Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Emergent U(1) lattice gauge theory in Rydberg atom arrays

Abstract

Rydberg atom arrays have emerged as a novel platform exhibiting rich quantum many-body physics and offering promise for universal quantum computation. The Rydberg blockade effect plays an essential role in establishing many-body correlations in this system. Over the past 2 or 3 years, Rydberg arrays have been used to realize exotic ground states such as spin liquids, quantum many-body scar states violating quantum thermalization, and a confinement–deconfinement transition through quantum dynamics. In this Perspective, we use lattice gauge theory as a universal theoretical framework to describe the Rydberg blockade effect and the recent exciting developments in this system from equilibrium phases to quantum dynamics. Analysing Rydberg atom arrays through this theoretical framework can reveal their connection with other strongly correlated systems, such as the Fermi–Hubbard model and the lattice gauge model, which can inspire the discovery of new phenomena in this platform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gauge theory description of Rydberg blockade effect.
Fig. 2: Spin liquid state with Rydberg atoms array.
Fig. 3: Quantum many-body scar states in the PXP model.
Fig. 4: Thermalization across the Ising transition.
Fig. 5: Confinement–deconfinement dynamics across Ising transition.

Similar content being viewed by others

References

  1. Henriet, L. et al. Quantum computing with neutral atoms. Quantum 4, 327 (2020).

    Article  Google Scholar 

  2. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    Article  ADS  Google Scholar 

  3. Labuhn, H. et al. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature 534, 667–670 (2016).

    Article  ADS  Google Scholar 

  4. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article  ADS  Google Scholar 

  5. Lienhard, V. et al. Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic Ising models with antiferromagnetic interactions. Phys. Rev. X 8, 021070 (2018).

    Google Scholar 

  6. Levine, H. et al. High-fidelity control and entanglement of Rydberg-atom qubits. Phys. Rev. Lett. 121, 123603 (2018).

    Article  ADS  Google Scholar 

  7. Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  8. Keesling, A. et al. Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator. Nature 568, 207–211 (2019).

    Article  ADS  Google Scholar 

  9. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article  Google Scholar 

  10. Bluvstein, D. et al. Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science 371, 1355–1359 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  11. Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).

    Article  ADS  Google Scholar 

  12. Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article  ADS  Google Scholar 

  13. Semeghini, G. et al. Probing topological spin liquids on a programmable quantum simulator. Science 374, 1242–1247 (2021).

    Article  ADS  Google Scholar 

  14. Choi, J. et al. Preparing random states and benchmarking with many-body quantum chaos. Nature 613, 468–473 (2023).

    Article  ADS  Google Scholar 

  15. Bornet, G. et al. Scalable spin squeezing in a dipolar Rydberg atom array. Nature 621, 728–733 (2023).

    Article  ADS  Google Scholar 

  16. Eckner, W. J. et al. Realizing spin squeezing with Rydberg interactions in an optical clock. Nature 621, 734–739 (2023).

    Article  ADS  Google Scholar 

  17. Zhang, J. et al. Probing quantum floating phases in Rydberg atom arrays. Preprint at https://arxiv.org/abs/2401.08087 (2024).

  18. Beugnon, J. et al. Two-dimensional transport and transfer of a single atomic qubit in optical tweezers. Nat. Phys. 3, 696–699 (2007).

    Article  Google Scholar 

  19. Kim, H. et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat. Commun. 7, 13317 (2016).

    Article  ADS  Google Scholar 

  20. Saffman, M. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. J. Phys. B At. Mol. Opt. Phys. 49, 202001 (2016).

    Article  ADS  Google Scholar 

  21. Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    Article  ADS  Google Scholar 

  22. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article  ADS  Google Scholar 

  23. Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).

    Article  ADS  Google Scholar 

  24. Schymik, K.-N. et al. Enhanced atom-by-atom assembly of arbitrary tweezer arrays. Phys. Rev. A 102, 063107 (2020).

    Article  ADS  Google Scholar 

  25. Madjarov, I. S. et al. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857–861 (2020).

    Article  Google Scholar 

  26. Morgado, M. & Whitlock, S. Quantum simulation and computing with Rydberg-interacting qubits. AVS Quantum Sci. 3, 023501 (2021).

    Article  ADS  Google Scholar 

  27. Wu, X. et al. A concise review of Rydberg atom based quantum computation and quantum simulation. Chin. Phys. B 30, 020305 (2021).

    Article  ADS  Google Scholar 

  28. Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

    Article  ADS  Google Scholar 

  29. Deist, E. et al. Mid-circuit cavity measurement in a neutral atom array. Phys. Rev. Lett. 129, 203602 (2022).

    Article  ADS  Google Scholar 

  30. Singh, K. et al. Mid-circuit correction of correlated phase errors using an array of spectator qubits. Science 380, 1265–1269 (2023).

    Article  ADS  Google Scholar 

  31. Graham, T. M. et al. Midcircuit measurements on a single-species neutral alkali atom quantum processor. Phys. Rev. X 13, 041051 (2023).

    Google Scholar 

  32. Evered, S. J. et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 622, 268–272 (2023).

    Article  ADS  Google Scholar 

  33. Scholl, P. et al. Erasure conversion in a high-fidelity Rydberg quantum simulator. Nature 622, 273–278 (2023).

    Article  ADS  Google Scholar 

  34. Ma, S. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279–284 (2023).

    Article  ADS  Google Scholar 

  35. Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

    Article  ADS  Google Scholar 

  36. Lis, J. W. et al. Midcircuit operations using the omg architecture in neutral atom arrays. Phys. Rev. X 13, 041035 (2023).

    Google Scholar 

  37. Norcia, M. A. et al. Midcircuit qubit measurement and rearrangement in a 171Yb atomic array. Phys. Rev. X 13, 041034 (2023).

    Google Scholar 

  38. Surace, F. M. et al. Lattice gauge theories and string dynamics in Rydberg atom quantum simulators. Phys. Rev. X 10, 021041 (2020).

    Google Scholar 

  39. Celi, A. et al. Emerging two-dimensional gauge theories in Rydberg configurable arrays. Phys. Rev. X 10, 021057 (2020).

    Google Scholar 

  40. Cheng, Y., Liu, S., Zheng, W., Zhang, P. & Zhai, H. Tunable confinement-deconfinement transition in an ultracold-atom quantum simulator. PRX Quantum 3, 040317 (2022).

    Article  ADS  Google Scholar 

  41. Pan, L. & Zhai, H. Composite spin approach to the blockade effect in Rydberg atom arrays. Phys. Rev. Res. 4, L032037 (2022).

    Article  Google Scholar 

  42. Cheng, Y., Li, C. & Zhai, H. Variational approach to quantum spin liquid in a Rydberg atom simulator. New J. Phys. 25, 033010 (2023).

    Article  ADS  Google Scholar 

  43. Halimeh, J. C., Barbiero, L., Hauke, P., Grusdt, F. & Bohrdt, A. Robust quantum many-body scars in lattice gauge theories. Quantum 7, 1004 (2023).

    Article  Google Scholar 

  44. Desaules, J.-Y. et al. Weak ergodicity breaking in the Schwinger model. Phys. Rev. B 107, L201105 (2023).

    Article  ADS  Google Scholar 

  45. Polyakov, A. M. Gauge Fields and Strings (Taylor & Francis, 1987).

  46. Zhang, S. C., Hansson, T. H. & Kivelson, S. Effective-field-theory model for the fractional quantum Hall effect. Phys. Rev. Lett. 62, 82–85 (1989).

    Article  ADS  Google Scholar 

  47. Zhang, S. C. The Chern-Simons-Landau-Ginzburg theory of the fractional quantum Hall effect. Int. J. Mod. Phys. B 06, 25–58 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  48. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

  49. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).

    Article  ADS  Google Scholar 

  50. Wen, X.-G. Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford Univ. Press, 2007).

  51. Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  52. Halimeh, J. C., Aidelsburger, M., Grusdt, F., Hauke, P. & Yang, B. Cold-atom quantum simulators of gauge theories. Preprint at https://arxiv.org/abs/2310.12201 (2023).

  53. Yang, B. et al. Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator. Nature 587, 392–396 (2020).

    Article  ADS  Google Scholar 

  54. Zhou, Z.-Y. et al. Thermalization dynamics of a gauge theory on a quantum simulator. Science 377, 311–314 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  55. Wang, H.-Y. et al. Interrelated thermalization and quantum criticality in a lattice gauge simulator. Phys. Rev. Lett. 131, 050401 (2023).

    Article  ADS  Google Scholar 

  56. Fendley, P., Sengupta, K. & Sachdev, S. Competing density-wave orders in a one-dimensional hard-boson model. Phys. Rev. B 69, 075106 (2004).

    Article  ADS  Google Scholar 

  57. Lesanovsky, I. Many-body spin interactions and the ground state of a dense Rydberg lattice gas. Phys. Rev. Lett. 106, 025301 (2011).

    Article  ADS  Google Scholar 

  58. Lesanovsky, I. & Katsura, H. Interacting Fibonacci anyons in a Rydberg gas. Phys. Rev. A 86, 041601 (2012).

    Article  ADS  Google Scholar 

  59. Lesanovsky, I. Liquid ground state, gap, and excited states of a strongly correlated spin chain. Phys. Rev. Lett. 108, 105301 (2012).

    Article  ADS  Google Scholar 

  60. Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 14, 745–749 (2018).

    Article  Google Scholar 

  61. Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Quantum scarred eigenstates in a Rydberg atom chain: entanglement, breakdown of thermalization, and stability to perturbations. Phys. Rev. B 98, 155134 (2018).

    Article  ADS  Google Scholar 

  62. Michailidis, A. A. et al. Slow dynamics in translation-invariant quantum lattice models. Phys. Rev. B 97, 104307 (2018).

    Article  ADS  Google Scholar 

  63. Iadecola, T., Schecter, M. & Xu, S. Quantum many-body scars from magnon condensation. Phys. Rev. B 100, 184312 (2019).

    Article  ADS  Google Scholar 

  64. Ho, W. W., Choi, S., Pichler, H. & Lukin, M. D. Periodic orbits, entanglement, and quantum many-body scars in constrained models: matrix product state approach. Phys. Rev. Lett. 122, 040603 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  65. Mark, D. K., Lin, C.-J. & Motrunich, O. I. Exact eigenstates in the Lesanovsky model, proximity to integrability and the PXP model, and approximate scar states. Phys. Rev. B 101, 094308 (2020).

    Article  ADS  Google Scholar 

  66. Bull, K., Desaules, J.-Y. & Papić, Z. Quantum scars as embeddings of weakly broken Lie algebra representations. Phys. Rev. B 101, 165139 (2020).

    Article  ADS  Google Scholar 

  67. Serbyn, M., Abanin, D. A. & Papić, Z. Quantum many-body scars and weak breaking of ergodicity. Nat. Phys. 17, 675–685 (2021).

    Article  Google Scholar 

  68. Turner, C. J., Desaules, J.-Y., Bull, K. & Papić, Z. Correspondence principle for many-body scars in ultracold Rydberg atoms. Phys. Rev. X 11, 021021 (2021).

    Google Scholar 

  69. Moudgalya, S., Bernevig, B. A. & Regnault, N. Quantum many-body scars and Hilbert space fragmentation: a review of exact results. Rep. Prog. Phys. 85, 086501 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  70. Barnes, S. E. New method for the Anderson model. J. Phys. F Met. Phys. 6, 1375 (1976).

    Article  ADS  Google Scholar 

  71. Read, N. & Newns, D. M. A new functional integral formalism for the degenerate Anderson model. J. Phys. C Solid State Phys. 16, L1055 (1983).

    Article  ADS  Google Scholar 

  72. Coleman, P. New approach to the mixed-valence problem. Phys. Rev. B 29, 3035–3044 (1984).

    Article  ADS  Google Scholar 

  73. Schwinger, J. Gauge invariance and mass. Phys. Rev. 125, 397–398 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  74. Schwinger, J. Gauge invariance and mass. II. Phys. Rev. 128, 2425–2429 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  75. Coleman, S. More about the massive Schwinger model. Ann. Phys. 101, 239–267 (1976).

    Article  ADS  Google Scholar 

  76. Kogut, J. B. An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51, 659–713 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  77. Chandrasekharan, S. & Wiese, U.-J. Quantum link models: a discrete approach to gauge theories. Nucl. Phys. B 492, 455–471 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  78. Kogut, J. B. The lattice gauge theory approach to quantum chromodynamics. Rev. Mod. Phys. 55, 775–836 (1983).

    Article  ADS  Google Scholar 

  79. Tong, D. Gauge Theory: Lecture Notes (DAMTP Cambridge, 2018).

  80. Büchler, H. P., Hermele, M., Huber, S. D., Fisher, M. P. A. & Zoller, P. Atomic quantum simulator for lattice gauge theories and ring exchange models. Phys. Rev. Lett. 95, 040402 (2005).

    Article  ADS  Google Scholar 

  81. Zache, T. V. et al. Dynamical topological transitions in the massive Schwinger model with a θ term. Phys. Rev. Lett. 122, 050403 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  82. Huang, Y.-P., Banerjee, D. & Heyl, M. Dynamical quantum phase transitions in U(1) quantum link models. Phys. Rev. Lett. 122, 250401 (2019).

    Article  ADS  Google Scholar 

  83. Cheng, Y. & Li, C. Gauge theory description of Rydberg atom arrays with a tunable blockade radius. Phys. Rev. B 107, 094302 (2023).

    Article  ADS  Google Scholar 

  84. Chepiga, N. & Mila, F. Floating phase versus chiral transition in a 1D hard-boson model. Phys. Rev. Lett. 122, 017205 (2019).

    Article  ADS  Google Scholar 

  85. Slagle, K. et al. Microscopic characterization of Ising conformal field theory in Rydberg chains. Phys. Rev. B 104, 235109 (2021).

    Article  ADS  Google Scholar 

  86. Slagle, K. et al. Quantum spin liquids bootstrapped from Ising criticality in Rydberg arrays. Phys. Rev. B 106, 115122 (2022).

    Article  ADS  Google Scholar 

  87. Verresen, R., Lukin, M. D. & Vishwanath, A. Prediction of toric code topological order from Rydberg blockade. Phys. Rev. X 11, 031005 (2021).

    Google Scholar 

  88. Samajdar, R., Ho, W. W., Pichler, H., Lukin, M. D. & Sachdev, S. Quantum phases of Rydberg atoms on a Kagome lattice. Proc. Natl Acad. Sci. USA 118, e2015785118 (2021).

    Article  Google Scholar 

  89. Giudici, G., Lukin, M. D. & Pichler, H. Dynamical preparation of quantum spin liquids in Rydberg atom arrays. Phys. Rev. Lett. 129, 090401 (2022).

    Article  ADS  Google Scholar 

  90. Tarabunga, P. S., Surace, F. M., Andreoni, R., Angelone, A. & Dalmonte, M. Gauge-theoretic origin of Rydberg quantum spin liquids. Phys. Rev. Lett. 129, 195301 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  91. Giudice, G., Surace, F. M., Pichler, H. & Giudici, G. Trimer states with \({{\mathbb{z}}}_{3}\) topological order in Rydberg atom arrays. Phys. Rev. B 106, 195155 (2022).

    Article  ADS  Google Scholar 

  92. Verresen, R. & Vishwanath, A. Unifying Kitaev magnets, Kagome dimer models, and ruby Rydberg spin liquids. Phys. Rev. X 12, 041029 (2022).

    Google Scholar 

  93. Samajdar, R., Joshi, D. G., Teng, Y. & Sachdev, S. Emergent \({{\mathbb{z}}}_{2}\) gauge theories and topological excitations in Rydberg atom arrays. Phys. Rev. Lett. 130, 043601 (2023).

    Article  ADS  Google Scholar 

  94. Ohler, S., Kiefer-Emmanouilidis, M. & Fleischhauer, M. Quantum spin liquids of Rydberg excitations in a honeycomb lattice induced by density-dependent Peierls phases. Phys. Rev. Res. 5, 013157 (2023).

    Article  Google Scholar 

  95. Tarabunga, P. S., Giudici, G., Chanda, T. & Dalmonte, M. Classification and emergence of quantum spin liquids in chiral Rydberg models. Phys. Rev. B 108, 075118 (2023).

    Article  ADS  Google Scholar 

  96. Sun, B.-Y., Goldman, N., Aidelsburger, M. & Bukov, M. Engineering and probing non-Abelian chiral spin liquids using periodically driven ultracold atoms. PRX Quantum 4, 020329 (2023).

    Article  ADS  Google Scholar 

  97. Yan, Z., Wang, Y.-C., Samajdar, R., Sachdev, S. & Meng, Z. Y. Emergent glassy behavior in a Kagome Rydberg atom array. Phys. Rev. Lett. 130, 206501 (2023).

    Article  ADS  Google Scholar 

  98. Bauer, N. M., Kokkas, E., Ale, V. & Siopsis, G. Non-Abelian anyons with Rydberg atoms. Phys. Rev. A 107, 062407 (2023).

    Article  ADS  Google Scholar 

  99. Sahay, R., Vishwanath, A. & Verresen, R. Quantum spin puddles and lakes: Nisq-era spin liquids from non-equilibrium dynamics. Preprint at https://arxiv.org/abs/2211.01381 (2023).

  100. Guo, S., Huang, J., Hu, J. & Li, Z.-X. Order by disorder and an emergent Kosterlitz-Thouless phase in a triangular Rydberg array. Phys. Rev. A 108, 053314 (2023).

    Article  ADS  Google Scholar 

  101. Vafek, O., Regnault, N. & Bernevig, B. A. Entanglement of exact excited eigenstates of the Hubbard model in arbitrary dimension. SciPost Phys. 3, 043 (2017).

    Article  ADS  Google Scholar 

  102. Moudgalya, S., Rachel, S., Bernevig, B. A. & Regnault, N. Exact excited states of nonintegrable models. Phys. Rev. B 98, 235155 (2018).

    Article  ADS  Google Scholar 

  103. Moudgalya, S., Regnault, N. & Bernevig, B. A. Entanglement of exact excited states of Affleck-Kennedy-Lieb-Tasaki models: exact results, many-body scars, and violation of the strong eigenstate thermalization hypothesis. Phys. Rev. B 98, 235156 (2018).

    Article  ADS  Google Scholar 

  104. Choi, S. et al. Emergent SU(2) dynamics and perfect quantum many-body scars. Phys. Rev. Lett. 122, 220603 (2019).

    Article  ADS  Google Scholar 

  105. Lin, C.-J. & Motrunich, O. I. Exact quantum many-body scar states in the Rydberg-blockaded atom chain. Phys. Rev. Lett. 122, 173401 (2019).

    Article  ADS  Google Scholar 

  106. Schecter, M. & Iadecola, T. Weak ergodicity breaking and quantum many-body scars in spin-1 XY magnets. Phys. Rev. Lett. 123, 147201 (2019).

    Article  ADS  Google Scholar 

  107. O’Dea, N., Burnell, F., Chandran, A. & Khemani, V. From tunnels to towers: quantum scars from Lie algebras and q-deformed Lie algebras. Phys. Rev. Res. 2, 043305 (2020).

    Article  Google Scholar 

  108. Mark, D. K., Lin, C.-J. & Motrunich, O. I. Unified structure for exact towers of scar states in the Affleck-Kennedy-Lieb-Tasaki and other models. Phys. Rev. B 101, 195131 (2020).

    Article  ADS  Google Scholar 

  109. Mark, D. K. & Motrunich, O. I. η-Pairing states as true scars in an extended Hubbard model. Phys. Rev. B 102, 075132 (2020).

    Article  ADS  Google Scholar 

  110. Moudgalya, S., Regnault, N. & Bernevig, B. A. η-Pairing in Hubbard models: from spectrum generating algebras to quantum many-body scars. Phys. Rev. B 102, 085140 (2020).

    Article  ADS  Google Scholar 

  111. Moudgalya, S., O’Brien, E., Bernevig, B. A., Fendley, P. & Regnault, N. Large classes of quantum scarred Hamiltonians from matrix product states. Phys. Rev. B 102, 085120 (2020).

    Article  ADS  Google Scholar 

  112. Su, G.-X. et al. Observation of many-body scarring in a Bose-Hubbard quantum simulator. Phys. Rev. Res. 5, 023010 (2023).

    Article  Google Scholar 

  113. Vidal, G., Latorre, J. I., Rico, E. & Kitaev, A. Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003).

    Article  ADS  Google Scholar 

  114. Calabrese, P. & Cardy, J. Entanglement entropy and quantum field theory. J. Stat. Mech. Theor. Exp. 2004, P06002 (2004).

    Article  MathSciNet  Google Scholar 

  115. Yao, Z., Pan, L., Liu, S. & Zhai, H. Quantum many-body scars and quantum criticality. Phys. Rev. B 105, 125123 (2022).

    Article  ADS  Google Scholar 

  116. Peng, C. & Cui, X. Bridging quantum many-body scars and quantum integrability in Ising chains with transverse and longitudinal fields. Phys. Rev. B 106, 214311 (2022).

    Article  ADS  Google Scholar 

  117. Daniel, A. et al. Bridging quantum criticality via many-body scarring. Phys. Rev. B 107, 235108 (2023).

    Article  ADS  Google Scholar 

  118. Yang, C. N. η pairing and off-diagonal long-range order in a Hubbard model. Phys. Rev. Lett. 63, 2144–2147 (1989).

    Article  ADS  Google Scholar 

  119. Yang, C. N. & Zhang, S. SO(4) symmetry in a Hubbard model. Mod. Phys. Lett. B 04, 759–766 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  120. Zhang, S. Pseudospin symmetry and new collective modes of the Hubbard model. Phys. Rev. Lett. 65, 120–122 (1990).

    Article  ADS  Google Scholar 

  121. Zohar, E. & Reznik, B. Confinement and lattice quantum-electrodynamic electric flux tubes simulated with ultracold atoms. Phys. Rev. Lett. 107, 275301 (2011).

    Article  Google Scholar 

  122. Banerjee, D. et al. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench. Phys. Rev. Lett. 109, 175302 (2012).

    Article  ADS  Google Scholar 

  123. Muschik, C. et al. U(1) Wilson lattice gauge theories in digital quantum simulators. New J. Phys. 19, 103020 (2017).

    Article  ADS  Google Scholar 

  124. Halimeh, J. C., McCulloch, I. P., Yang, B. & Hauke, P. Tuning the topological θ-angle in cold-atom quantum simulators of gauge theories. PRX Quantum 3, 040316 (2022).

    Article  ADS  Google Scholar 

  125. Zhang, W.-Y. et al. Observation of microscopic confinement dynamics by a tunable topological θ-angle. Preprint at https://arxiv.org/abs/2306.11794 (2023).

  126. Chepiga, N. & Mila, F. Kibble-Zurek exponent and chiral transition of the period-4 phase of Rydberg chains. Nat. Commun. 12, 414 (2021).

    Article  ADS  Google Scholar 

  127. Chepiga, N. & Mila, F. Lifshitz point at commensurate melting of chains of Rydberg atoms. Phys. Rev. Res. 3, 023049 (2021).

    Article  Google Scholar 

  128. Maceira, I. A., Chepiga, N. & Mila, F. Conformal and chiral phase transitions in Rydberg chains. Phys. Rev. Res. 4, 043102 (2022).

    Article  Google Scholar 

  129. Chepiga, N. Tunable quantum criticality in multicomponent Rydberg arrays. Phys. Rev. Lett. 132, 076505 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  130. Yu, X.-J., Yang, S., Xu, J.-B. & Xu, L. Fidelity susceptibility as a diagnostic of the commensurate-incommensurate transition: a revisit of the programmable Rydberg chain. Phys. Rev. B 106, 165124 (2022).

    Article  ADS  Google Scholar 

  131. Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

    Article  ADS  Google Scholar 

  132. Rajput, A., Roggero, A. & Wiebe, N. Quantum error correction with gauge symmetries. npj Quantum Inf. 9, 41 (2023).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Innovation Program for Quantum Science and Technology 2021ZD0302005, the XPLORER Prize, NSFC Grant numbers U23A6004, 12204034 and 12374251, Tsinghua University Initiative Scientific Research Program, and Fundamental Research Funds for the Central Universities (No.FRFTP-22-101A1).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Hui Zhai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Alejandro Bermúdez, Natalia Chepiga and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Zhai, H. Emergent U(1) lattice gauge theory in Rydberg atom arrays. Nat Rev Phys 6, 566–576 (2024). https://doi.org/10.1038/s42254-024-00749-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00749-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing