Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity


Impaired adipose tissue insulin signalling is a critical feature of insulin resistance. Here we identify a pathway linking the lipolytic enzyme hormone-sensitive lipase (HSL) to insulin action via the glucose-responsive transcription factor ChREBP and its target, the fatty acid elongase ELOVL6. Genetic inhibition of HSL in human adipocytes and mouse adipose tissue results in enhanced insulin sensitivity and induction of ELOVL6. ELOVL6 promotes an increase in phospholipid oleic acid, which modifies plasma membrane fluidity and enhances insulin signalling. HSL deficiency–mediated effects are suppressed by gene silencing of ChREBP and ELOVL6. Mechanistically, physical interaction between HSL, independent of lipase activity, and the isoform activated by glucose metabolism ChREBPα impairs ChREBPα translocation into the nucleus and induction of ChREBPβ, the isoform with high transcriptional activity that is strongly associated with whole-body insulin sensitivity. Targeting the HSL–ChREBP interaction may allow therapeutic strategies for the restoration of insulin sensitivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Reduced HSL expression promotes glucose metabolism and insulin signalling in human adipocytes.
Fig. 2: HSL inhibition is associated with increased insulin sensitivity and adipose tissue ELOVL6 expression in vivo.
Fig. 3: ELOVL6 has a positive effect on insulin signalling in adipocytes.
Fig. 4: Oleic acid content in phospholipids and plasma membrane fluidity mediates the ELOVL6 positive effect on insulin signalling.
Fig. 5: The glucose-sensitive transcription factor ChREBP mediates the beneficial effect of diminished HSL expression on glucose metabolism and insulin signalling in adipocytes.
Fig. 6: HSL inhibits ChREBP activity through protein-protein interaction.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Abel, E. D. et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729–733 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    Morley, T. S., Xia, J. Y. & Scherer, P. E. Selective enhancement of insulin sensitivity in the mature adipocyte is sufficient for systemic metabolic improvements. Nat. Commun. 6, 7906 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Shearin, A. L., Monks, B. R., Seale, P. & Birnbaum, M. J. Lack of AKT in adipocytes causes severe lipodystrophy. Mol. Metab. 5, 472–479 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Softic, S. et al. Lipodystrophy due to adipose tissue specific insulin receptor knockout results in progressive NAFLD. Diabetes 65, 2187–2200 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Rondinone, C. M. et al. Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus. Proc. Natl Acad. Sci. USA 94, 4171–4175 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    Carvalho, E., Jansson, P. A., Nagaev, I., Wenthzel, A. M. & Smith, U. Insulin resistance with low cellular IRS-1 expression is also associated with low GLUT4 expression and impaired insulin-stimulated glucose transport. FASEB J. 15, 1101–1103 (2001).

    CAS  PubMed  Google Scholar 

  7. 7.

    Frojdo, S., Vidal, H. & Pirola, L. Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans. Biochim. Biophys. Acta 1792, 83–92 (2009).

    Article  Google Scholar 

  8. 8.

    Nyman, E. et al. A single mechanism can explain network-wide insulin resistance in adipocytes from obese patients with type 2 diabetes. J. Biol. Chem. 289, 33215–33230 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Samuel, V. T. & Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852–871 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Karpe, F., Dickmann, J. R. & Frayn, K. N. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 60, 2441–2449 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Girousse, A. et al. Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLoS Biol. 11, e1001485 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Bezaire, V. et al. Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes. J. Biol. Chem. 284, 18282–18291 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    Barquissau, V. et al. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Mol. Metab. 5, 352–365 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Eissing, L. et al. De novo lipogenesis in human fat and liver is linked to ChREBP-beta and metabolic health. Nat. Commun. 4, 1528 (2013).

    Article  Google Scholar 

  15. 15.

    Roberts, R. et al. Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia 52, 882–890 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    Collins, J. M., Neville, M. J., Hoppa, M. B. & Frayn, K. N. De novo lipogenesis and stearoyl-CoA desaturase are coordinately regulated in the human adipocyte and protect against palmitate-induced cell injury. J. Biol. Chem. 285, 6044–6052 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    Guillou, H., Zadravec, D., Martin, P. G. & Jacobsson, A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog. Lipid Res. 49, 186–199 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    Hodson, L. & Fielding, B. A. Stearoyl-CoA desaturase: rogue or innocent bystander? Prog. Lipid Res. 52, 15–42 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    Ohno, Y. et al. ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc. Natl Acad. Sci. USA 107, 18439–18444 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    Nagase, T. et al. Synthesis and biological evaluation of a novel 3-sulfonyl-8-azabicyclo[3.2.1]octane class of long chain fatty acid elongase 6 (ELOVL6) inhibitors. J. Med. Chem. 52, 4111–4114 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    Xin, Z. et al. Discovery of piperidine-aryl urea-based stearoyl-CoA desaturase 1 inhibitors. Bioorg. Med. Chem. Lett. 18, 4298–4302 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    Antonny, B., Vanni, S., Shindou, H. & Ferreira, T. From zero to six double bonds: phospholipid unsaturation and organelle function. Trends Cell Biol. 25, 427–436 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Holzer, R. G. et al. Saturated fatty acids induce c-Src clustering within membrane subdomains, leading to JNK activation. Cell 147, 173–184 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Filhoulaud, G., Guilmeau, S., Dentin, R., Girard, J. & Postic, C. Novel insights into ChREBP regulation and function. Trends Endocrinol. Metab. 24, 257–268 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Herman, M. A. et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484, 333–338 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Bae, J. S., Oh, A. R., Lee, H. J., Ahn, Y. H. & Cha, J. Y. Hepatic Elovl6 gene expression is regulated by the synergistic action of ChREBP and SREBP-1c. Biochem. Biophys. Res. Commun. 478, 1060–1066 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Langin, D., Laurell, H., Holst, L. S., Belfrage, P. & Holm, C. Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium. Proc. Natl Acad. Sci. USA 90, 4897–4901 (1993).

    CAS  Article  Google Scholar 

  28. 28.

    Stoeckman, A. K., Ma, L. & Towle, H. C. Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes. J. Biol. Chem. 279, 15662–15669 (2004).

    CAS  Article  Google Scholar 

  29. 29.

    Soderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).

    Article  Google Scholar 

  30. 30.

    Lou, D. Q. et al. Chicken ovalbumin upstream promoter-transcription factor II, a new partner of the glucose response element of the L-type pyruvate kinase gene, acts as an inhibitor of the glucose response. J. Biol. Chem. 274, 28385–28394 (1999).

    CAS  Article  Google Scholar 

  31. 31.

    Laurell, H. et al. Species-specific alternative splicing generates a catalytically inactive form of human hormone-sensitive lipase. Biochem. J. 328, 137–143 (1997).

    CAS  Article  Google Scholar 

  32. 32.

    Ray, H. et al. The presence of a catalytically inactive form of hormone-sensitive lipase is associated with decreased lipolysis in abdominal subcutaneous adipose tissue of obese subjects. Diabetes 52, 1417–1422 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    Hoffstedt, J., Forster, D. & Lofgren, P. Impaired subcutaneous adipocyte lipogenesis is associated with systemic insulin resistance and increased apolipoprotein B/AI ratio in men and women. J. Intern. Med. 262, 131–139 (2007).

    CAS  Article  Google Scholar 

  34. 34.

    Kursawe, R. et al. Decreased transcription of ChREBP-alpha/beta isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: associations with insulin resistance and hyperglycemia. Diabetes 62, 837–844 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Nilsson, E. et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 63, 2962–2976 (2014).

    Article  Google Scholar 

  36. 36.

    Soronen, J. et al. Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects. BMC Med. Genom. 5, 9 (2012).

    Article  Google Scholar 

  37. 37.

    Matsuzaka, T. et al. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat. Med. 13, 1193–1202 (2007).

    Article  Google Scholar 

  38. 38.

    Ryan, M. et al. Diabetes and the Mediterranean diet: a beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium-dependent vasoreactivity. QJM 93, 85–91 (2000).

    CAS  Article  Google Scholar 

  39. 39.

    Salas-Salvado, J. et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 34, 14–19 (2011).

    Article  Google Scholar 

  40. 40.

    Ibarguren, M. et al. Partitioning of liquid-ordered/liquid-disordered membrane microdomains induced by the fluidifying effect of 2-hydroxylated fatty acid derivatives. Biochim. Biophys. Acta 1828, 2553–2563 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Pietilainen, K. H. et al. Association of lipidome remodeling in the adipocyte membrane with acquired obesity in humans. PLoS Biol. 9, e1000623 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    Moon, Y. A., Ochoa, C. R., Mitsche, M. A., Hammer, R. E. & Horton, J. D. Deletion of ELOVL6 blocks the synthesis of oleic acid but does not prevent the development of fatty liver or insulin resistance. J. Lipid Res. 55, 2597–2605 (2014).

    CAS  Article  Google Scholar 

  43. 43.

    Kraemer, F. B. & Shen, W. J. Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J. Lipid Res. 43, 1585–1594 (2002).

    CAS  Article  Google Scholar 

  44. 44.

    Lafontan, M. & Langin, D. Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 48, 275–297 (2009).

    CAS  Article  Google Scholar 

  45. 45.

    Czech, M. P. Cellular basis of insulin insensitivity in large rat adipocytes. J. Clin. Invest. 57, 1523–1532 (1976).

    CAS  Article  Google Scholar 

  46. 46.

    Solinas, G., Boren, J. & Dulloo, A. G. De novo lipogenesis in metabolic homeostasis: more friend than foe?. Mol. Metab. 4, 367–377 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    Skurk, T., Ecklebe, S. & Hauner, H. A novel technique to propagate primary human preadipocytes without loss of differentiation capacity. Obes. (Silver Spring) 15, 2925–2931 (2007).

    CAS  Article  Google Scholar 

  48. 48.

    Rossmeislova, L. et al. Weight loss improves the adipogenic capacity of human preadipocytes and modulates their secretory profile. Diabetes 62, 1990–1995 (2013).

    CAS  Article  Google Scholar 

  49. 49.

    Moon, Y. A., Shah, N. A., Mohapatra, S., Warrington, J. A. & Horton, J. D. Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J. Biol. Chem. 276, 45358–45366 (2001).

    CAS  Article  Google Scholar 

  50. 50.

    Bonneau, L. et al. Plasma membrane sterol complexation, generated by filipin, triggers signaling responses in tobacco cells. Biochim. Biophys. Acta 1798, 2150–2159 (2010).

    CAS  Article  Google Scholar 

  51. 51.

    Grober, J. et al. Characterization of the promoter of human adipocyte hormone-sensitive lipase. Biochem. J. 328, 453–461 (1997).

    CAS  Article  Google Scholar 

  52. 52.

    Langin, D. et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 54, 3190–3197 (2005).

    CAS  Article  Google Scholar 

  53. 53.

    Iizuka, K., Bruick, R. K., Liang, G., Horton, J. D. & Uyeda, K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc. Natl Acad. Sci. USA 101, 7281–7286 (2004).

    CAS  Article  Google Scholar 

  54. 54.

    Tan, C. Y. et al. Brown adipose tissue thermogenic capacity is regulated by Elovl6. Cell Rep. 13, 2039–2047 (2015).

    CAS  Article  Google Scholar 

  55. 55.

    Klimcakova, E. et al. Worsening of obesity and metabolic status yields similar molecular adaptations in human subcutaneous and visceral adipose tissue: decreased metabolism and increased immune response. J. Clin. Endocrinol. Metab. 96, E73–E82 (2011).

    CAS  Article  Google Scholar 

  56. 56.

    Del Prato, S. et al. Characterization of cellular defects of insulin action in type 2 (non-insulin-dependent) diabetes mellitus. J. Clin. Invest. 91, 484–494 (1993).

    Article  Google Scholar 

  57. 57.

    DeFronzo, R. A., Tobin, J. D. & Andres, R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. 237, E214–E223 (1979).

    CAS  PubMed  Google Scholar 

  58. 58.

    Dahlman, I. et al. The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. Int. J. Obes. (Lond.). 39, 910–919 (2015).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge N. Venteclef (Centre de Recherche des Cordeliers, Paris) and J. Boucher (AstraZeneca, Göteborg, Sweden) for critical reading and comments on the manuscript. E. Courty and J. Personnaz participated in mouse studies during internship at I2MC. The GenoToul Animal Care, Anexplo, Imaging-TRI (especially F. Gaits-Iacovoni for helpful discussion) and Quantitative Transcriptomics facilities contributed to the work. This work was supported by Inserm, Paul Sabatier University, Fondation pour la Recherche Médicale (DEQ20170336720 to D.L.), Agence Nationale de la Recherche (ANR-12-BSV1-0025Obelip and ANR-17-CE14-0015Hepadialogue to D.L.), Région Midi-Pyrénées (OBELIP and ILIP projects to D.L.), FORCE/F-CRIN for clinical research on obesity, EU/EFPIA Innovative Medicines Initiative Joint Undertaking (EMIF grant 115372 to P.A., A.V.P. and D.L.) and AstraZeneca France (TALIP project to D.L.). D.L. is a member of Institut Universitaire de France.

Author information




P.M. and M. Houssier performed the majority of in vitro experiments and analyzed data with the contribution of A. Mairal, C.G., F.B., B.M., E.R., P.D.D., V. Sramkova, V.B., D.B., M.M., C.L., L.L., F.L. and M. Harms. P.M., M. Houssier, E. Mouisel, G.T., S.V., L.M., S.G., B.M.-R., T.S., H.G., C.H., A.V.P. and C.P. performed and analyzed in vivo data from mouse models. P.M., S.B., M.M., B.F., A.A., E. Meugnier, C.L., R.R.L., W.S., V. Stich, P.A., M.R., N.V. and H.V. performed and analyzed in vivo data in human clinical studies. S.C.-B., S.V. and J.B.-M. analyzed lipidomics data. A. Mazars and M.Z. performed and analyzed FRAP experiments. B.P., C.M., N.V., S.H. and H.V. interpreted the data. P.M., M. Houssier and D.L. conceived the study, interpreted the data and wrote the manuscript. D.L. supervised the study.

Corresponding author

Correspondence to Dominique Langin.

Ethics declarations

Competing interests

T.S. is an employee of Physiogenex. M. Harms and S.H. are employees of AstraZeneca. The other authors declare no competing financial and non-financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Methods

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morigny, P., Houssier, M., Mairal, A. et al. Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. Nat Metab 1, 133–146 (2019).

Download citation


  • ChREBP
  • Hormone-sensitive Lipase
  • ELOVL Fatty Acid Elongase 6
  • Insulin Signaling
  • ELOVL6 Expression

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing