Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metabolic adaptation and maladaptation in adipose tissue

Abstract

Adipose tissue possesses the remarkable capacity to control its size and function in response to a variety of internal and external cues, such as nutritional status and temperature. The regulatory circuits of fuel storage and oxidation in white adipocytes and thermogenic adipocytes (brown and beige adipocytes) play a central role in systemic energy homeostasis, whereas dysregulation of the pathways is closely associated with metabolic disorders and adipose tissue malfunction, including obesity, insulin resistance, chronic inflammation, mitochondrial dysfunction, and fibrosis. Recent studies have uncovered new regulatory elements that control the above parameters and provide new mechanistic opportunities to reprogram fat cell fate and function. In this Review, we provide an overview of the current understanding of adipocyte metabolism in physiology and disease and also discuss possible strategies to alter fuel utilization in fat cells to improve metabolic health.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Control of fatty acid storage and oxidation.
Fig. 2: Cellular metabolism in thermogenic fat cells.
Fig. 3: Adaptation and maladaptation in adipose tissue.

References

  1. 1.

    Guarente, L. Mitochondria—a nexus for aging, calorie restriction, and sirtuins? Cell 132, 171–176 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Anderson, R. M. & Weindruch, R. Metabolic reprogramming, caloric restriction and aging. Trends Endocrinol. Metab. 21, 134–141 (2010).

    CAS  PubMed  Google Scholar 

  3. 3.

    Kajimura, S., Spiegelman, B. M. & Seale, P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22, 546–559 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Sepa-Kishi, D. M., Sotoudeh-Nia, Y., Iqbal, A., Bikopoulos, G. & Ceddia, R. B. Cold acclimation causes fiber type-specific responses in glucose and fat metabolism in rat skeletal muscles. Sci. Rep. 7, 15430 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Jeffery, E., Church, C. D., Holtrup, B., Colman, L. & Rodeheffer, M. S. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat. Cell Biol. 17, 376–385 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kleemann, R. et al. Time-resolved and tissue-specific systems analysis of the pathogenesis of insulin resistance. PLoS One 5, e8817 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Rosenwald, M., Perdikari, A., Rülicke, T. & Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 15, 659–667 (2013).

    CAS  PubMed  Google Scholar 

  8. 8.

    Altshuler-Keylin, S. et al. Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance. Cell Metab. 24, 402–419 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Schenk, S., Saberi, M. & Olefsky, J. M. Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest. 118, 2992–3002 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Czech, M. P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 23, 804–814 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Pepino, M. Y., Kuda, O., Samovski, D. & Abumrad, N. A. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu. Rev. Nutr. 34, 281–303 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Herman, M. A. et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484, 333–338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Strable, M. S. & Ntambi, J. M. Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit. Rev. Biochem. Mol. Biol. 45, 199–214 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Park, J. et al. Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity. Mol. Cell. Biol. 25, 5146–5157 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Foster, D. W. Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J. Clin. Invest. 122, 1958–1959 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Martin, D. B. & Vagelos, P. R. The mechanism of tricarboxylic acid cycle regulation of fatty acid synthesis. J. Biol. Chem. 237, 1787–1792 (1962).

    CAS  PubMed  Google Scholar 

  17. 17.

    Reshef, L. et al. Glyceroneogenesis and the triglyceride/fatty acid cycle. J. Biol. Chem. 278, 30413–30416 (2003).

    CAS  PubMed  Google Scholar 

  18. 18.

    Postic, C. & Girard, J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest. 118, 829–838 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Hung, C. M. et al. Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell Rep. 8, 256–271 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Tang, Y. et al. Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism. Nat. Commun. 7, 11365 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Arner, P. Human fat cell lipolysis: biochemistry, regulation and clinical role. Best. Pract. Res. Clin. Endocrinol. Metab. 19, 471–482 (2005).

    CAS  PubMed  Google Scholar 

  22. 22.

    Braun, K., Oeckl, J., Westermeier, J., Li, Y. & Klingenspor, M. Non-adrenergic control of lipolysis and thermogenesis in adipose tissues. J. Exp. Biol. 221(Suppl 1), jeb165381 (2018).

    PubMed  Google Scholar 

  23. 23.

    Nakamura, K. & Morrison, S. F. Central efferent pathways for cold-defensive and febrile shivering. J. Physiol. (Lond.) 589, 3641–3658 (2011).

    CAS  Google Scholar 

  24. 24.

    Rayner, D. V. The sympathetic nervous system in white adipose tissue regulation. Proc. Nutr. Soc. 60, 357–364 (2001).

    CAS  PubMed  Google Scholar 

  25. 25.

    Duncan, R. E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E. & Sul, H. S. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 27, 79–101 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550, 119–123 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Pirzgalska, R. M. et al. Sympathetic neuron–associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

    CAS  PubMed  Google Scholar 

  28. 28.

    Bachman, E. S. et al. βAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297, 843–845 (2002).

    CAS  PubMed  Google Scholar 

  29. 29.

    Jung, R. T., Shetty, P. S., James, W. P., Barrand, M. A. & Callingham, B. A. Reduced thermogenesis in obesity. Nature 279, 322–323 (1979).

    CAS  PubMed  Google Scholar 

  30. 30.

    Inagaki, T., Sakai, J. & Kajimura, S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat. Rev. Mol. Cell Biol. 17, 480–495 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    CAS  PubMed  Google Scholar 

  32. 32.

    Bordicchia, M. et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Invest. 122, 1022–1036 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Jun, H. et al. An immune–beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat. Med. 24, 814–822 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Collins, S. β-adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front. Endocrinol. 2, 102 (2012).

    Google Scholar 

  35. 35.

    Fedorenko, A., Lishko, P. V. & Kirichok, Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151, 400–413 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Fromme, T. et al. Degradation of brown adipocyte purine nucleotides regulates uncoupling protein 1 activity. Mol. Metab. 8, 77–85 (2018).

    CAS  PubMed  Google Scholar 

  37. 37.

    Han, Y. H. et al. Adipocyte-specific deletion of manganese superoxide dismutase protects from diet-induced obesity through increased mitochondrial uncoupling and biogenesis. Diabetes 65, 2639–2651 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Chouchani, E. T. et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 532, 112–116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Nedergaard, J. & Cannon, B. UCP1 mRNA does not produce heat. Biochim. Biophys. Acta 1831, 943–949 (2013).

    CAS  PubMed  Google Scholar 

  40. 40.

    Ikeda, K. et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23, 1454–1465 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Vitali, A. et al. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J. Lipid Res. 53, 619–629 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Denton, R. M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta 1787, 1309–1316 (2009).

    CAS  PubMed  Google Scholar 

  44. 44.

    Guan, H. P. et al. A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat. Med. 8, 1122–1128 (2002).

    CAS  PubMed  Google Scholar 

  45. 45.

    Kiskinis, E. et al. RIP140 represses the “brown-in-white” adipocyte program including a futile cycle of triacylglycerol breakdown and synthesis. Mol. Endocrinol. 28, 344–356 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Tan, G. D. et al. A “futile cycle” induced by thiazolidinediones in human adipose tissue? Nat. Med. 9, 811–812; author reply 812 (2003).

  47. 47.

    Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    CAS  PubMed  Google Scholar 

  48. 48.

    Schreiber, R. et al. Cold-induced thermogenesis depends on ATGL-mediated lipolysis in cardiac muscle, but not brown adipose tissue. Cell Metab. 26, 753–763.e757 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Shin, H. et al. Lipolysis in brown adipocytes is not essential for cold-induced thermogenesis in mice. Cell Metab. 26, 764–777.e765 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Lee, J., Ellis, J. M. & Wolfgang, M. J. Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation. Cell Rep. 10, 266–279 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Anderson, C. M. et al. Dependence of brown adipose tissue function on CD36-mediated coenzyme Q uptake. Cell Rep. 10, 505–515 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Putri, M. et al. CD36 is indispensable for thermogenesis under conditions of fasting and cold stress. Biochem. Biophys. Res. Commun. 457, 520–525 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Arch, J. R. Challenges in β(3)-adrenoceptor agonist drug development. Ther. Adv. Endocrinol. Metab. 2, 59–64 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Cypess, A. M. et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Razzoli, M. et al. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis. Mol. Metab. 5, 19–33 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Gnad, T. et al. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516, 395–399 (2014).

    CAS  PubMed  Google Scholar 

  57. 57.

    Chen, Y. et al. Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature https://doi.org/10.1038/s41586-018-0801-z (2018).

  58. 58.

    Kazak, L. et al. Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab. 26, 660–671.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Mills, E. L. et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560, 102–106 (2018).

    CAS  PubMed  Google Scholar 

  60. 60.

    Chouchani, E. T., Kazak, L. & Spiegelman, B. M. Mitochondrial reactive oxygen species and adipose tissue thermogenesis: bridging physiology and mechanisms. J. Biol. Chem. 292, 16810–16816 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Lu, X. et al. The early metabolomic response of adipose tissue during acute cold exposure in mice. Sci. Rep. 7, 3455 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    PubMed  Google Scholar 

  63. 63.

    Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Ouellet, V. et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 122, 545–552 (2012).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    CAS  PubMed  Google Scholar 

  66. 66.

    Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    CAS  PubMed  Google Scholar 

  67. 67.

    Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Labbé, S. M. et al. In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis. FASEB J. 29, 2046–2058 (2015).

    PubMed  Google Scholar 

  69. 69.

    Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

    CAS  PubMed  Google Scholar 

  70. 70.

    Chondronikola, M. et al. Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans. Cell Metab. 23, 1200–1206 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Lee, P. et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63, 3686–3698 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Hanssen, M. J. et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat. Med. 21, 863–865 (2015).

    CAS  PubMed  Google Scholar 

  73. 73.

    Chondronikola, M. et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63, 4089–4099 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Blondin, D. P. et al. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men. J. Physiol. (Lond.) 593, 701–714 (2015).

    CAS  Google Scholar 

  75. 75.

    Olsen, J. M. et al. β3-Adrenergically induced glucose uptake in brown adipose tissue is independent of UCP1 presence or activity: mediation through the mTOR pathway. Mol. Metab. 6, 611–619 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Gerngross, C., Schretter, J., Klingenspor, M., Schwaiger, M. & Fromme, T. Active brown fat during 18F-FDG PET/CT imaging defines a patient group with characteristic traits and an increased probability of brown fat redetection. J. Nucl. Med. 58, 1104–1110 (2017).

    PubMed  Google Scholar 

  77. 77.

    Kozak, L. P. Brown fat and the myth of diet-induced thermogenesis. Cell Metab. 11, 263–267 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Weir, G. et al. Substantial metabolic activity of human brown adipose tissue during warm conditions and cold-induced lipolysis of local triglycerides. Cell Metab. 27, 1348–1355.e1344 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Hibi, M. et al. Brown adipose tissue is involved in diet-induced thermogenesis and whole-body fat utilization in healthy humans. Int. J. Obes. (Lond.) 40, 1655–1661 (2016).

    CAS  Google Scholar 

  80. 80.

    Mueez, U. D. et al. Postprandial oxidative metabolism of human brown fat indicates thermogenesis.Cell Metab. 28, 207–216 (2018).

    Google Scholar 

  81. 81.

    Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008).

    CAS  PubMed  Google Scholar 

  82. 82.

    Wang, Q. A., Tao, C., Gupta, R. K. & Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19, 1338–1344 (2013).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Vishvanath, L. et al. Pdgfrβ+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab. 23, 350–359 (2016).

    CAS  PubMed  Google Scholar 

  84. 84.

    Jeffery, E. et al. The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity. Cell Metab. 24, 142–150 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Lackey, D. E. et al. Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity. Am. J. Physiol. Endocrinol. Metab. 306, E233–E246 (2014).

    CAS  PubMed  Google Scholar 

  86. 86.

    Muir, L. A. et al. Adipose tissue fibrosis, hypertrophy, and hyperplasia: ccorrelations with diabetes in humanobesity. Obes. (Silver Spring). 24, 597–605 (2016).

    CAS  Google Scholar 

  87. 87.

    Divoux, A. et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59, 2817–2825 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Reggio, S. et al. Increased basement membrane components in adipose tissue during obesity: links with TGFβ and metabolic phenotypes. J. Clin. Endocrinol. Metab. 101, 2578–2587 (2016).

    CAS  PubMed  Google Scholar 

  89. 89.

    Henegar, C. et al. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol. 9, R14 (2008).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Sun, K., Tordjman, J., Clément, K. & Scherer, P. E. Fibrosis and adipose tissue dysfunction. Cell Metab. 18, 470–477 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Marcelin, G. et al. A PDGFRα-mediated switch toward CD9high adipocyte progenitors controls obesity-induced adipose tissue fibrosis. Cell Metab. 25, 673–685 (2017).

    CAS  PubMed  Google Scholar 

  92. 92.

    Marangoni, R. G. et al. Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol. 67, 1062–1073 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Keophiphath, M. et al. Macrophage-secreted factors promote a profibrotic phenotype in human preadipocytes. Mol. Endocrinol. 23, 11–24 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Hasegawa, Y. et al. Repression of adipose tissue fibrosis through aprdm16–gtf2ird1 complex improves systemic glucose homeostasis. Cell Metab. 27, 180–194.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Yadav, H. et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 14, 67–79 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Samad, F., Yamamoto, K., Pandey, M. & Loskutoff, D. J. Elevated expression of transforming growth factor-beta in adipose tissue from obese mice. Mol. Med. 3, 37–48 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Rausch, M. E., Weisberg, S., Vardhana, P. & Tortoriello, D. V. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int. J. Obes. (Lond.) 32, 451–463 (2008).

    CAS  Google Scholar 

  98. 98.

    Ye, J., Gao, Z., Yin, J. & He, Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am. J. Physiol. Endocrinol. Metab. 293, E1118–E1128 (2007).

    CAS  PubMed  Google Scholar 

  99. 99.

    Hosogai, N. et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 (2007).

    CAS  PubMed  Google Scholar 

  100. 100.

    Halberg, N. et al. Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell. Biol. 29, 4467–4483 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Sun, K., Halberg, N., Khan, M., Magalang, U. J. & Scherer, P. E. Selective inhibition of hypoxia-inducible factor 1α ameliorates adipose tissue dysfunction. Mol. Cell. Biol. 33, 904–917 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29, 1575–1591 (2009).

    CAS  PubMed  Google Scholar 

  103. 103.

    Sun, K. et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat. Commun. 5, 3485 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Choo, H. J. et al. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49, 784–791 (2006).

    CAS  PubMed  Google Scholar 

  105. 105.

    Yin, X. et al. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. J. Clin. Endocrinol. Metab. 99, E209–E216 (2014).

    CAS  PubMed  Google Scholar 

  106. 106.

    Schöttl, T., Kappler, L., Fromme, T. & Klingenspor, M. Limited OXPHOS capacity in white adipocytes is a hallmark of obesity in laboratory mice irrespective of the glucose tolerance status. Mol. Metab. 4, 631–642 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Heinonen, S. et al. impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes 64, 3135–3145 (2015).

    CAS  PubMed  Google Scholar 

  108. 108.

    Heinonen, S. et al. Mitochondria-related transcriptional signature is downregulated in adipocytes in obesity: a study of young healthy MZ twins. Diabetologia 60, 169–181 (2017).

    CAS  PubMed  Google Scholar 

  109. 109.

    Ohno, H., Shinoda, K., Spiegelman, B. M. & Kajimura, S. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 15, 395–404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Trevellin, E. et al. Exercise training induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through eNOS-dependent mechanisms. Diabetes 63, 2800–2811 (2014).

    CAS  PubMed  Google Scholar 

  111. 111.

    Bogacka, I., Xie, H., Bray, G. A. & Smith, S. R. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54, 1392–1399 (2005).

    CAS  PubMed  Google Scholar 

  112. 112.

    Wilson-Fritch, L. et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J. Clin. Invest. 114, 1281–1289 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Rong, J. X. et al. Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes 56, 1751–1760 (2007).

    CAS  PubMed  Google Scholar 

  114. 114.

    Jokinen, R. et al. Adipose tissue mitochondrial capacity associates with long-term weight loss success. Int. J. Obes. (Lond.) 42, 817–825 (2018).

    CAS  Google Scholar 

  115. 115.

    Vernochet, C. et al. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. FASEB J. 28, 4408–4419 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Kleiner, S. et al. Development of insulin resistance in mice lacking PGC-1α in adipose tissues. Proc. Natl. Acad. Sci. USA 109, 9635–9640 (2012).

    CAS  PubMed  Google Scholar 

  117. 117.

    Kusminski, C. M. et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat. Med. 18, 1539–1549 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Kusminski, C. M., Park, J. & Scherer, P. E. MitoNEET-mediated effects on browning of white adipose tissue. Nat. Commun. 5, 3962 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Morton, N. M. et al. Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness. Nat. Med. 22, 771–779 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Kadowaki, T. et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116, 1784–1792 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Cao, H. et al. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134, 933–944 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Yore, M. M. et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Syed, I. et al. Palmitic acid hydroxystearic acids activate GPR40, which is involved in their beneficial effects on glucose homeostasis. Cell Metab. 27, 419–427.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Pflimlin, E. et al. Acute and repeated treatment with 5-PAHSA or 9-PAHSA isomers does not improve glucose control in mice. Cell Metab. 28, 217–227.e3 (2018).

    CAS  PubMed  Google Scholar 

  126. 126.

    Lynes, M. D. et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat. Med. 23, 631–637 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Zimmer, B. et al. The oxidized linoleic acid metabolite 12,13-DiHOME mediates thermal hyperalgesia during inflammatory pain. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863, 669–678 (2018).

    CAS  PubMed  Google Scholar 

  128. 128.

    Shulman, G. I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371, 1131–1141 (2014).

    PubMed  Google Scholar 

  129. 129.

    Summers, S. A. Could ceramides become the new cholesterol? Cell Metab. 27, 276–280 (2018).

    CAS  PubMed  Google Scholar 

  130. 130.

    Kurek, K. et al. Inhibition of ceramide de novo synthesis ameliorates diet induced skeletal muscles insulin resistance. J. Diabetes Res. 2015, 154762 (2015).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Ussher, J. R. et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 59, 2453–2464 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Yang, G. et al. Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 297, E211–E224 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Holland, W. L. et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5, 167–179 (2007).

    CAS  PubMed  Google Scholar 

  134. 134.

    Blachnio-Zabielska, A. U., Chacinska, M., Vendelbo, M. H. & Zabielski, P. The crucial role of C18-Cer in fat-induced skeletal muscle insulin resistance. Cell. Physiol. Biochem. 40, 1207–1220 (2016).

    CAS  PubMed  Google Scholar 

  135. 135.

    Turpin, S. M. et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678–686 (2014).

    CAS  PubMed  Google Scholar 

  136. 136.

    Chaurasia, B. et al. Adipocyte ceramides regulate subcutaneous adipose browning, inflammation, and metabolism. Cell Metab. 24, 820–834 (2016).

    CAS  PubMed  Google Scholar 

  137. 137.

    Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55–63 (2011).

    CAS  PubMed  Google Scholar 

  138. 138.

    Vasiliauskaité-Brooks, I. et al. Structural insights into adiponectin receptors suggest ceramidase activity. Nature 544, 120–123 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Ryu, K. W. et al. Metabolic regulation of transcription through compartmentalized NAD+ biosynthesis. Science 360, eaan5780 (2018).

    PubMed  Google Scholar 

  140. 140.

    Tsukita, S. et al. Hepatic glucokinase modulates obesity predisposition by regulating BAT thermogenesis via neural signals. Cell Metab. 16, 825–832 (2012).

    CAS  PubMed  Google Scholar 

  141. 141.

    Camarda, R. et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat. Med. 22, 427–432 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Wang, H., Liu, L., Lin, J. Z., Aprahamian, T. R. & Farmer, S. R. Browning of white adipose tissue with roscovitine induces a distinct population of UCP1+ adipocytes. Cell Metab. 24, 835–847 (2016).

    CAS  PubMed  Google Scholar 

  143. 143.

    Burl, R. B. et al. Deconstructing adipogenesis induced by β3-adrenergic receptor activation with single-cell expression profiling. Cell Metab. 28, 300–309.e4 (2018).

    CAS  PubMed  Google Scholar 

  144. 144.

    Schwalie, P. C. et al. A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 559, 103–108 (2018).

    CAS  PubMed  Google Scholar 

  145. 145.

    Hepler, C. et al. Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. eLife 7, e39636 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. 146.

    Hagberg, C. E. et al. Flow cytometry of mouse and human adipocytes for the analysis of browning and cellular heterogeneity. Cell Rep. 24, 2746–2756.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize for being unable to cite papers that have contributed to the progress of this field owing to space limitations. This work was supported by the National Institutes of Health (DK97441, DK112268, and DK108822); the Edward Mallinckrodt, Jr. Foundation to S.K.; and the Claudia Adams Barr Program to E.T.C.

Author information

Affiliations

Authors

Contributions

E.T.C and S.K. conceived the project and wrote the manuscript.

Corresponding authors

Correspondence to Edward T. Chouchani or Shingo Kajimura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chouchani, E.T., Kajimura, S. Metabolic adaptation and maladaptation in adipose tissue. Nat Metab 1, 189–200 (2019). https://doi.org/10.1038/s42255-018-0021-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing