Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic signatures of cancer cells and stem cells

Abstract

In contrast to terminally differentiated cells, cancer cells and stem cells retain the ability to re-enter the cell cycle and proliferate. To proliferate, cells must increase their uptake and catabolism of nutrients to support anabolic cell growth. Intermediates of central metabolic pathways have emerged as key players that influence cell-differentiation ‘decisions’, processes relevant to both oncogenesis and normal development. Consequently, how cells rewire metabolic pathways to support proliferation can have profound consequences for cellular identity. Here, we discuss the metabolic programs that support proliferation, and we explore how metabolic states are intimately entwined with the cell-fate decisions that characterize stem cells and cancer cells. By comparing the metabolism of pluripotent stem cells and cancer cells, we hope to illuminate common metabolic strategies as well as distinct metabolic features that may represent specialized adaptations to unique cellular demands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glucose and glutamine are critical inputs in major anabolic pathways.
Fig. 2: Metabolic strategies used by cancer cells and pluripotent stem cells.
Fig. 3: Metabolic regulation of chromatin marks.
Fig. 4: Metabolic control of differentiation in stem cells and cancer cells.

Similar content being viewed by others

References

  1. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  Google Scholar 

  2. Beaudin, A. E. & Stover, P. J. Insights into metabolic mechanisms underlying folate-responsive neural tube defects: a minireview. Birth Defects Res. A. Clin. Mol. Teratol. 85, 274–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luengo, A., Gui, D. Y. & Vander Heiden, M. G. Targeting metabolism for cancer therapy. Cell Chem. Biol. 24, 1161–1180 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kong, H. & Chandel, N. S. Regulation of redox balance in cancer and T cells. J. Biol. Chem. 293, 7499–7507 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Chantranupong, L., Wolfson, R. L. & Sabatini, D. M. Nutrient-sensing mechanisms across evolution. Cell 161, 67–83 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schvartzman, J. M., Thompson, C. B. & Finley, L. W. S. Metabolic regulation of chromatin modifications and gene expression. J. Cell Biol. 217, 2247–2259 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weinberger, L., Ayyash, M., Novershtern, N. & Hanna, J. H. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 17, 155–169 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Martello, G. & Smith, A. The nature of embryonic stem cells. Annu. Rev. Cell Dev. Biol. 30, 647–675 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Fan, J. et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 9, 712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hosios, A. M. et al. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev. Cell 36, 540–549 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  14. Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Tohyama, S. et al. Glutamine oxidation is indispensable for survival of human pluripotent stem cells. Cell Metab. 23, 663–674 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Boroughs, L. K. & DeBerardinis, R. J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351–359 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chung, S. et al. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 4(Suppl. 1), S60–S67 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou, W. et al. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 31, 2103–2116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, J. et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 30, 4860–4873 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gu, W. et al. Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell 19, 476–490 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moussaieff, A. et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 21, 392–402 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Cliff, T. S. et al. MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux. Cell Stem Cell 21, 502–516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Folmes, C. D. et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14, 264–271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Panopoulos, A. D. et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 22, 168–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Mathieu, J. et al. Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell 14, 592–605 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, H. et al. Core pluripotency factors directly regulate metabolism in embryonic stem cell to maintain pluripotency. Stem Cells 33, 2699–2711 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Liberti, M. V. & Locasale, J. W. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211–218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Prigione, A., Fauler, B., Lurz, R., Lehrach, H. & Adjaye, J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28, 721–733 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. St John, J. C. et al. The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 7, 141–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, H. et al. Distinct metabolic states can support self-renewal and lipogenesis in human pluripotent stem cells under different culture conditions. Cell Rep. 16, 1536–1547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. TeSlaa, T. et al. α-Ketoglutarate accelerates the initial differentiation of primed human pluripotent stem cells. Cell Metab. 24, 485–493 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 162, 452–453 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carbognin, E., Betto, R. M., Soriano, M. E., Smith, A. G. & Martello, G. Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naive pluripotency. EMBO J. 35, 618–634 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Setoguchi, K., TeSlaa, T., Koehler, C. M. & Teitell, M. A. P53 regulates rapid apoptosis in human pluripotent stem cells. J. Mol. Biol. 428, 1465–1475 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Madden, D. T., Davila-Kruger, D., Melov, S. & Bredesen, D. E. Human embryonic stem cells express elevated levels of multiple pro-apoptotic BCL-2 family members. PLoS One 6, e28530 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yanes, O. et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nat. Chem. Biol. 6, 411–417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Muir, A., Danai, L. V. & Vander Heiden, M. G. Microenvironmental regulation of cancer cell metabolism: implications for experimental design and translational studies. Dis. Model Mech. 11, dmm035758 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Marin-Valencia, I. et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 15, 827–837 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davidson, S. M. et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hensley, C. T. et al. Metabolic heterogeneity in human lung tumors. Cell 164, 681–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Courtney, K. D. et al. Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation In Vivo. Cell Metab. 28, 793–800.e2 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tardito, S. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17, 1556–1568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Muir, A. et al. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. eLife 6, e27713 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371.e359 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Comerford, S. A. et al. Acetate dependence of tumors. Cell 159, 1591–1602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mashimo, T. et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603–1614 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mayers, J. R. et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353, 1161–1165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yuneva, M. O. et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, J. et al. LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell 19, 66–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Shyh-Chang, N. et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222–226 (2013).

    Article  PubMed  CAS  Google Scholar 

  52. Wang, J. et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science 325, 435–439 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Palm, W. & Thompson, C. B. Nutrient acquisition strategies of mammalian cells. Nature 546, 234–242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, J. et al. Metabolism in pluripotent stem cells and early mammalian development. Cell Metab. 27, 332–338 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Tang, F. et al. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell 6, 468–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaneko, K. J. Metabolism of preimplantation embryo development: a bystander or an active participant? Curr. Top. Dev. Biol. 120, 259–310 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Houghton, F. D., Thompson, J. G., Kennedy, C. J. & Leese, H. J. Oxygen consumption and energy metabolism of the early mouse embryo. Mol. Reprod. Dev. 44, 476–485 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Houghton, F. D. Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation 74, 11–18 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Brinster, R. L. Effect of glutathione on the development of two-cell mouse embryos in vitro. J. Reprod. Fertil. 17, 521–525 (1968).

    Article  CAS  PubMed  Google Scholar 

  60. Cholewa, J. A. & Whitten, W. K. Development of two-cell mouse embryos in the absence of a fixed-nitrogen source. J. Reprod. Fertil. 22, 553–555 (1970).

    Article  CAS  PubMed  Google Scholar 

  61. Stine, Z. E., Walton, Z. E., Altman, B. J., Hsieh, A. L. & Dang, C. V. MYC, metabolism, and cancer. Cancer Discov. 5, 1024–1039 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kruiswijk, F., Labuschagne, C. F. & Vousden, K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16, 393–405 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Scognamiglio, R. et al. Myc depletion induces a pluripotent dormant state mimicking diapause. Cell 164, 668–680 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bulut-Karslioglu, A. et al. Inhibition of mTOR induces a paused pluripotent state. Nature 540, 119–123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Merkle, F. T. et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 545, 229–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hanna, J. et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462, 595–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Paling, N. R., Wheadon, H., Bone, H. K. & Welham, M. J. Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J. Biol. Chem. 279, 48063–48070 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Watanabe, S. et al. Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene 25, 2697–2707 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reid, M. A., Dai, Z. & Locasale, J. W. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19, 1298–1306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Su, X., Wellen, K. E. & Rabinowitz, J. D. Metabolic control of methylation and acetylation. Curr. Opin. Chem. Biol. 30, 52–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Tessarz, P. & Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703–708 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Sivanand, S., Viney, I. & Wellen, K. E. Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation. Trends Biochem. Sci. 43, 61–74 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sutendra, G. et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Sivanand, S. et al. Nuclear acetyl-CoA production by ACLY promotes homologous recombination. Mol. Cell 67, 252–265.e256 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nagaraj, R. et al. Nuclear localization of mitochondrial TCA cycle enzymes as a critical step in mammalian zygotic genome activation. Cell 168, 210–223.e211 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee, J. V. et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20, 306–319 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cai, L., Sutter, B. M., Li, B. & Tu, B. P. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426–437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sebastián, C. et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151, 1185–1199 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zhong, L. et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 140, 280–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang, J. et al. Inhibiting histone deacetylases suppresses glucose metabolism and hepatocellular carcinoma growth by restoring FBP1 expression. Sci. Rep. 7, 43864 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kamphorst, J. J., Chung, M. K., Fan, J. & Rabinowitz, J. D. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2, 23 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Schug, Z. T. et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27, 57–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bulusu, V. et al. Acetate recapturing by nuclear acetyl-CoA synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation. Cell Rep. 18, 647–658 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Mullen, A. R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385–388 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wise, D. R. et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl Acad. Sci. USA 108, 19611–19616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mews, P. et al. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546, 381–386 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. de Thé, H. Differentiation therapy revisited. Nat. Rev. Cancer 18, 117–127 (2018).

    Article  PubMed  CAS  Google Scholar 

  91. McBrian, M. A. et al. Histone acetylation regulates intracellular pH. Mol. Cell 49, 310–321 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Berger, S. L. The complex language of chromatin regulation during transcription. Nature 447, 407–412 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Plass, C. et al. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat. Rev. Genet. 14, 765–780 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).

    Article  CAS  PubMed  Google Scholar 

  95. Kulis, M. et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 44, 1236–1242 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Ehrlich, M. & Lacey, M. DNA hypomethylation and hemimethylation in cancer. Adv. Exp. Med. Biol. 754, 31–56 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Jäkel, C. et al. Genome-wide genetic and epigenetic analyses of pancreatic acinar cell carcinomas reveal aberrations in genome stability. Nat. Commun. 8, 1323 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Ehrlich, M. DNA methylation in cancer: too much, but also too little. Oncogene 21, 5400–5413 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Kulis, M. & Esteller, M. DNA methylation and cancer. Adv. Genet. 70, 27–56 (2010).

    Article  PubMed  Google Scholar 

  100. Smith, Z. D. et al. DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611–615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. DeNicola, G. M. et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat. Genet. 47, 1475–1481 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Maddocks, O. D. et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Edinger, A. L. & Thompson, C. B. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol. Biol. Cell. 13, 2276–2288 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kottakis, F. et al. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539, 390–395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Maddocks, O. D., Labuschagne, C. F., Adams, P. D. & Vousden, K. H. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol. Cell 61, 210–221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mentch, S. J. et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22, 861–873 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dai, Z., Mentch, S. J., Gao, X., Nichenametla, S. N. & Locasale, J. W. Methionine metabolism influences genomic architecture and gene expression through H3K4me3 peak width. Nat. Commun. 9, 1955 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Dann, S. G. et al. Reciprocal regulation of amino acid import and epigenetic state through Lat1 and EZH2. EMBO J. 34, 1773–1785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pikman, Y. et al. Targeting MTHFD2 in acute myeloid leukemia. J. Exp. Med. 213, 1285–1306 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Shiraki, N. et al. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 19, 780–794 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Chory, E. J. et al. Nucleosome turnover regulates histone methylation patterns over the genome. Mol. Cell 73, 61–72.e3 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  115. Losman, J. A. & Kaelin, W. G. Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Raffel, S. et al. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature 551, 384–388 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Knowles, H. J., Raval, R. R., Harris, A. L. & Ratcliffe, P. J. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res. 63, 1764–1768 (2003).

    CAS  PubMed  Google Scholar 

  118. Agathocleous, M. et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 549, 476–481 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Cimmino, L. et al. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 170, 1079–1095.e1020 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pan, M. et al. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat. Cell Biol. 18, 1090–1101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hwang, I. Y. et al. Psat1-dependent fluctuations in α-ketoglutarate affect the timing of ESC differentiation. Cell Metab. 24, 494–501 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Zhu, Z. et al. PHB associates with the HIRA complex to control an epigenetic-metabolic circuit in human ESCs. Cell Stem Cell 20, 274–289.e277 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Cimmino, L., Neel, B. G. & Aifantis, I. Vitamin C in stem cell reprogramming and cancer. Trends Cell Biol. 28, 698–708 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ward, P. S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chowdhury, R. et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 12, 463–469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483, 484–488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Losman, J. A. et al. 2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339, 1621–1625 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Saha, S. K. et al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature 513, 110–114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sasaki, M. et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488, 656–659 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Amatangelo, M. D. et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood 130, 732–741 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen, C. et al. Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition. Genes Dev. 27, 1974–1985 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fan, J. et al. Human phosphoglycerate dehydrogenase produces the oncometabolite D-2-hydroxyglutarate. ACS Chem. Biol. 10, 510–516 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Intlekofer, A. M. et al. Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab. 22, 304–311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ye, D., Guan, K. L. & Xiong, Y. Metabolism, activity, and targeting of D- and L-2-hydroxyglutarates. Trends Cancer 4, 151–165 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kaelin, W. G. Jr & McKnight, S. L. Influence of metabolism on epigenetics and disease. Cell 153, 56–69 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gottlieb, E. & Tomlinson, I. P. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat. Rev. Cancer 5, 857–866 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 7, 77–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell. 8, 143–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Xiao, M. et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Killian, J. K. et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 3, 648–657 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sciacovelli, M. et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537, 544–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. MacKenzie, E. D. et al. Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol. Cell. Biol. 27, 3282–3289 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Erez, A. & DeBerardinis, R. J. Metabolic dysregulation in monogenic disorders and cancer: finding method in madness. Nat. Rev. Cancer 15, 440–448 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Kranendijk, M., Struys, E. A., Salomons, G. S., Van der Knaap, M. S. & Jakobs, C. Progress in understanding 2-hydroxyglutaric acidurias. J. Inherit. Metab. Dis. 35, 571–587 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ma, S. et al. L2hgdh Deficiency accumulates l-2-hydroxyglutarate with progressive leukoencephalopathy and neurodegeneration. Mol. Cell Biol. 37, e00492–16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rzem, R. et al. A mouse model of L-2-hydroxyglutaric aciduria, a disorder of metabolite repair. PLoS One 10, e0119540 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Kranendijk, M. et al. IDH2 mutations in patients with D-2-hydroxyglutaric aciduria. Science 330, 336 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Akbay, E. A. et al. D-2-hydroxyglutarate produced by mutant IDH2 causes cardiomyopathy and neurodegeneration in mice. Genes Dev. 28, 479–490 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Snyder, V., Reed-Newman, T. C., Arnold, L., Thomas, S. M. & Anant, S. Cancer stem cell metabolism and potential therapeutic targets. Front. Oncol. 8, 203 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zhou, Y. et al. Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis. J. Biol. Chem. 286, 32843–32853 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen, C. L. et al. NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell. Metab. 23, 206–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Li, Z. et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15, 501–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dong, C. et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23, 316–331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang, Y. H. et al. Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell 158, 1309–1323 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Saito, Y., Chapple, R. H., Lin, A., Kitano, A. & Nakada, D. AMPK protects leukemia-initiating cells in myeloid leukemias from metabolic stress in the bone marrow. Cell Stem Cell 17, 585–596 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Janiszewska, M. et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev. 26, 1926–1944 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lagadinou, E. D. et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12, 329–341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sancho, P. et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 22, 590–605 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Jones, C. L. et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell 34, 724–740.e724 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Vlashi, E. et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc. Natl Acad. Sci. USA 108, 16062–16067 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kuntz, E. M. et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat. Med. 23, 1234–1240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ye, H. et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19, 23–37 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Samudio, I. et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J. Clin. Invest. 120, 142–156 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Li, J. et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 20, 303–314.e305 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. El Helou, R. et al. miR-600 acts as a bimodal switch that regulates breast cancer stem cell fate through WNT signaling. Cell Rep. 18, 2256–2268 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the laboratories of A.M.I. and L.W.S.F. for discussion and J. Schvartzman and S. Vardhana for critical reading of the manuscript. A.M.I. is supported by the NIH/NCI (K08 CA201483), Damon Runyon Cancer Research Foundation (CI 95-18), Burroughs Wellcome Fund (CAMS 1015584), Leukemia & Lymphoma Society (SCOR 7011-16), Susan & Peter Solomon Divisional Genomics Program, Steven A. Greenberg Fund and Cycle for Survival. L.W.S.F. is supported as a Dale F. Frey-William Raveis Charitable Fund Scientist by the Damon Runyon Cancer Research Foundation (DFS-23-17). This work was additionally supported by the Searle Scholars program (to L.W.S.F.), The Starr Foundation (I11-0039 to L.W.S.F.) and Memorial Sloan Kettering Cancer Center Support Grant P30 CA008748.

Author information

Authors and Affiliations

Authors

Contributions

A.M.I. and L.W.S.F. conceived the topic and wrote the manuscript.

Corresponding authors

Correspondence to Andrew M. Intlekofer or Lydia W. S. Finley.

Ethics declarations

Competing interests

A.M.I. has previously consulted for Foundation Medicine, Inc.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Intlekofer, A.M., Finley, L.W.S. Metabolic signatures of cancer cells and stem cells. Nat Metab 1, 177–188 (2019). https://doi.org/10.1038/s42255-019-0032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-019-0032-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer