Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signalling

An Author Correction to this article was published on 12 April 2019

This article has been updated (view changelog)

Abstract

Transferrin receptor 2 (Tfr2) is mainly expressed in the liver and controls iron homeostasis. Here, we identify Tfr2 as a regulator of bone homeostasis that inhibits bone formation. Mice lacking Tfr2 display increased bone mass and mineralization independent of iron homeostasis and hepatic Tfr2. Bone marrow transplantation experiments and studies of cell-specific Tfr2-knockout mice demonstrate that Tfr2 impairs BMP-p38MAPK signalling and decreases expression of the Wnt inhibitor sclerostin, specifically in osteoblasts. Reactivation of MAPK or overexpression of sclerostin rescues skeletal abnormalities in Tfr2-knockout mice. We further show that the extracellular domain of Tfr2 binds bone morphogenic proteins (BMPs) and inhibits BMP-2-induced heterotopic ossification by acting as a decoy receptor. These data indicate that Tfr2 limits bone formation by modulating BMP signalling, possibly through direct interaction with BMP either as a receptor or as a co-receptor in complex with other BMP receptors. Finally, the Tfr2 extracellular domain may be effective in the treatment of conditions associated with pathological bone formation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Tfr2 deficiency results in high bone mass.
Fig. 2: High bone mass in Tfr2–/– mice is independent of iron overload and the hepatic function of Tfr2.
Fig. 3: Deficiency of Tfr2 in osteogenic cells increases bone mass.
Fig. 4: Downregulation of BMP signalling and Wnt inhibitors in Tfr2 deficiency.
Fig. 5: High bone mass in Tfr2 deficiency is rescued by overexpressing SOST or reactivating MAPK signalling.
Fig. 6: Tfr2 binds BMP ligands and blocks heterotopic ossification.

Data availability

All data sets generated during the current study are available from the corresponding author upon reasonable request.

Change history

  • 12 April 2019

    In the version of this article initially published, affiliation 14 was incorrect, and Deutsche Forschungsgemeinschaft grants SFB1036 and SFB1118 were missing from the Acknowledgements. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. 1.

    Muckenthaler, M. U., Rivella, S., Hentze, M. W. & Galy, B. A red carpet for iron metabolism. Cell 168, 344–361 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Imel, E. A. et al. Serum fibroblast growth factor 23, serum iron and bone mineral density in premenopausal women. Bone 86, 98–105 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Guggenbuhl, P. et al. Bone mineral density in men with genetic hemochromatosis and HFE gene mutation. Osteoporos. Int. 16, 1809–1814 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    Powell, L. W., Seckington, R. C. & Deugnier, Y. Haemochromatosis. Lancet 388, 706–716 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Camaschella, C. et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat. Genet. 25, 14–15 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    Fleming, R. E. et al. Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis. Proc. Natl. Acad. Sci. USA 99, 10653–10658 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    Forejtnikova, H. et al. Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis. Blood 116, 5357–5367 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    Wallace, D. F., Summerville, L., Lusby, P. E. & Subramaniam, V. N. First phenotypic description of transferrin receptor 2 knockout mouse, and the role of hepcidin. Gut 54, 980–986 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    Johnson, M. B. & Enns, C. A. Diferric transferrin regulates transferrin receptor 2 protein stability. Blood 104, 4287–4293 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    Poli, M. et al. Transferrin receptor 2 and HFE regulate furin expression via mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) signaling. Implications for transferrin-dependent hepcidin regulation. Haematologica 95, 1832–1840 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    D’Alessio, F., Hentze, M. W. & Muckenthaler, M. U. The hemochromatosis proteins HFE, TfR2, and HJV form a membrane-associated protein complex for hepcidin regulation. J. Hepatol. 57, 1052–1060 (2012).

    Article  Google Scholar 

  13. 13.

    Wallace, D. F. et al. Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology 50, 1992–2000 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Hogan, B. L. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580–1594 (1996).

    CAS  Article  Google Scholar 

  15. 15.

    Andriopoulos, B. et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat. Genet. 41, 482–487 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    Babitt, J. L. et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat. Genet. 38, 531–539 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    Mayeur, C., Leyton, P. A., Kolodziej, S. A., Yu, B. & Bloch, K. D. BMP type II receptors have redundant roles in the regulation of hepatic hepcidin gene expression and iron metabolism. Blood 124, 2116–2123 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Steinbicker, A. U. et al. Perturbation of hepcidin expression by BMP type I receptor deletion induces iron overload in mice. Blood 118, 4224–4230 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Wang, R. H. et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell. Metab. 2, 399–409 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    Yu, P. B. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4, 33–41 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    Shore, E. M. et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat. Genet. 38, 525–527 (2006).

    CAS  Article  Google Scholar 

  22. 22.

    Wallace, D. F. et al. A critical role for murine transferrin receptor 2 in erythropoiesis during iron restriction. Br. J. Haematol. 168, 891–901 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Nai, A. et al. The erythroid function of transferrin receptor 2 revealed by Tmprss6 inactivation in different models of transferrin receptor 2 knockout mice. Haematologica 99, 1016–1021 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Urist, M. R. Bone: formation by autoinduction. Science 150, 893–899 (1965).

    CAS  Article  Google Scholar 

  25. 25.

    Roetto, A. et al. Comparison of 3 Tfr2-deficient murine models suggests distinct functions for Tfr2-alpha and Tfr2-beta isoforms in different tissues. Blood 115, 3382–3389 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    Herrmann, T. et al. Iron overload in adult Hfe-deficient mice independent of changes in the steady-state expression of the duodenal iron transporters DMT1 and Ireg1/ferroportin. J. Mol. Med. 82, 39–48 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    Altamura, S. et al. Resistance of ferroportin to hepcidin binding causes exocrine pancreatic failure and fatal iron overload. Cell. Metab. 20, 359–367 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Tsay, J. et al. Bone loss caused by iron overload in a murine model: importance of oxidative stress. Blood 116, 2582–2589 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Rishi, G., Secondes, E. S., Wallace, D. F. & Subramaniam, V. N. Normal systemic iron homeostasis in mice with macrophage-specific deletion of transferrin receptor 2. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G171–G180 (2016).

    Article  Google Scholar 

  30. 30.

    Kamiya, N. et al. Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. J. Bone Miner. Res. 25, 200–210 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    Simsek Kiper, P. O. et al. Cortical-bone fragility–insights from sFRP4 deficiency in Pyle’s disease. N. Engl. J. Med. 374, 2553–2562 (2016).

    Article  Google Scholar 

  32. 32.

    Wosczyna, M. N., Biswas, A. A., Cogswell, C. A. & Goldhamer, D. J. Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP-dependent osteogenic activity and mediate heterotopic ossification. J. Bone Miner. Res. 27, 1004–1017 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Shimono, K. et al. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-gamma agonists. Nat. Med. 17, 454–460 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    Fransen, M. et al. Safety and efficacy of routine postoperative ibuprofen for pain and disability related to ectopic bone formation after hip replacement surgery (HIPAID): randomised controlled trial. BMJ 333, 519 (2006).

    CAS  Article  Google Scholar 

  35. 35.

    Shen, G. S. et al. Hepcidin1 knockout mice display defects in bone microarchitecture and changes of bone formation markers. Calcif. Tissue Int. 94, 632–639 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Guggenbuhl, P. et al. Bone status in a mouse model of genetic hemochromatosis. Osteoporos. Int. 22, 2313–2319 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Doyard, M. et al. Decreased bone formation explains osteoporosis in a genetic mouse model of hemochromatosiss. PLoS ONE 11, e0148292 (2016).

    Article  Google Scholar 

  38. 38.

    Calzolari, A. et al. TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J. Cell. Sci. 119, 4486–4498 (2006).

    CAS  Article  Google Scholar 

  39. 39.

    Keller, S., Nickel, J., Zhang, J. L., Sebald, W. & Mueller, T. D. Molecular recognition of BMP-2 and BMP receptor IA. Nat. Struct. Mol. Biol. 11, 481–488 (2004).

    CAS  Article  Google Scholar 

  40. 40.

    Yin, H., Yeh, L. C., Hinck, A. P. & Lee, J. C. Characterization of ligand-binding properties of the human BMP type II receptor extracellular domain. J. Mol. Biol. 378, 191–203 (2008).

    CAS  Article  Google Scholar 

  41. 41.

    Canali, S., Wang, C. Y., Zumbrennen-Bullough, K. B., Bayer, A. & Babitt, J. L. Bone morphogenetic protein 2 controls iron homeostasis in mice independent of Bmp6. Am. J. Hematol. 92, 1204–1213 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Koch, P. S. et al. Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis. Blood 129, 415–419 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Ramos, E. et al. Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice. Hepatology 53, 1333–1341 (2011).

    CAS  Article  Google Scholar 

  44. 44.

    Li, X. et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J. Bone Miner. Res. 23, 860–869 (2008).

    Article  Google Scholar 

  45. 45.

    MacDonald, B. T. et al. Bone mass is inversely proportional to Dkk1 levels in mice. Bone 41, 331–339 (2007).

    CAS  Article  Google Scholar 

  46. 46.

    van Bezooijen, R. L. et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J. Exp. Med. 199, 805–814 (2004).

    Article  Google Scholar 

  47. 47.

    Kamiya, N. et al. BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development 135, 3801–3811 (2008).

    CAS  Article  Google Scholar 

  48. 48.

    Yu, C. et al. Advanced oxidation protein products induce apoptosis, and upregulate sclerostin and RANKL expression, in osteocytic MLO-Y4 cells via JNK/p38 MAPK activation. Mol. Med. Rep. 15, 543–550 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Croons, V., Martinet, W., Herman, A. G., Timmermans, J. P. & De Meyer, G. R. The protein synthesis inhibitor anisomycin induces macrophage apoptosis in rabbit atherosclerotic plaques through p38 mitogen-activated protein kinase. J. Pharmacol. Exp. Ther. 329, 856–864 (2009).

    CAS  Article  Google Scholar 

  50. 50.

    Kamiya, N., Kaartinen, V. M. & Mishina, Y. Loss-of-function of ACVR1 in osteoblasts increases bone mass and activates canonical Wnt signaling through suppression of Wnt inhibitors SOST and DKK1. Biochem. Biophys. Res. Commun. 414, 326–330 (2011).

    CAS  Article  Google Scholar 

  51. 51.

    Biswas, S. et al. BMPRIA is required for osteogenic differentiation and RANKL expression in adult bone marrow mesenchymal stromal cells. Sci. Rep. 8, 8475 (2018).

    Article  Google Scholar 

  52. 52.

    Witcher, P. C. et al. Sclerostin neutralization unleashes the osteoanabolic effects of Dkk1 inhibition. JCI Insight 3, e98673 (2018).

    Article  Google Scholar 

  53. 53.

    Lowery, J. W. et al. Loss of BMPR2 leads to high bone mass due to increased osteoblast activity. J. Cell Sci. 128, 1308–1315 (2015).

    CAS  Article  Google Scholar 

  54. 54.

    Bao, Q. et al. Disruption of bone morphogenetic protein type IA receptor in osteoblasts impairs bone quality and bone strength in mice. Cell Tissue Res. 374, 263–273 (2018).

    CAS  Article  Google Scholar 

  55. 55.

    Zhang, Y. et al. Loss of BMP signaling through BMPR1A in osteoblasts leads to greater collagen cross-link maturation and material-level mechanical properties in mouse femoral trabecular compartments. Bone 88, 74–84 (2016).

    CAS  Article  Google Scholar 

  56. 56.

    Forsberg, J. A. et al. Heterotopic ossification in high-energy wartime extremity injuries: prevalence and risk factors. J. Bone Jt. Surg. Am. 91, 1084–1091 (2009).

    Article  Google Scholar 

  57. 57.

    Regis, D., Sandri, A. & Sambugaro, E. Incidence of heterotopic ossification after surface and conventional total hip arthroplasty: a comparative study using anterolateral approach and indomethacin prophylaxis. Biomed. Res. Int. 2013, 293528 (2013).

    Article  Google Scholar 

  58. 58.

    Chakkalakal, S. A. et al. Palovarotene inhibits heterotopic ossification and maintains limb mobility and growth in mice with the human ACVR1(R206H) fibrodysplasia ossificans progressiva (FOP) mutation. J. Bone Miner. Res. 31, 1666–1675 (2016).

    CAS  Article  Google Scholar 

  59. 59.

    Agarwal, S. et al. mTOR inhibition and BMP signaling act synergistically to reduce muscle fibrosis and improve myofiber regeneration. JCI Insight 1, e89805 (2016).

    Article  Google Scholar 

  60. 60.

    Hino, K. et al. Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva. J. Clin. Invest. 127, 3339–3352 (2017).

    Article  Google Scholar 

  61. 61.

    Rodda, S. J. & McMahon, A. P. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133, 3231–3244 (2006).

    CAS  Article  Google Scholar 

  62. 62.

    Nakamura, T. et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130, 811–823 (2007).

    CAS  Article  Google Scholar 

  63. 63.

    Clausen, B. E., Burkhardt, C., Reith, W., Renkawitz, R. & Forster, I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8, 265–277 (1999).

    CAS  Article  Google Scholar 

  64. 64.

    Rhee, Y. et al. PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J. Bone Miner. Res. 26, 1035–1046 (2011).

    CAS  Article  Google Scholar 

  65. 65.

    Liu, X. et al. A novel mouse model of trauma induced heterotopic ossification. J. Orthop. Res. 32, 183–188 (2014).

    CAS  Article  Google Scholar 

  66. 66.

    Norden, D. M. et al. Ibuprofen ameliorates fatigue- and depressive-like behavior in tumor-bearing mice. Life Sci. 143, 65–70 (2015).

    CAS  Article  Google Scholar 

  67. 67.

    Bassett, J. H. et al. Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts. Proc. Natl. Acad. Sci. USA 107, 7604–7609 (2010).

    CAS  Article  Google Scholar 

  68. 68.

    Rauner, M. et al. Increased EPO levels are associated with bone loss in mice lacking PHD2 in EPO-producing cells. J. Bone Miner. Res. 31, 1877–1887 (2016).

    CAS  Article  Google Scholar 

  69. 69.

    Theurl, I. et al. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat. Med. 22, 945–951 (2016).

    CAS  Article  Google Scholar 

  70. 70.

    Liberzon, A. et al. The Molecular Signatures Database hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    CAS  Article  Google Scholar 

  71. 71.

    Park, K. W. et al. The small molecule phenamil induces osteoblast differentiation and mineralization. Mol. Cell. Biol. 29, 3905–3914 (2009).

    CAS  Article  Google Scholar 

  72. 72.

    Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank our technicians for their excellent work. We thank the Core Facility Cellular Imaging of TU Dresden for their support with the confocal microscope and the acquisition of immunofluorescence images and A. Drescher and J. Nickel for critical suggestions regarding SPR analyses. This work was supported by the German Research Foundation (DFG-SFB655 to L.C.H. and U.P.; TRR-67 to V.H. and L.C.H.; µBONE to M.R. and L.C.H.; RA1923/12-1 to M.R.) and MedDrive start-up grants from the Medical Faculty of the Technische Universität Dresden (M.R. and U.B.). M.R. was supported by the Support-the-Best Initiative of the TUD funded through the Excellence initiative of the German Federal and State Governments. J.H.D.B. and G.R.W. received a Wellcome Trust Joint Investigator Award (110141/Z/15/Z and 110140/Z/15/Z). M.U.M. acknowledges support by grants from the Deutsche Forschungsgemeinschaft (SFB1036 and SFB1118).

Author information

Affiliations

Authors

Contributions

M.R., U.B., A.R., J.S-H., S.R., U.P., and L.C.H. designed experiments. M.R., U.B., A.R., R.M.P., J.S.-H., H.W., S.R., G.C., A.P., R.L., I.H., S.C., and D.K.E. performed experiments and analysed data. T.B., S.A., S.C., M.U.M., and I.T. provided mouse bone samples. M.R., U.B., A.R., J.S.-H., H.W., S.R., V.H., I.H., T.B., M.U.M., J.H.D.B., G.R.W., G.S., I.T., U.P., and L.C.H. interpreted the data and provided critical comments on the manuscript. M.R., U.B., and L.C.H. wrote the manuscript. All authors provided critical review of the manuscript.

Corresponding author

Correspondence to Martina Rauner.

Ethics declarations

Competing interests

The Technische Universität Dresden holds a patent for the use of Tfr2-ECD to treat heterotopic ossification and other related bone excess diseases (PCT/EP2018/065846). Moreover, a patent application has been filed at the European Patent Office for the use of Tfr2 blockade for the treatment of bone and haematological diseases (#18 177 441.5, 19.06.2018). M.R., U.B., U.P., and L.C.H. are the inventors of both patents. I.T. is a consultant for Kymab Ltd. The other authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 2–4

Reporting Summary

Supplementary Table 1

Summary of the results obtained from gene ontology analysis

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rauner, M., Baschant, U., Roetto, A. et al. Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signalling. Nat Metab 1, 111–124 (2019). https://doi.org/10.1038/s42255-018-0005-8

Download citation

Keywords

  • Sclerostin
  • Heterotopic Ossification
  • TfR Binding
  • SOST Expression
  • High Bone Mass Phenotype

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing