Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional identity of hypothalamic melanocortin neurons depends on Tbx3


Heterogeneous populations of hypothalamic neurons orchestrate energy balance via the release of specific signatures of neuropeptides. However, how specific intracellular machinery controls peptidergic identities and function of individual hypothalamic neurons remains largely unknown. The transcription factor T-box 3 (Tbx3) is expressed in hypothalamic neurons sensing and governing energy status, whereas human TBX3 haploinsufficiency has been linked with obesity. Here, we demonstrate that loss of Tbx3 function in hypothalamic neurons causes weight gain and other metabolic disturbances by disrupting both the peptidergic identity and plasticity of Pomc/Cart and Agrp/Npy neurons. These alterations are observed after loss of Tbx3 in both immature hypothalamic neurons and terminally differentiated mouse neurons. We further establish the importance of Tbx3 for body weight regulation in Drosophila melanogaster and show that TBX3 is implicated in the differentiation of human embryonic stem cells into hypothalamic Pomc neurons. Our data indicate that Tbx3 directs the terminal specification of neurons as functional components of the melanocortin system and is required for maintaining their peptidergic identity. In summary, we report the discovery of a key mechanistic process underlying the functional heterogeneity of hypothalamic neurons governing body weight and systemic metabolism.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Loss of Tbx3 in hypothalamic neurons promotes obesity.
Fig. 2: Loss of Tbx3 in Pomc but not Agrp neurons triggers obesity.
Fig. 3: Loss of Tbx3 impairs the postnatal melanocortin system.
Fig. 4: Tbx3 is critical for the differentiation of Pomc neurons.
Fig. 5: Tbx3 functions in Drosophila and human neurons.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its supplementary information files. The RNA-seq database generated in our paper has been made publicly available through Gene Expression Omnibus (GEO accession number GSE119883).


  1. 1.

    Cone, R. D. Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–578 (2005).

    CAS  Article  Google Scholar 

  2. 2.

    Gautron, L., Elmquist, J. K. & Williams, K. W. Neural control of energy balance: translating circuits to therapies. Cell 161, 133–145 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Koch, M. & Horvath, T. L. Molecular and cellular regulation of hypothalamic melanocortin neurons controlling food intake and energy metabolism. Mol. Psychiatry 19, 752–761 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Morton, G. J., Meek, T. H. & Schwartz, M. W. Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 15, 367–378 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Knight, Z. A. et al. Molecular profiling of activated neurons by phosphorylated ribosome capture. Cell 151, 1126–1137 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Allison, M. B. et al. TRAP-seq defines markers for novel populations of hypothalamic and brainstem LepRb neurons. Mol. Metab. 4, 299–309 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Wansleben, S., Peres, J., Hare, S., Goding, C. R. & Prince, S. T-box transcription factors in cancer biology. Biochim. Biophys. Acta 1846, 380–391 (2014).

    CAS  PubMed  Google Scholar 

  9. 9.

    Ang, L. T. et al. A roadmap for human liver differentiation from pluripotent stem cells. Cell Rep. 22, 2190–2205 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Suzuki, A., Sekiya, S., Büscher, D., Izpisúa Belmonte, J. C. & Taniguchi, H. Tbx3 controls the fate of hepatic progenitor cells in liver development by suppressing p19ARF expression. Development 135, 1589–1595 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    Weidgang, C. E. et al. TBX3 Directs cell-fate decision toward mesendoderm. Stem Cell Rep. 1, 248–265 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Eriksson, K. S. & Mignot, E. T-box 3 is expressed in the adult mouse hypothalamus and medulla. Brain Res. 1302, 233–239 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    Linden, H., Williams, R., King, J., Blair, E. & Kini, U. Ulnar mammary syndrome and TBX3: expanding the phenotype. Am. J. Med. Genet. A 149A, 2809–2812 (2009).

  14. 14.

    Schinzel, A. The ulnar-mammary syndrome: an autosomal dominant pleiotropic gene. Clin. Genet. 32, 160–168 (1987).

    CAS  Article  Google Scholar 

  15. 15.

    Grill, H. J. & Hayes, M. R. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell. Metab. 16, 296–309 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    Joly-Amado, A. et al. The hypothalamic arcuate nucleus and the control of peripheral substrates. Best Pract. Res. Clin. Endocrinol. Metab. 28, 725–737 (2014).

    Article  Google Scholar 

  17. 17.

    Clasadonte, J. & Prevot, V. The special relationship: glia-neuron interactions in the neuroendocrine hypothalamus. Nat. Rev. Endocrinol. 14, 25–44 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Pontecorvi, M., Goding, C. R., Richardson, W. D. & Kessaris, N. Expression of Tbx2 and Tbx3 in the developing hypothalamic-pituitary axis. Gene. Expr. Patterns 8, 411–417 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    Tschöp, M. H. et al. A guide to analysis of mouse energy metabolism. Nat. Methods 9, 57–63 (2011).

    Article  Google Scholar 

  20. 20.

    Tong, Q., Ye, C.-P., Jones, J. E., Elmquist, J. K. & Lowell, B. B. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat. Neurosci. 11, 998–1000 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42, 983–991 (2004).

    CAS  Article  Google Scholar 

  22. 22.

    Kumar, P. P. et al. Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. eLife 3, e02805 (2014).

  23. 23.

    Coll, M., Seidman, J. G. & Müller, C. W. Structure of the DNA-bound T-box domain of human TBX3, a transcription factor responsible for ulnar-mammary syndrome. Structure 10, 343–356 (2002).

    CAS  Article  Google Scholar 

  24. 24.

    Hein, M. Y. et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163, 712–723 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Rolland, T. et al. A proteome-scale map of the human interactome network. Cell 159, 1212–1226 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Bandyopadhyay, S. et al. A human map kinase interactome. Nat. Methods 7, 801–805 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    Padilla, S. L., Carmody, J. S. & Zeltser, L. M. Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat. Med. 16, 403–405 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    Toda, C., Santoro, A., Kim, J. D. & Diano, S. POMC neurons: from birth to death. Annu. Rev. Physiol. 79, 209–236 (2017).

  29. 29.

    Hahn, T. M., Breininger, J. F., Baskin, D. G. & Schwartz, M. W. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci. 1, 271–272 (1998).

    CAS  Article  Google Scholar 

  30. 30.

    Sousa-Ferreira, L., de Almeida, L. P. & Cavadas, C. Role of hypothalamic neurogenesis in feeding regulation. Trends Endocrinol. Metab. 25, 80–88 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Mizuno, T. M. et al. Hypothalamic pro-opiomelanocortin mrna is reduced by fasting in ob/ob and db/db mice, but is stimulated by leptin. Diabetes 47, 294–297 (1998).

    CAS  Article  Google Scholar 

  32. 32.

    Wilson, V. & Conlon, F. L. The T-box family. Genome Biol. 3, REVIEWS3008 (2002).

    Article  Google Scholar 

  33. 33.

    Wang, L. et al. Differentiation of hypothalamic-like neurons from human pluripotent stem cells. J. Clin. Invest. 125, 796–808 (2015).

    Article  Google Scholar 

  34. 34.

    Wang, L., Egli, D. & Leibel, R. L. Efficient generation of hypothalamic neurons from human pluripotent stem cells. Curr. Protoc. Hum. Genet. 90, 21.5.1–21.5.14 (2016).

    Article  Google Scholar 

  35. 35.

    Wang, L. et al. PC1/3 deficiency impacts pro-opiomelanocortin processing in human embryonic stem cell-derived hypothalamic neurons. Stem Cell Rep. 8, 264–277 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Coupe, B. & Bouret, S. G. Development of the hypothalamic melanocortin system. Front Endocrinol. (Lausanne) 4, 38 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Pelling, M. et al. Differential requirements for neurogenin 3 in the development of POMC and NPY neurons in the hypothalamus. Dev. Biol. 349, 406–416 (2011).

    CAS  Article  Google Scholar 

  38. 38.

    Lee, B. et al. Dlx1/2 and Otp coordinate the production of hypothalamic GHRH- and AgRP-neurons. Nat. Commun. 9, 2026 (2018).

    Article  Google Scholar 

  39. 39.

    Nasif, S. et al. Islet 1 specifies the identity of hypothalamic melanocortin neurons and is critical for normal food intake and adiposity in adulthood. Proc. Natl Acad. Sci. USA 112, E1861–E1870 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Lee, B., Lee, S., Lee, S.-K. & Lee, J. W. The LIM-homeobox transcription factor Isl1 plays crucial roles in the development of multiple arcuate nucleus neurons. Development 143, 3763–3773 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Sakkou, M. et al. A role for brain-specific homeobox factor Bsx in the control of hyperphagia and locomotory behavior. Cell Metab. 5, 450–463 (2007).

    CAS  Article  Google Scholar 

  42. 42.

    Messina, A. et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat. Neurosci. 19, 835–844 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Greenman, Y. et al. Postnatal ablation of POMC neurons induces an obese phenotype characterized by decreased food intake and enhanced anxiety-like behavior. Mol. Endocrinol. 27, 1091–1102 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Morton, G. J. & Schwartz, M. W. The NPY/AgRP neuron and energy homeostasis. Int. J. Obes. Relat. Metab. Disord. 25 (Suppl. 5), S56–S62 (2001).

  45. 45.

    Luquet, S., Perez, F. A., Hnasko, T. S. & Palmiter, R. D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

  46. 46.

    Tan, K., Knight, Z. A. & Friedman, J. M. Ablation of AgRP neurons impairs adaption to restricted feeding. Mol. Metab. 3, 694–704 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    Bouret, S. G. & Simerly, R. B. Minireview: leptin and development of hypothalamic feeding circuits. Endocrinology 145, 2621–2626 (2004).

    CAS  Article  Google Scholar 

  48. 48.

    Zhan, C. et al. Acute and long-term suppression of feeding behavior by pomc neurons in the brainstem and hypothalamus, respectively. J. Neurosci. 33, 3624–3632 (2013).

    CAS  Article  Google Scholar 

  49. 49.

    Nogueiras, R. et al. The central melanocortin system directly controls peripheral lipid metabolism. J. Clin. Invest. 117, 3475–3488 (2007).

    CAS  Article  Google Scholar 

  50. 50.

    Burbridge, S., Stewart, I. & Placzek, M. Development of the neuroendocrine hypothalamus. Compr. Physiol. 6, 623–643 (2016).

    Article  Google Scholar 

  51. 51.

    Dulcis, D., Jamshidi, P., Leutgeb, S. & Spitzer, N. C. Neurotransmitter switching in the adult brain regulates behavior. Science 340, 449–453 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    Gascón, S., Masserdotti, G., Russo, G. L. & Götz, M. Direct neuronal reprogramming: achievements, hurdles, and new roads to success. Cell Stem Cell 21, 18–34 (2017).

    Article  Google Scholar 

  53. 53.

    Frank, D. U., Emechebe, U., Thomas, K. R. & Moon, A. M. Mouse Tbx3 mutants suggest novel molecular mechanisms for ulnar-mammary syndrome. PLoS One 8, e67841 (2013).

    CAS  Article  Google Scholar 

  54. 54.

    Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    CAS  Article  Google Scholar 

  55. 55.

    van den Pol, A. N. et al. Neuromedin B and gastrin-releasing peptide excite arcuate nucleus neuropeptide Y neurons in a novel transgenic mouse expressing strong Renilla green fluorescent protein in NPY neurons. J. Neurosci. 29, 4622–4639 (2009).

    Article  Google Scholar 

  56. 56.

    Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    CAS  Article  Google Scholar 

  57. 57.

    Monory, K. et al. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51, 455–466 (2006).

    CAS  Article  Google Scholar 

  58. 58.

    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  Article  Google Scholar 

  59. 59.

    Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    CAS  Article  Google Scholar 

  60. 60.

    Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteom. 13, 2513–2526 (2014).

    CAS  Article  Google Scholar 

  61. 61.

    Marco-Sola, S., Sammeth, M., Guigó, R. & Ribeca, P. The GEM mapper: fast, accurate and versatile alignment by filtration. Nat. Methods 9, 1185–1188 (2012).

  62. 62.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

  63. 63.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  64. 64.

    Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, e161 (2007).

    Article  Google Scholar 

  65. 65.

    Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    CAS  Article  Google Scholar 

  66. 66.

    Ashburner, M. et al. Gene ontology: tool for the unification of biology. the gene ontology consortium. Nat. Genet. 25, 25–29 (2000).

    CAS  Article  Google Scholar 

  67. 67.

    Osterwalder, T., Yoon, K. S., White, B. H. & Keshishian, H. A conditional tissue-specific transgene expression system using inducible GAL4. Proc. Natl Acad. Sci. USA 98, 12596–12601 (2001).

    CAS  Article  Google Scholar 

  68. 68.

    Shen, J., Dorner, C., Bahlo, A. & Pflugfelder, G. O. optomotor-blind suppresses instability at the A/P compartment boundary of the Drosophila wing. Mech. Dev. 125, 233–246 (2008).

  69. 69.

    Hildebrandt, A., Bickmeyer, I. & Kühnlein, R. P. Reliable Drosophila body fat quantification by a coupled colorimetric assay. PLoS One 6, e23796 (2011).

    CAS  Article  Google Scholar 

  70. 70.

    Gáliková, M., Klepsatel, P., Xu, Y. & Kühnlein, R. P. The obesity-related adipokinetic hormone controls feeding and expression of neuropeptide regulators of Drosophila metabolism. Eur. J. Lipid Sci. Tech. 119, 1600138 (2017).

  71. 71.

    Klepsatel, P., Gáliková, M., Xu, Y. & Kühnlein, R. P. Thermal stress depletes energy reserves in Drosophila. Sci. Rep. 6, 33667 (2016).

    CAS  Article  Google Scholar 

  72. 72.

    Mayer, L. R., Diegelmann, S., Abassi, Y., Eichinger, F. & Pflugfelder, G. O. Enhancer trap infidelity in Drosophila optomotor-blind. Fly 7, 118–128 (2013).

    CAS  Article  Google Scholar 

  73. 73.

    Baumbach, J., Xu, Y., Hehlert, P. & Kühnlein, R. P. Gαq, Gγ1 and Plc21C control Drosophila body fat storage. J. Genet. Genom. 41, 283–292 (2014).

    CAS  Article  Google Scholar 

  74. 74.

    Shen, J., Dahmann, C. & Pflugfelder, G. O. Spatial discontinuity of optomotor-blind expression in the Drosophila wing imaginal disc disrupts epithelial architecture and promotes cell sorting. BMC Dev. Biol. 10, 23 (2010).

    Article  Google Scholar 

  75. 75.

    Stratigopoulos, G., De Rosa, M. C., LeDuc, C. A., Leibel, R. L. & Doege, C. A. DMSO increases efficiency of genome editing at two non-coding loci. PLoS One 13, e0198637 (2018).

    Article  Google Scholar 

  76. 76.

    Santos, D. P., Kiskinis, E., Eggan, K. & Merkle, F. T. Comprehensive protocols for crispr/cas9-based gene editing in human pluripotentstem cells. Curr. Protoc. Stem Cell Biol. 38, 5B.6.1–5B.6.60 (2016).

    Article  Google Scholar 

  77. 77.

    Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    CAS  Article  Google Scholar 

  78. 78.

    Crawford, T. Q. & Roelink, H. The notch response inhibitor DAPT enhances neuronal differentiation in embryonic stem cell-derived embryoid bodies independently of sonic hedgehog signaling. Dev. Dyn. 236, 886–892 (2007).

    CAS  Article  Google Scholar 

  79. 79.

    Nelson, B. R., Hartman, B. H., Georgi, S. A., Lan, M. S. & Reh, T. A. Transient inactivation of Notch signaling synchronizes differentiation of neural progenitor cells. Dev. Biol. 304, 479–498 (2007).

    CAS  Article  Google Scholar 

  80. 80.

    Trowe, M.-O. et al. Inhibition of Sox2-dependent activation of Shh in the ventral diencephalon by Tbx3 is required for formation of the neurohypophysis. Development 140, 2299–2309 (2013).

    CAS  Article  Google Scholar 

  81. 81.

    Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    CAS  Article  Google Scholar 

Download references


We thank A. Kispert and M.-O. Trowe (Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany) for kindly providing Tbx3-deficient embryos, J. Friedman (The Rockefeller University, Howard Hughes Medical Institute, New York, NY, USA) for scientific guidance and for graciously providing access to data shown in ref. 5, M. Guzmán (Complutense University, Madrid, Spain) for assistance with the generation of AAV-GFP and AAV-Cre viral particles, the Bloomington Drosophila Stock Center (BDSC) (NIH P40OD018537) for fly stocks, and C. Layritz, H. Hoffmann, N. Wiegert and C. L. Holleman for technical assistance and assistance with animal studies. A.F. is supported by a postoctoral fellowship from the Canadian Institutes of Health Research (Funding reference no. 152588). V.V.T. is supported by NIH-NIDDK grant 5K23DK110539 and in part by the Baylor-Hopkins Center for Mendelian Genomics through NHGRI grant 5U54HG006542. C.A.D. is supported by funding from the NIH (R01 DK52431, R01 DK110113 and P30 DK26687) and Columbia Stem Cell Initiative Seed Fund Program. We thank the Fondation Recherche Medicale (ARF20140129235, L.B.). This work was strongly supported by the Helmholtz Alliance ICEMED & the Helmholtz Initiative on Personalized Medicine iMed by Helmholtz Association. This work was supported in part by the Helmholtz cross-program topic ‘Metabolic Dysfunction’, the European Research Council ERC (AdG HypoFlam no. 695054) and in part by funding to M.H.T., Y.L., B.L. and V.K. from the Alexander von Humboldt Foundation.

Author information




C.Q. and A.F. designed and performed the experiments and interpreted the data. Y.X., G.C., B.L. Y.-T.T., A.R., M.W., M.C.D., V.K., R.R., V.V.T., E.G., T.M.S., A.-L.P., T.G., O.L., A.C.-S., D.K., L.B., S.C.W., G.O.P., R.N., L.Z., I.C.G.K., A.M., C.G.-C., M.M., M.T. and C.A.D. performed experiments and/or edited the manuscript. M.H.T. conceptualized the project, interpreted the data, and cowrote the manuscript together with C.Q. and A.F.

Corresponding author

Correspondence to Matthias H. Tschöp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6

Reporting Summary

Supplementary Table 1

qRT–PCR primer sequences

Supplementary Table 2

Reference proteins and proteins enriched with Tbx3 immunoprecipitation

Supplementary Table 3

Lineage tracing and neuropeptide expression.

Supplementary Table 4

Full vector sequence of pCas9_CD4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quarta, C., Fisette, A., Xu, Y. et al. Functional identity of hypothalamic melanocortin neurons depends on Tbx3. Nat Metab 1, 222–235 (2019).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing