (2017).

    Article  Google Scholar 

  15. 15.

    Bruning, J. C. et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559–569 (1998).

    CAS  Article  Google Scholar 

  16. 16.

    Kloting, N. et al. Autocrine IGF-1 action in adipocytes controls systemic IGF-1 concentrations and growth. Diabetes 57, 2074–2082 (2008).

    Article  Google Scholar 

  17. 17.

    Madison, B. B. et al. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem. 277, 33275–33283 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    Varewijck, A. J. & Janssen, J. A. Insulin and its analogues and their affinities for the IGF1 receptor. Endocr. Relat. Cancer 19, F63–F75 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Ussar, S. et al. Regulation of glucose uptake and enteroendocrine function by the intestinal epithelial insulin receptor. Diabetes 66, 886–896 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Neufert, C., Becker, C. & Neurath, M. F. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat. Protoc. 2, 1998–2004 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    Harbour, S. N., Maynard, C. L., Zindl, C. L., Schoeb, T. R. & Weaver, C. T. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc. Natl Acad. Sci. USA 112, 7061–7066 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Khounlotham, M. et al. Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. Immunity 37, 563–573 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Edelblum, K. L. et al. The microbiome activates CD4 T-cell-mediated Immunity to compensate for increased intestinal permeability. Cell. Mol. Gastroenterol. Hepatol. 4, 285–297 (2017).

    Article  Google Scholar 

  24. 24.

    Laukoetter, M. G. et al. JAM-A regulates permeability and inflammation in the intestine in vivo. J. Exp. Med. 204, 3067–3076 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    Cao, A. T., Yao, S., Gong, B., Elson, C. O. & Cong, Y. Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis. J. Immunol. 189, 4666–4673 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Accili, D. & Arden, K. C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    Matsuzaki, H., Daitoku, H., Hatta, M., Tanaka, K. & Fukamizu, A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc. Natl Acad. Sci. USA 100, 11285–11290 (2003).

    CAS  Article  Google Scholar 

  28. 28.

    Talchai, C., Xuan, S., Kitamura, T., DePinho, R. A. & Accili, D. Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat. Genet. 44, 406–412 (2012). S401.

    CAS  Article  Google Scholar 

  29. 29.

    Bouchi, R. et al. FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures. Nat. Commun. 5, 4242 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Stohr, O. et al. Insulin receptor signaling mediates APP processing and beta-amyloid accumulation without altering survival in a transgenic mouse model of Alzheimer’s disease. Age (Dordr.) 35, 83–101 (2013).

    Article  Google Scholar 

  31. 31.

    Rietscher, K. et al. Growth retardation, loss of desmosomal adhesion, and impaired tight junction function identify a unique role of plakophilin 1 in vivo. J. Invest. Dermatol. 136, 1471–1478 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Khan, K. et al. Desmocollin switching in colorectal cancer. Br. J. Cancer 95, 1367–1370 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    Spindler, V. et al. Loss of desmoglein 2 contributes to the pathogenesis of Crohn’s disease. Inflamm. Bowel Dis. 21, 2349–2359 (2015).

    PubMed  Google Scholar 

  34. 34.

    Gross, A. et al. Desmoglein 2, but not desmocollin 2, protects intestinal epithelia from injury. Mucosal Immunol. (2018).

  35. 35.

    Taddei, A. et al. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat. Cell Biol. 10, 923–934 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    Barmeyer, C. et al. Epithelial barrier dysfunction in lymphocytic colitis through cytokine-dependent internalization of claudin-5 and -8. J. Gastroenterol. 52, 1090–1100 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Carnahan, R. H., Rokas, A., Gaucher, E. A. & Reynolds, A. B. The molecular evolution of the p120-catenin subfamily and its functional associations. PLoS One 5, e15747 (2010).

    CAS  Article  Google Scholar 

  38. 38.

    Peifer, M., McCrea, P. D., Green, K. J., Wieschaus, E. & Gumbiner, B. M. The vertebrate adhesive junction proteins beta-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar properties. J. Cell. Biol. 118, 681–691 (1992).

    CAS  Article  Google Scholar 

  39. 39.

    Bornslaeger, E. A., Corcoran, C. M., Stappenbeck, T. S. & Green, K. J. Breaking the connection: displacement of the desmosomal plaque protein desmoplakin from cell-cell interfaces disrupts anchorage of intermediate filament bundles and alters intercellular junction assembly. J. Cell. Biol. 134, 985–1001 (1996).

    CAS  Article  Google Scholar 

  40. 40.

    Gallicano, G. I. et al. Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage. J. Cell. Biol. 143, 2009–2022 (1998).

    CAS  Article  Google Scholar 

  41. 41.

    Den, Z., Cheng, X., Merched-Sauvage, M. & Koch, P. J. Desmocollin 3 is required for pre-implantation development of the mouse embryo. J. Cell. Sci. 119, 482–489 (2006).

    CAS  Article  Google Scholar 

  42. 42.

    Xie, L. et al. FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood 119, 3503–3511 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    Hornsveld, M., Dansen, T. B., Derksen, P. W. & Burgering, B. M. T. Re-evaluating the role of FOXOs in cancer. Semin Cancer Biol, (2017).

  44. 44.

    Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    Sander, S. et al. Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. Cancer Cell 22, 167–179 (2012).

    CAS  Article  Google Scholar 

  46. 46.

    Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    CAS  Article  Google Scholar 

  47. 47.

    Sikora, K. Biochemical and immunologic diagnosis of cancer. Molecular probes and tumors in general. Tumour Biol. 8, 166–169 (1987).

    CAS  Article  Google Scholar 

  48. 48.

    Yokota, J., Tsunetsugu-Yokota, Y., Battifora, H., Le Fevre, C. & Cline, M. J. Alterations of myc, myb, and rasHa proto-oncogenes in cancers are frequent and show clinical correlation. Science 231, 261–265 (1986).

    CAS  Article  Google Scholar 

  49. 49.

    He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    CAS  Article  Google Scholar 

  50. 50.

    Gregory, M. A., Qi, Y. & Hann, S. R. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J. Biol. Chem. 278, 51606–51612 (2003).

    CAS  Article  Google Scholar 

  51. 51.

    Wang, X. et al. Phosphorylation regulates c-Myc’s oncogenic activity in the mammary gland. Cancer Res. 71, 925–936 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    Bennecke, M. et al. Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer Cell 18, 135–146 (2010).

    CAS  Article  Google Scholar 

  53. 53.

    Bouchard, C., Marquardt, J., Bras, A., Medema, R. H. & Eilers, M. Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO J. 23, 2830–2840 (2004).

    CAS  Article  Google Scholar 

  54. 54.

    Bouchard, C. et al. FoxO transcription factors suppress Myc-driven lymphomagenesis via direct activation of Arf. Genes Dev. 21, 2775–2787 (2007).

    CAS  Article  Google Scholar 

  55. 55.

    Bhaskaran, K. et al. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. Lancet 384, 755–765 (2014).

    Article  Google Scholar 

  56. 56.

    Olivo-Marston, S. E. et al. Effects of calorie restriction and diet-induced obesity on murine colon carcinogenesis, growth and inflammatory factors, and microRNA expression. PLoS One 9, e94765 (2014).

    Article  Google Scholar 

  57. 57.

    Xu, J. et al. The impact of dietary energy intake early in life on the colonic microbiota of adult mice. Sci. Rep. 6, 19083 (2016).

    CAS  Article  Google Scholar 

  58. 58.

    Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58 (2016).

    CAS  Article  Google Scholar 

  59. 59.

    Yassin, M. et al. Rectal insulin instillation inhibits inflammation and tumor development in chemically-induced colitis. J. Crohns Colitis (2018).

    Article  PubMed  Google Scholar 

  60. 60.

    Gregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y. & Wrana, J. L. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature 526, 715–718 (2015).

    CAS  Article  Google Scholar 

  61. 61.

    Yui, S. et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49 e37 (2018).

    CAS  Article  Google Scholar 

  62. 62.

    Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    CAS  Article  Google Scholar 

  63. 63.

    Sun, R. C. et al. Both epidermal growth factor and insulin-like growth factor receptors are dispensable for structural intestinal adaptation. J. Pediatr. Surg. 50, 943–947 (2015).

    Article  Google Scholar 

  64. 64.

    Mah, A. T., Van Landeghem, L., Gavin, H. E., Magness, S. T. & Lund, P. K. Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1. Endocrinology 155, 3302–3314 (2014).

    Article  Google Scholar 

  65. 65.

    Schlegel, N. et al. Desmoglein 2-mediated adhesion is required for intestinal epithelial barrier integrity. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G774–G783 (2010).

    CAS  Article  Google Scholar 

  66. 66.

    Chun, M. G. & Hanahan, D. Genetic deletion of the desmosomal component desmoplakin promotes tumor microinvasion in a mouse model of pancreatic neuroendocrine carcinogenesis. PLoS Genet. 6, e1001120 (2010).

    Article  Google Scholar 

  67. 67.

    Cui, T. et al. DSC3 expression is regulated by p53, and methylation of DSC3 DNA is a prognostic marker in human colorectal cancer. Br. J. Cancer 104, 1013–1019 (2011).

    CAS  Article  Google Scholar 

  68. 68.

    Hardman, M. J. et al. Desmosomal cadherin misexpression alters beta-catenin stability and epidermal differentiation. Mol. Cell. Biol. 25, 969–978 (2005).

    CAS  Article  Google Scholar 

  69. 69.

    Oving, I. M. & Clevers, H. C. Molecular causes of colon cancer. Eur. J. Clin. Invest. 32, 448–457 (2002).

    CAS  Article  Google Scholar 

  70. 70.

    Beeken, R. J. et al. The impact of diet-induced weight loss on biomarkers for colorectal cancer: an exploratory study (INTERCEPT). Obes. (Silver Spring). 25(Suppl 2), S95–S101 (2017).

    CAS  Article  Google Scholar 

  71. 71.

    Chen, J., Den, Z. & Koch, P. J. Loss of desmocollin 3 in mice leads to epidermal blistering. J. Cell. Sci. 121, 2844–2849 (2008).

    CAS  Article  Google Scholar 

  72. 72.

    Reissig, S., Hackenbruch, C. & Hovelmeyer, N. Isolation of T cells from the gut. Methods Mol. Biol. 1193, 21–25 (2014).

    CAS  Article  Google Scholar 

  73. 73.

    Baron, J. H., Connell, A. M. & Lennard-Jones, J. E. Variation between observers in describing mucosal appearances in proctocolitis. Br. Med. J. 1, 89–92 (1964).

    CAS  Article  Google Scholar 

  74. 74.

    Croswell, A., Amir, E., Teggatz, P., Barman, M. & Salzman, N. H. Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection. Infect. Immun. 77, 2741–2753 (2009).

    CAS  Article  Google Scholar 

  75. 75.

    Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    CAS  Article  Google Scholar 

  76. 76.

    Becker, C. et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J. Clin. Invest. 112, 693–706 (2003).

    CAS  Article  Google Scholar 

  77. 77.

    Gitter, A. H., Schulzke, J. D., Sorgenfrei, D. & Fromm, M. Ussing chamber for high-frequency transmural impedance analysis of epithelial tissues. J. Biochem. Biophys. Methods 35, 81–88 (1997).

    CAS  Article  Google Scholar 

  78. 78.

    Fromm, M., Schulzke, J. D. & Hegel, U. Epithelial and subepithelial contributions to transmural electrical resistance of intact rat jejunum, in vitro. Pflug. Arch. 405, 400–402 (1985).

    CAS  Article  Google Scholar 

Download references


A.L.O. was supported by the Cologne CECAD graduate school of ageing, the MPI for Metabolism research and received a ‘Köln Fortune’ grant from the medical faculty of the University of Cologne. FTW received grants from CECAD and from an associated project of the SFB670 funded by the DFG. C.M.W. was supported by CMMC grant of JCB. RCS received support from R01 CA129040. We are grateful for technical assistance from A. Lietzau, C. Baitzel, H. Krämer, P. Scholl, N. Spenrath, C. Schäfer, B. Hampel, A. Fromm and I.-F. Lee. We thank H. Fenselau for critical proofreading.

Author information




A.L.O., C.M.W., L.S., M.A.W., A.N. and N.H. performed experiments and analysed data. M.C.V. and P.F. helped with microarray analysis. B.M. and A.S. helped with electron microscopy. D.G. performed Ussing chamber experiments. B.F.B., R.C.S. and P.J.K. provided conditional mouse strains. C.M.N., P.J.K. and J.C.B. provided expertise and essential materials. A.L.O. and F.T.W. designed experiments and wrote the paper.

Corresponding author

Correspondence to F. T. Wunderlich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9 and Supplementary Tables 1–3

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ostermann, A.L., Wunderlich, C.M., Schneiders, L. et al. Intestinal insulin/IGF1 signalling through FoxO1 regulates epithelial integrity and susceptibility to colon cancer. Nat Metab 1, 371–389 (2019).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing