Article | Published:

Intestinal insulin/IGF1 signalling through FoxO1 regulates epithelial integrity and susceptibility to colon cancer

Nature Metabolismvolume 1pages371389 (2019) | Download Citation


Obesity promotes the development of insulin resistance and increases the incidence of colitis-associated cancer (CAC), but whether a blunted insulin action specifically in intestinal epithelial cells (IECs) affects CAC is unknown. Here, we show that obesity impairs insulin sensitivity in IECs and that mice with IEC-specific inactivation of the insulin and IGF1 receptors exhibit enhanced CAC development as a consequence of impaired restoration of gut barrier function. Blunted insulin signalling retains the transcription factor FOXO1 in the nucleus to inhibit expression of Dsc3, thereby impairing desmosome formation and epithelial integrity. Both IEC-specific nuclear FoxO1ADA expression and IEC-specific Dsc3 inactivation recapitulate the impaired intestinal integrity and increased CAC burden. Spontaneous colonic tumour formation and compromised intestinal integrity are also observed upon IEC-specific coexpression of FoxO1ADA and a stable Myc variant, thus suggesting a molecular mechanism through which impaired insulin action and nuclear FOXO1 in IECs promotes CAC.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files, or are available upon reasonable request to the authors. Microarray expression data for tumours of C57BL/6 NCD and C57BL/6 HFD mice are available at gene expression omnibus website ( with accession number GSE113303. Microarray expression data for tumours of FoxO1ADAFL and FoxO1ADAIEC mice are available with accession number GSE118639.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Calle, E. E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579–591 (2004).

  2. 2.

    Hotamisligil, G. S. & Spiegelman, B. M. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 43, 1271–1278 (1994).

  3. 3.

    Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

  4. 4.

    Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

  5. 5.

    Baltgalvis, K. A., Berger, F. G., Pena, M. M., Davis, J. M. & Carson, J. A. The interaction of a high-fat diet and regular moderate intensity exercise on intestinal polyp development in Apc Min/+mice. Cancer Prev. Res (Phila.) 2, 641–649 (2009).

  6. 6.

    Schulz, M. D. et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 514, 508–512 (2014).

  7. 7.

    Wunderlich, C. M. et al. Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. Nat. Commun. 9, 1646 (2018).

  8. 8.

    Niessen, C. M. Tight junctions/adherens junctions: basic structure and function. J. Invest. Dermatol. 127, 2525–2532 (2007).

  9. 9.

    Kowalczyk, A. P. & Green, K. J. Structure, function, and regulation of desmosomes. Prog. Mol. Biol. Transl. Sci. 116, 95–118 (2013).

  10. 10.

    Keku, T. O. et al. Insulin resistance, apoptosis, and colorectal adenoma risk. Cancer Epidemiol. Biomark. Prev. 14, 2076–2081 (2005).

  11. 11.

    Santoro, M. A. et al. Reduced insulin-like growth factor I receptor and altered insulin receptor isoform mRNAs in normal mucosa predict colorectal adenoma risk. Cancer Epidemiol. Biomark. Prev. 23, 2093–2100 (2014).

  12. 12.

    Andres, S. F. et al. Insulin receptor isoform switching in intestinal stem cells, progenitors, differentiated lineages and tumors: evidence that IR-B limits proliferation. J. Cell. Sci. 126, 5645–5656 (2013).

  13. 13.

    Pierre-Eugene, C. et al. Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2. PLoS One 7, e41992 (2012).

  14. 14.

    Jensen, S. R. et al. Elucidating the biological roles of insulin and its receptor in murine intestinal growth and function. Endocrinology 158, 2453–2469 (2017).

  15. 15.

    Bruning, J. C. et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559–569 (1998).

  16. 16.

    Kloting, N. et al. Autocrine IGF-1 action in adipocytes controls systemic IGF-1 concentrations and growth. Diabetes 57, 2074–2082 (2008).

  17. 17.

    Madison, B. B. et al. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem. 277, 33275–33283 (2002).

  18. 18.

    Varewijck, A. J. & Janssen, J. A. Insulin and its analogues and their affinities for the IGF1 receptor. Endocr. Relat. Cancer 19, F63–F75 (2012).

  19. 19.

    Ussar, S. et al. Regulation of glucose uptake and enteroendocrine function by the intestinal epithelial insulin receptor. Diabetes 66, 886–896 (2017).

  20. 20.

    Neufert, C., Becker, C. & Neurath, M. F. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat. Protoc. 2, 1998–2004 (2007).

  21. 21.

    Harbour, S. N., Maynard, C. L., Zindl, C. L., Schoeb, T. R. & Weaver, C. T. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc. Natl Acad. Sci. USA 112, 7061–7066 (2015).

  22. 22.

    Khounlotham, M. et al. Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. Immunity 37, 563–573 (2012).

  23. 23.

    Edelblum, K. L. et al. The microbiome activates CD4 T-cell-mediated Immunity to compensate for increased intestinal permeability. Cell. Mol. Gastroenterol. Hepatol. 4, 285–297 (2017).

  24. 24.

    Laukoetter, M. G. et al. JAM-A regulates permeability and inflammation in the intestine in vivo. J. Exp. Med. 204, 3067–3076 (2007).

  25. 25.

    Cao, A. T., Yao, S., Gong, B., Elson, C. O. & Cong, Y. Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis. J. Immunol. 189, 4666–4673 (2012).

  26. 26.

    Accili, D. & Arden, K. C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004).

  27. 27.

    Matsuzaki, H., Daitoku, H., Hatta, M., Tanaka, K. & Fukamizu, A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc. Natl Acad. Sci. USA 100, 11285–11290 (2003).

  28. 28.

    Talchai, C., Xuan, S., Kitamura, T., DePinho, R. A. & Accili, D. Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat. Genet. 44, 406–412 (2012). S401.

  29. 29.

    Bouchi, R. et al. FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures. Nat. Commun. 5, 4242 (2014).

  30. 30.

    Stohr, O. et al. Insulin receptor signaling mediates APP processing and beta-amyloid accumulation without altering survival in a transgenic mouse model of Alzheimer’s disease. Age (Dordr.) 35, 83–101 (2013).

  31. 31.

    Rietscher, K. et al. Growth retardation, loss of desmosomal adhesion, and impaired tight junction function identify a unique role of plakophilin 1 in vivo. J. Invest. Dermatol. 136, 1471–1478 (2016).

  32. 32.

    Khan, K. et al. Desmocollin switching in colorectal cancer. Br. J. Cancer 95, 1367–1370 (2006).

  33. 33.

    Spindler, V. et al. Loss of desmoglein 2 contributes to the pathogenesis of Crohn’s disease. Inflamm. Bowel Dis. 21, 2349–2359 (2015).

  34. 34.

    Gross, A. et al. Desmoglein 2, but not desmocollin 2, protects intestinal epithelia from injury. Mucosal Immunol. (2018).

  35. 35.

    Taddei, A. et al. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat. Cell Biol. 10, 923–934 (2008).

  36. 36.

    Barmeyer, C. et al. Epithelial barrier dysfunction in lymphocytic colitis through cytokine-dependent internalization of claudin-5 and -8. J. Gastroenterol. 52, 1090–1100 (2017).

  37. 37.

    Carnahan, R. H., Rokas, A., Gaucher, E. A. & Reynolds, A. B. The molecular evolution of the p120-catenin subfamily and its functional associations. PLoS One 5, e15747 (2010).

  38. 38.

    Peifer, M., McCrea, P. D., Green, K. J., Wieschaus, E. & Gumbiner, B. M. The vertebrate adhesive junction proteins beta-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar properties. J. Cell. Biol. 118, 681–691 (1992).

  39. 39.

    Bornslaeger, E. A., Corcoran, C. M., Stappenbeck, T. S. & Green, K. J. Breaking the connection: displacement of the desmosomal plaque protein desmoplakin from cell-cell interfaces disrupts anchorage of intermediate filament bundles and alters intercellular junction assembly. J. Cell. Biol. 134, 985–1001 (1996).

  40. 40.

    Gallicano, G. I. et al. Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage. J. Cell. Biol. 143, 2009–2022 (1998).

  41. 41.

    Den, Z., Cheng, X., Merched-Sauvage, M. & Koch, P. J. Desmocollin 3 is required for pre-implantation development of the mouse embryo. J. Cell. Sci. 119, 482–489 (2006).

  42. 42.

    Xie, L. et al. FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood 119, 3503–3511 (2012).

  43. 43.

    Hornsveld, M., Dansen, T. B., Derksen, P. W. & Burgering, B. M. T. Re-evaluating the role of FOXOs in cancer. Semin Cancer Biol, (2017).

  44. 44.

    Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

  45. 45.

    Sander, S. et al. Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. Cancer Cell 22, 167–179 (2012).

  46. 46.

    Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

  47. 47.

    Sikora, K. Biochemical and immunologic diagnosis of cancer. Molecular probes and tumors in general. Tumour Biol. 8, 166–169 (1987).

  48. 48.

    Yokota, J., Tsunetsugu-Yokota, Y., Battifora, H., Le Fevre, C. & Cline, M. J. Alterations of myc, myb, and rasHa proto-oncogenes in cancers are frequent and show clinical correlation. Science 231, 261–265 (1986).

  49. 49.

    He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

  50. 50.

    Gregory, M. A., Qi, Y. & Hann, S. R. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J. Biol. Chem. 278, 51606–51612 (2003).

  51. 51.

    Wang, X. et al. Phosphorylation regulates c-Myc’s oncogenic activity in the mammary gland. Cancer Res. 71, 925–936 (2011).

  52. 52.

    Bennecke, M. et al. Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer Cell 18, 135–146 (2010).

  53. 53.

    Bouchard, C., Marquardt, J., Bras, A., Medema, R. H. & Eilers, M. Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO J. 23, 2830–2840 (2004).

  54. 54.

    Bouchard, C. et al. FoxO transcription factors suppress Myc-driven lymphomagenesis via direct activation of Arf. Genes Dev. 21, 2775–2787 (2007).

  55. 55.

    Bhaskaran, K. et al. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. Lancet 384, 755–765 (2014).

  56. 56.

    Olivo-Marston, S. E. et al. Effects of calorie restriction and diet-induced obesity on murine colon carcinogenesis, growth and inflammatory factors, and microRNA expression. PLoS One 9, e94765 (2014).

  57. 57.

    Xu, J. et al. The impact of dietary energy intake early in life on the colonic microbiota of adult mice. Sci. Rep. 6, 19083 (2016).

  58. 58.

    Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58 (2016).

  59. 59.

    Yassin, M. et al. Rectal insulin instillation inhibits inflammation and tumor development in chemically-induced colitis. J. Crohns Colitis (2018).

  60. 60.

    Gregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y. & Wrana, J. L. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature 526, 715–718 (2015).

  61. 61.

    Yui, S. et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49 e37 (2018).

  62. 62.

    Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

  63. 63.

    Sun, R. C. et al. Both epidermal growth factor and insulin-like growth factor receptors are dispensable for structural intestinal adaptation. J. Pediatr. Surg. 50, 943–947 (2015).

  64. 64.

    Mah, A. T., Van Landeghem, L., Gavin, H. E., Magness, S. T. & Lund, P. K. Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1. Endocrinology 155, 3302–3314 (2014).

  65. 65.

    Schlegel, N. et al. Desmoglein 2-mediated adhesion is required for intestinal epithelial barrier integrity. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G774–G783 (2010).

  66. 66.

    Chun, M. G. & Hanahan, D. Genetic deletion of the desmosomal component desmoplakin promotes tumor microinvasion in a mouse model of pancreatic neuroendocrine carcinogenesis. PLoS Genet. 6, e1001120 (2010).

  67. 67.

    Cui, T. et al. DSC3 expression is regulated by p53, and methylation of DSC3 DNA is a prognostic marker in human colorectal cancer. Br. J. Cancer 104, 1013–1019 (2011).

  68. 68.

    Hardman, M. J. et al. Desmosomal cadherin misexpression alters beta-catenin stability and epidermal differentiation. Mol. Cell. Biol. 25, 969–978 (2005).

  69. 69.

    Oving, I. M. & Clevers, H. C. Molecular causes of colon cancer. Eur. J. Clin. Invest. 32, 448–457 (2002).

  70. 70.

    Beeken, R. J. et al. The impact of diet-induced weight loss on biomarkers for colorectal cancer: an exploratory study (INTERCEPT). Obes. (Silver Spring). 25(Suppl 2), S95–S101 (2017).

  71. 71.

    Chen, J., Den, Z. & Koch, P. J. Loss of desmocollin 3 in mice leads to epidermal blistering. J. Cell. Sci. 121, 2844–2849 (2008).

  72. 72.

    Reissig, S., Hackenbruch, C. & Hovelmeyer, N. Isolation of T cells from the gut. Methods Mol. Biol. 1193, 21–25 (2014).

  73. 73.

    Baron, J. H., Connell, A. M. & Lennard-Jones, J. E. Variation between observers in describing mucosal appearances in proctocolitis. Br. Med. J. 1, 89–92 (1964).

  74. 74.

    Croswell, A., Amir, E., Teggatz, P., Barman, M. & Salzman, N. H. Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection. Infect. Immun. 77, 2741–2753 (2009).

  75. 75.

    Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

  76. 76.

    Becker, C. et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J. Clin. Invest. 112, 693–706 (2003).

  77. 77.

    Gitter, A. H., Schulzke, J. D., Sorgenfrei, D. & Fromm, M. Ussing chamber for high-frequency transmural impedance analysis of epithelial tissues. J. Biochem. Biophys. Methods 35, 81–88 (1997).

  78. 78.

    Fromm, M., Schulzke, J. D. & Hegel, U. Epithelial and subepithelial contributions to transmural electrical resistance of intact rat jejunum, in vitro. Pflug. Arch. 405, 400–402 (1985).

Download references


A.L.O. was supported by the Cologne CECAD graduate school of ageing, the MPI for Metabolism research and received a ‘Köln Fortune’ grant from the medical faculty of the University of Cologne. FTW received grants from CECAD and from an associated project of the SFB670 funded by the DFG. C.M.W. was supported by CMMC grant of JCB. RCS received support from R01 CA129040. We are grateful for technical assistance from A. Lietzau, C. Baitzel, H. Krämer, P. Scholl, N. Spenrath, C. Schäfer, B. Hampel, A. Fromm and I.-F. Lee. We thank H. Fenselau for critical proofreading.

Author information

Author notes

    • B. F. Belgardt

    Present address: German Diabetes Center (DDZ), Düsseldorf, Germany


  1. Max Planck Institute for Metabolism Research, Cologne, Germany

    • A. L. Ostermann
    • , C. M. Wunderlich
    • , L. Schneiders
    • , M. C. Vogt
    • , M. A. Woeste
    • , B. F. Belgardt
    • , J. C. Brüning
    •  & F. T. Wunderlich
  2. Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany

    • A. L. Ostermann
    • , C. M. Wunderlich
    • , C. M. Niessen
    • , B. Martiny
    • , A. C. Schauss
    • , P. Frommolt
    • , J. C. Brüning
    •  & F. T. Wunderlich
  3. Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany

    • A. L. Ostermann
    • , C. M. Wunderlich
    • , J. C. Brüning
    •  & F. T. Wunderlich
  4. Center for Molecular Medicine Cologne (CMMC), Cologne, Germany

    • C. M. Wunderlich
    • , C. M. Niessen
    •  & J. C. Brüning
  5. Institute for Molecular Medicine, University Hospital Mainz, Mainz, Germany

    • A. Nikolaev
    •  & N. Hövelmeyer
  6. Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, OR, USA

    • R. C. Sears
  7. Department of Dermatology, Charles C. Gates Regenerative Medicine and Stem Cell Biology Program, University of Colorado Denver, Aurora, CO, USA

    • P. J. Koch
  8. Institute for Clinical Physiology, Charité, Berlin, Germany

    • D. Günzel


  1. Search for A. L. Ostermann in:

  2. Search for C. M. Wunderlich in:

  3. Search for L. Schneiders in:

  4. Search for M. C. Vogt in:

  5. Search for M. A. Woeste in:

  6. Search for B. F. Belgardt in:

  7. Search for C. M. Niessen in:

  8. Search for B. Martiny in:

  9. Search for A. C. Schauss in:

  10. Search for P. Frommolt in:

  11. Search for A. Nikolaev in:

  12. Search for N. Hövelmeyer in:

  13. Search for R. C. Sears in:

  14. Search for P. J. Koch in:

  15. Search for D. Günzel in:

  16. Search for J. C. Brüning in:

  17. Search for F. T. Wunderlich in:


A.L.O., C.M.W., L.S., M.A.W., A.N. and N.H. performed experiments and analysed data. M.C.V. and P.F. helped with microarray analysis. B.M. and A.S. helped with electron microscopy. D.G. performed Ussing chamber experiments. B.F.B., R.C.S. and P.J.K. provided conditional mouse strains. C.M.N., P.J.K. and J.C.B. provided expertise and essential materials. A.L.O. and F.T.W. designed experiments and wrote the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to F. T. Wunderlich.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–9 and Supplementary Tables 1–3

  2. Reporting Summary

About this article

Publication history