Abstract

Thermogenesis is an important contributor to whole-body energy expenditure and metabolic homeostasis. Although circulating factors that promote energy expenditure are known, endocrine molecules that suppress energy expenditure have remained largely elusive. Here we found that Tsukushi (TSK) is a liver-enriched secreted factor that is highly inducible in response to increased energy expenditure. Hepatic Tsk expression and plasma TSK levels were elevated in obesity. In mice, TSK deficiency increased sympathetic innervation and norepinephrine release in adipose tissue, leading to enhanced adrenergic signalling and thermogenesis, attenuation of brown fat whitening, and protection from diet-induced obesity. Our data reveal TSK as part of a negative feedback mechanism that gates thermogenic energy expenditure and highlights TSK as a potential target for therapeutic intervention in metabolic disease.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The microarray dataset described in the paper has been deposited in the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/) with accession number GSE114361. All other data are available from the corresponding author on reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

  2. 2.

    Potthoff, M. J., Kliewer, S. A. & Mangelsdorf, D. J. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 26, 312–324 (2012).

  3. 3.

    Trujillo, M. E. & Scherer, P. E. Adipose tissue-derived factors: impact on health and disease. Endocr. Rev. 27, 762–778 (2006).

  4. 4.

    Waki, H. & Tontonoz, P. Endocrine functions of adipose tissue. Annu. Rev. Pathol. 2, 31–56 (2007).

  5. 5.

    Flier, J. S. & Maratos-Flier, E. Leptin’s physiologic role: does the emperor of energy balance have no clothes? Cell. Metab. 26, 24–26 (2017).

  6. 6.

    Friedman, J. 20 years of leptin: leptin at 20: an overview. J. Endocrinol. 223, T1–T8 (2014).

  7. 7.

    Staiger, H., Keuper, M., Berti, L., Hrabe de Angelis, M. & Haring, H. U. Fibroblast growth factor 21 - metabolic role in mice and men. Endocr. Rev. 38, 468–488 (2017).

  8. 8.

    Stefan, N. & Haring, H. U. The role of hepatokines in metabolism. Nat. Rev. Endocrinol. 9, 144–152 (2013).

  9. 9.

    Yanagi, S., Sato, T., Kangawa, K. & Nakazato, M. The homeostatic force of ghrelin. Cell. Metab. 27, 786–804 (2018).

  10. 10.

    Crewe, C., An, Y. A. & Scherer, P. E. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J. Clin. Invest. 127, 74–82 (2017).

  11. 11.

    Martinez-Santibanez, G. & Lumeng, C. N. Macrophages and the regulation of adipose tissue remodeling. Annu. Rev. Nutr. 34, 57–76 (2014).

  12. 12.

    Reilly, S. M. & Saltiel, A. R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 13, 633–643 (2017).

  13. 13.

    Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

  14. 14.

    Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

  15. 15.

    Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

  16. 16.

    Townsend, K. L. & Tseng, Y. H. Brown fat fuel utilization and thermogenesis. Trends Endocrinol. Metab. 25, 168–177 (2014).

  17. 17.

    Wu, J., Cohen, P. & Spiegelman, B. M. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 27, 234–250 (2013).

  18. 18.

    Ikeda, K. et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23, 1454–1465 (2017).

  19. 19.

    Ikeda, K., Maretich, P. & Kajimura, S. The common and distinct features of brown and beige adipocytes. Trends Endocrinol. Metab. 29, 191–200 (2018).

  20. 20.

    Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

  21. 21.

    Chen, Z. et al. Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders. Mol. Metab. 6, 863–872 (2017).

  22. 22.

    Guo, L. et al. Hepatic neuregulin 4 signaling defines an endocrine checkpoint for steatosis-to-NASH progression. J. Clin. Invest. 127, 4449–4461 (2017).

  23. 23.

    Wang, G. X. et al. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat. Med. 20, 1436–1443 (2014).

  24. 24.

    Lowell, B. B. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742 (1993).

  25. 25.

    Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404–3408 (2013).

  26. 26.

    Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

  27. 27.

    van der Lans, A. A. et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest. 123, 3395–3403 (2013).

  28. 28.

    Cho, K. W., Zhou, Y., Sheng, L. & Rui, L. Lipocalin-13 regulates glucose metabolism by both insulin-dependent and insulin-independent mechanisms. Mol. Cell. Biol. 31, 450–457 (2011).

  29. 29.

    Meex, R. C. et al. Fetuin B is a secreted hepatocyte factor linking steatosis to impaired glucose metabolism. Cell. Metab. 22, 1078–1089 (2015).

  30. 30.

    Ohba, K. et al. Desensitization and incomplete recovery of hepatic target genes after chronic thyroid hormone treatment and withdrawal in male adult mice. Endocrinology 157, 1660–1672 (2016).

  31. 31.

    Hossain, M. et al. The combinatorial guidance activities of draxin and Tsukushi are essential for forebrain commissure formation. Dev. Biol. 374, 58–70 (2013).

  32. 32.

    Ito, A. et al. Tsukushi is required for anterior commissure formation in mouse brain. Biochem. Biophys. Res. Commun. 402, 813–818 (2010).

  33. 33.

    Ohta, K. et al. Tsukushi functions as an organizer inducer by inhibition of BMP activity in cooperation with chordin. Dev. Cell. 7, 347–358 (2004).

  34. 34.

    de Jesus, L. A. et al. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J. Clin. Invest. 108, 1379–1385 (2001).

  35. 35.

    Zhao, X. Y. et al. Long noncoding RNA licensing of obesity-linked hepatic lipogenesis and NAFLD pathogenesis. Nat. Commun. 9, 2986 (2018).

  36. 36.

    Bartness, T. J., Liu, Y., Shrestha, Y. B. & Ryu, V. Neural innervation of white adipose tissue and the control of lipolysis. Front. Neuroendocrinol. 35, 473–493 (2014).

  37. 37.

    Morrison, S. F. & Madden, C. J. Central nervous system regulation of brown adipose tissue. Compr. Physiol. 4, 1677–1713 (2014).

  38. 38.

    Zeng, W. et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163, 84–94 (2015).

  39. 39.

    Bachman, E. S. et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297, 843–845 (2002).

  40. 40.

    Bray, G. A. & York, D. A. The MONA LISA hypothesis in the time of leptin. Recent Prog. Horm. Res. 53, 95–117 (1998); discussion 117–118.

  41. 41.

    Cao, Y., Wang, H., Wang, Q., Han, X. & Zeng, W. Three-dimensional volume fluorescence-imaging of vascular plasticity in adipose tissues. Mol. Metab. 14, 71–81 (2018).

  42. 42.

    Chi, J. et al. Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell. Metab. 27, 226–236 e223 (2018).

  43. 43.

    Jiang, H., Ding, X., Cao, Y., Wang, H. & Zeng, W. Dense intra-adipose sympathetic arborizations are essential for cold-induced beiging of mouse white adipose tissue. Cell. Metab. 26, 686–692 e683 (2017).

  44. 44.

    Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550, 119–123 (2017).

  45. 45.

    Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

  46. 46.

    Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

  47. 47.

    Zhao, X. Y., Li, S., Wang, G. X., Yu, Q. & Lin, J. D. A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation. Mol. Cell 55, 372–382 (2014).

  48. 48.

    Li, S. et al. Genome-wide coactivation analysis of PGC-1alpha identifies BAF60a as a regulator of hepatic lipid metabolism. Cell. Metab. 8, 105–117 (2008).

  49. 49.

    Muller, H., Dai, G. & Soares, M. J. Placental lactogen-I (PL-I) target tissues identified with an alkaline phosphatase-PL-I fusion protein. J. Histochem. Cytochem. 46, 737–743 (1998).

  50. 50.

    Lin, J. & Linzer, D. I. Induction of megakaryocyte differentiation by a novel pregnancy-specific hormone. J. Biol. Chem. 274, 21485–21489 (1999).

Download references

Acknowledgements

This work was supported by NIH grants (nos. DK102456 and AG055379 to J.D.L.; no. DK114220 to L.R.), the Michigan Diabetes Research Center (grant no. DK020572), and the Michigan Nutrition and Obesity Center (grant no. DK089503).

Author information

Affiliations

  1. Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA

    • Qiuyu Wang
    • , Vishal P. Sharma
    • , Yuanyuan Xiao
    • , Xuelian Xiong
    • , Liang Guo
    • , Siming Li
    •  & Jiandie D. Lin
  2. Department of Molecular & Integrated Physiology, University of Michigan Medical Center, Ann Arbor, MI, USA

    • Hong Shen
    • , Lin Jiang
    •  & Liangyou Rui
  3. Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH, USA

    • Qi Zhu
    •  & Haifei Shi
  4. Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan

    • Kunimasa Ohta

Authors

  1. Search for Qiuyu Wang in:

  2. Search for Vishal P. Sharma in:

  3. Search for Hong Shen in:

  4. Search for Yuanyuan Xiao in:

  5. Search for Qi Zhu in:

  6. Search for Xuelian Xiong in:

  7. Search for Liang Guo in:

  8. Search for Lin Jiang in:

  9. Search for Kunimasa Ohta in:

  10. Search for Siming Li in:

  11. Search for Haifei Shi in:

  12. Search for Liangyou Rui in:

  13. Search for Jiandie D. Lin in:

Contributions

J.D.L. and Q.W. conceived the project and designed the research. Q.W., V.P.S., H.S., Y.X., Q.Z., X.X., L.G., H. S., S.L., L.R., and L.J. performed the experiments and analysed the data. K.O. provided the Tsk knockout mouse strain. J.D.L. and Q.W. wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Jiandie D. Lin.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–8 and Supplementary Table 3

  2. Reporting Summary

  3. Supplementary Table 1

    Microarray expression values for mouse secretome genes

  4. Supplementary Table 2

    List of liver-enriched secretome genes

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s42255-018-0020-9