Abstract
Single-molecule spectroscopy is a powerful method for studying the physics of molecular systems, particularly biomolecules, such as proteins and nucleic acids. By avoiding ensemble averaging, single-molecule techniques can resolve structural distributions and fluctuations even for complex and conformationally heterogeneous systems; they also reveal the close link between biological function and the statistical mechanics of the underlying processes. The combination of single-molecule fluorescence detection with Förster resonance energy transfer has become an essential tool for probing biomolecular dynamics on timescales ranging from nanoseconds to days. This Review briefly outlines the state of the art of single-molecule Förster resonance energy transfer spectroscopy and then highlights some of the most important physics-based developments that are expected to further expand the scope of the technique. Key areas of progress include improved time resolution, access to nonequilibrium dynamics and synergies with advances in data analysis and simulations. These developments create new opportunities for attaining a comprehensive understanding of the dynamics and functional mechanisms of biological processes at the nanoscale.
Key points
-
The functions of biological macromolecules depend on changes in their conformations across 24 orders of magnitude in time.
-
Single-molecule Förster resonance energy transfer can be used to probe biomolecular dynamics on nanometre-length scales across timescales from nanoseconds to days.
-
An important challenge is to increase the time resolution for measurements of rapid dynamics and nonequilibrium processes.
-
Nanophotonics, microfluidic mixing and advances in data analysis and molecular simulations are particularly promising strategies for extending the scope of single-molecule Förster resonance energy transfer.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Tanford, C. & Reynolds, J. Nature’s Robots: A History of Proteins (Oxford Univ. Press, 2003).
Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
Benson, D. A. et al. GenBank. Nucleic Acids Res. 42, D32–D37 (2014).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
McCammon, J. A. & Harvey, S. C. Dynamics of Proteins and Nucleic Acids (Cambridge Univ. Press, 1988).
Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).
Haran, G. & Riven, I. Perspective: how fast dynamics affect slow function in protein machines. J. Phys. Chem. B 127, 4687–4693 (2023).
Bahar, I., Jernigan, R. & Dill, K. A. Protein Actions: Principles and Modeling (Garland Science, Taylor & Francis Group, 2017).
Jaenicke, R. Protein folding. In Proc. 28th Conf. German Biochemical Society, University of Regensburg, Regensburg, West Germany, 10–12 September 1979 (Elsevier, 1980).
Fersht, A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (World Scientific, 2017).
van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).
Kulzer, F. & Orrit, M. Single-molecule optics. Annu. Rev. Phys. Chem. 55, 585–611 (2004).
Moerner, W. E. A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J. Phys. Chem. B 106, 910–927 (2002).
Gräslund, A., Rigler, R. & Widengren, J. Single Molecule Spectroscopy in Chemistry, Physics and Biology Vol. 96 (Springer, 2010).
Makarov, D. E. Single Molecule Science — Physical Principles and Models (CRC Press, 2015).
Ha, T. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl Acad. Sci. USA 93, 6264–6268 (1996).
Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978).
Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys.-Berl. 6, 55–75 (1948).
Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. & Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008).
Lerner, E. et al. FRET-based dynamic structural biology: challenges, perspectives and an appeal for open-science practices. eLife 10, e60416 (2021).
Dimura, M. et al. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr. Opin. Struct. Biol. 40, 163–185 (2016).
Hellenkamp, B. et al. Precision and accuracy of single-molecule FRET measurements — a multi-laboratory benchmark study. Nat. Methods 15, 669–676 (2018).
Agam, G. et al. Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins. Nat. Methods 20, 523–535 (2023).
Lemke, E. A. Site-specific labeling of proteins for single-molecule FRET measurements using genetically encoded ketone functionalities. Methods Mol. Biol. 751, 3–15 (2011).
Zosel, F., Holla, A. & Schuler, B. Labeling of proteins for single-molecule fluorescence spectroscopy. Methods Mol. Biol. 2376, 207–233 (2022).
Ha, T. & Tinnefeld, P. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem. 63, 595–617 (2012).
Campos, L. A. et al. A photoprotection strategy for microsecond-resolution single-molecule fluorescence spectroscopy. Nat. Methods 8, 143–146 (2011).
Sustarsic, M. & Kapanidis, A. N. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells. Curr. Opin. Struct. Biol. 34, 52–59 (2015).
Schuler, B. & Hofmann, H. Single-molecule spectroscopy of protein folding dynamics — expanding scope and timescales. Curr. Opin. Struct. Biol. 23, 36–47 (2013).
Mazal, H. & Haran, G. Single-molecule FRET methods to study the dynamics of proteins at work. Curr. Opin. Biomed. Eng. 12, 8–17 (2019).
Michalet, X. et al. Detectors for single-molecule fluorescence imaging and spectroscopy. J. Mod. Opt. 54, 239 (2007).
Selvin, P. R. & Ha, T. Single-Molecule Techniques: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2008).
Juette, M. F. et al. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat. Methods 13, 341–344 (2016).
Pati, A. K. et al. Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores. Proc. Natl Acad. Sci. USA 117, 24305–24315 (2020).
Bronzi, D., Villa, F., Tisa, S., Tosi, A. & Zappa, F. SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review. IEEE Sens. J. 16, 3–12 (2016).
Brand, L., Eggeling, C., Zander, C., Drexhage, K. H. & Seidel, C. A. M. Single-molecule identification of Coumarin-120 by time-resolved fluorescence detection: comparison of one- and two-photon excitation in solution. J. Phys. Chem. A 101, 4313–4321 (1997).
Vermeer, B. & Schmid, S. Can DyeCycling break the photobleaching limit in single-molecule FRET? Nano Res. 15, 9818–9830 (2022).
Sisamakis, E., Valeri, A., Kalinin, S., Rothwell, P. J. & Seidel, C. A. M. Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol. 475, 455–514 (2010).
Gambin, Y. & Deniz, A. A. Multicolor single-molecule FRET to explore protein folding and binding. Mol. Biosyst. 6, 1540–1547 (2010).
Götz, M., Wortmann, P., Schmid, S. & Hugel, T. A multicolor single-molecule FRET approach to study protein dynamics and interactions simultaneously. Methods Enzymol. 581, 487–516 (2016).
Van Der Meer, B. W., Coker, G. III & Chen, S. Y. S. Resonance Energy Transfer: Theory and Data (VCH Publishers, Inc., 1994).
Kurtsiefer, C., Zarda, P., Mayer, S. & Weinfurter, H. The breakdown flash of silicon avalanche photodiodes — back door for eavesdropper attacks? J. Mod. Opt. 48, 2039–2047 (2001).
Nettels, D., Gopich, I. V., Hoffmann, A. & Schuler, B. Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc. Natl Acad. Sci. USA 104, 2655–2660 (2007).
Kudryavtsev, V. et al. Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements. ChemPhysChem 13, 1060–1078 (2012).
Schuler, B., Soranno, A., Hofmann, H. & Nettels, D. Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu. Rev. Biophys. 45, 207–231 (2016).
Lerner, E. et al. Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. Science 359, eaan1133 (2018).
Hänggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory — fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990).
Chung, H. S. & Eaton, W. A. Protein folding transition path times from single molecule FRET. Curr. Opin. Struct. Biol. 48, 30–39 (2018).
Hoffer, N. Q. & Woodside, M. T. Probing microscopic conformational dynamics in folding reactions by measuring transition paths. Curr. Opin. Chem. Biol. 53, 68–74 (2019).
McKinney, S. A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006).
Talaga, D. S. Markov processes in single molecule fluorescence. Curr. Opin. Colloid 12, 285–296 (2007).
Pirchi, M. et al. Photon-by-photon hidden Markov model analysis for microsecond single-molecule FRET kinetics. J. Phys. Chem. B 120, 13065–13075 (2016).
Gopich, I. V. & Chung, H. S. Theory and analysis of single-molecule FRET experiments. Methods Mol. Biol. 2376, 247–282 (2022).
Rigler, R. & Elson, E. S. Fluorescence Correlation Spectroscopy: Theory and Applications (Springer, 2001).
Zander, C., Enderlein, J. & Keller, R. A. Single Molecule Detection in Solution (Wiley-VCH, 2002).
Ghosh, A. & Enderlein, J. Advanced fluorescence correlation spectroscopy for studying biomolecular conformation. Curr. Opin. Struct. Biol. 70, 123–131 (2021).
Felekyan, S., Kalinin, S., Sanabria, H., Valeri, A. & Seidel, C. A. M. Filtered FCS: species auto- and cross-correlation functions highlight binding and dynamics in biomolecules. ChemPhysChem 13, 1036–1053 (2012).
Kapusta, P., Wahl, M., Benda, A., Hof, M. & Enderlein, J. Fluorescence lifetime correlation spectroscopy. J. Fluoresc. 17, 43–48 (2007).
Soranno, A. et al. Quantifying internal friction in unfolded and intrinsically disordered proteins with single molecule spectroscopy. Proc. Natl Acad. Sci. USA 109, 17800–17806 (2012).
Schuler, B. et al. Binding without folding — the biomolecular function of disordered polyelectrolyte complexes. Curr. Opin. Struct. Biol. 60, 66–76 (2019).
Fuxreiter, M. & Tompa, P. Fuzziness: structural disorder in protein complexes. Trends Biochem. Sci. 33, 2–8 (2012).
Borgia, A. et al. Extreme disorder in an ultrahigh-affinity protein complex. Nature 555, 61–66 (2018).
Wiggers, F. et al. Diffusion of a disordered protein on its folded ligand. Proc. Natl Acad. Sci. USA 118, e2106690118 (2021).
Sauer, M., Hofkens, J. & Enderlein, J. Handbook of Fluorescence Spectroscopy and Imaging: From Single Molecules to Ensembles.(Wiley-VCH, 2011).
Hübner, C. G. et al. Photon antibunching and collective effects in the fluorescence of single bichromophoric molecules. Phys. Rev. Lett. 91, 093903 (2003).
Chung, H. S., Louis, J. M. & Eaton, W. A. Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories. Proc. Natl. Acad. Sci. USA 106, 11837–11844 (2009).
Chung, H. S., McHale, K., Louis, J. M. & Eaton, W. A. Single-molecule fluorescence experiments determine protein folding transition path times. Science 335, 981–984 (2012).
Giannini, V., Fernandez-Dominguez, A. I., Heck, S. C. & Maier, S. A. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888–3912 (2011).
Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681–681 (1946).
Barnes, W. L., Horsley, S. A. R. & Vos, W. L. Classical antennas, quantum emitters, and densities of optical states. J. Optics 22, 073501 (2020).
Dirac, P. A. M. The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. A 114, 243–265 (1927).
Andrew, P. & Barnes, W. L. Förster energy transfer in an optical microcavity. Science 290, 785–788 (2000).
Barnes, W. L. Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt. 45, 661–699 (1998).
Gregor, I., Chizhik, A., Karedla, N. & Enderlein, J. Metal-induced energy transfer. Nanophotonics 8, 1689–1699 (2019).
Chhabra, R. et al. Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers. Nanotechnology 20, 485201 (2009).
Seelig, J. et al. Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level. Nano Lett. 7, 685–689 (2007).
Acuna, G. P. et al. Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. ACS Nano 6, 3189–3195 (2012).
Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2006).
Drexhage, K. H. Influence of a dielectric interface on fluorescence decay time. J. Lumin. 1–2, 693–701 (1970).
Maccaferri, N. et al. Recent advances in plasmonic nanocavities for single-molecule spectroscopy. Nanoscale Adv. 3, 633–642 (2021).
Acuna, G. P. et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).
Glembockyte, V., Grabenhorst, L., Trofymchuk, K. & Tinnefeld, P. DNA origami nanoantennas for fluorescence enhancement. Acc. Chem. Res. 54, 3338–3348 (2021).
Liu, N. & Liedl, T. DNA-assembled advanced plasmonic architectures. Chem. Rev. 118, 3032–3053 (2018).
Grabenhorst, L., Sturzenegger, F., Hasler, M., Schuler, B. & Tinnefeld, P. Single-molecule FRET at 10 MHz count rates. J. Am. Chem. Soc. 146, 3539–3544 (2024).
Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).
Bethe, H. A. Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944).
Punj, D. et al. Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations. Wires Nanomed. Nanobiotechnol. 6, 268–282 (2014).
Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).
Rigneault, H. et al. Enhancement of single-molecule fluorescence detection in subwavelength apertures. Phys. Rev. Lett. 95, 117401 (2005).
Baibakov, M. et al. Extending single-molecule Förster resonance energy transfer (FRET) range beyond 10 nanometers in zero-mode waveguides. ACS Nano 13, 8469–8480 (2019).
de Torres, J., Ghenuche, P., Moparthi, S. B., Grigoriev, V. & Wenger, J. FRET enhancement in aluminum zero-mode waveguides. ChemPhysChem 16, 782–788 (2015).
Baibakov, M., Patra, S., Claude, J. B. & Wenger, J. Long-range single-molecule Förster resonance energy transfer between Alexa dyes in zero-mode waveguides. ACS Omega 5, 6947–6955 (2020).
Patra, S., Claude, J. B. & Wenger, J. Fluorescence brightness, photostability, and energy transfer enhancement of immobilized single molecules in zero-mode waveguide nanoapertures. ACS Photon. 9, 2109–2118 (2022).
Nüesch, M. F. et al. Single-molecule detection of ultrafast biomolecular dynamics with nanophotonics. J. Am. Chem. Soc. 144, 52–56 (2022).
Mothi, N. & Muñoz, V. Protein folding dynamics as diffusion on a free energy surface: rate equation terms, transition paths, and analysis of single-molecule photon trajectories. J. Phys. Chem. B 125, 12413–12425 (2021).
Kim, J. Y., Meng, F., Yoo, J. & Chung, H. S. Diffusion-limited association of disordered protein by non-native electrostatic interactions. Nat. Commun. 9, 4707 (2018).
Sturzenegger, F. et al. Transition path times of coupled folding and binding reveal the formation of an encounter complex. Nat. Commun. 9, 4708 (2018).
Kim, J. Y. & Chung, H. S. Disordered proteins follow diverse transition paths as they fold and bind to a partner. Science 368, 1253–1257 (2020).
de Torres, J. et al. Plasmonic nanoantennas enable forbidden Förster dipole–dipole energy transfer and enhance the FRET efficiency. Nano Lett. 16, 6222–6230 (2016).
Baibakov, M. et al. Zero-mode waveguides can be made better: fluorescence enhancement with rectangular aluminum nanoapertures from the visible to the deep ultraviolet. Nanoscale Adv. 2, 4153–4160 (2020).
Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Tech. 25, 063001 (2012).
Steinfeld, J. I., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics 2nd edn (Prentice Hall, Inc., 1999).
Lee, C. Y., Chang, C. L., Wang, Y. N. & Fu, L. M. Microfluidic mixing: a review. Int. J. Mol. Sci. 12, 3263–3287 (2011).
Streets, A. M. & Huang, Y. Microfluidics for biological measurements with single-molecule resolution. Curr. Opin. Biotechnol. 25, 69–77 (2014).
Knight, J. B., Vishwanath, A., Brody, J. P. & Austin, R. H. Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys. Rev. Lett. 80, 3863–3866 (1998).
Brody, J. P., Yager, P., Goldstein, R. E. & Austin, R. H. Biotechnology at low Reynolds numbers. Biophys. J. 71, 3430–3441 (1996).
Dimotakis, P. E. Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329–356 (2005).
Wunderlich, B. et al. Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes. Nat. Protoc. 8, 1459–1474 (2013).
Pfeil, S. H., Wickersham, C. E., Hoffmann, A. & Lipman, E. A. A microfluidic mixing system for single-molecule measurements. Rev. Sci. Instrum. 80, 055105 (2009).
Yao, S. & Bakajin, O. Improvements in mixing time and mixing uniformity in devices designed for studies of protein folding kinetics. Anal. Chem. 79, 5753–5759 (2007).
Hertzog, D. E. et al. Femtomole mixer for microsecond kinetic studies of protein folding. Anal. Chem. 76, 7169–7178 (2004).
Lipman, E. A., Schuler, B., Bakajin, O. & Eaton, W. A. Single-molecule measurement of protein folding kinetics. Science 301, 1233–1235 (2003).
Hamadani, K. M. & Weiss, S. Nonequilibrium single molecule protein folding in a coaxial mixer. Biophys. J. 95, 352–365 (2008).
Gambin, Y. et al. Visualizing a one-way protein encounter complex by ultrafast single-molecule mixing. Nat. Methods 8, 239–241 (2011).
Orte, A., Craggs, T. D., White, S. S., Jackson, S. E. & Klenerman, D. Evidence of an intermediate and parallel pathways in protein unfolding from single-molecule fluorescence. J. Am. Chem. Soc. 130, 7898–7907 (2008).
Borgia, A. et al. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single molecule fluorescence spectroscopy. Nat. Commun. 2, 1195 (2012).
Soranno, A. et al. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations. Proc. Natl Acad. Sci. USA 114, E1833–E1839 (2017).
Dingfelder, F. et al. Slow escape from a helical misfolded state of the pore-forming toxin cytolysin A. JACS Au 1, 1217–1230 (2021).
Zijlstra, N. et al. Rapid microfluidic dilution for single-molecule spectroscopy of low-affinity biomolecular complexes. Angew. Chem. Int. Ed. Engl. 56, 7126–7129 (2017).
Hellenkamp, B., Thurn, J., Stadlmeier, M. & Hugel, T. Kinetics of transient protein complexes determined via diffusion-independent microfluidic mixing and fluorescence stoichiometry. J. Phys. Chem. B 122, 11554–11560 (2018).
Dingfelder, F. et al. Rapid microfluidic double-jump mixing device for single-molecule spectroscopy. J. Am. Chem. Soc. 139, 6062–6065 (2017).
Droplet Microfluidics Vol. 12 (The Royal Society of Chemistry, 2021).
Song, H., Bringer, M. R., Tice, J. D., Gerdts, C. J. & Ismagilov, R. F. Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Appl. Phys. Lett. 83, 4664–4666 (2003).
Yang, T. et al. Rapid droplet-based mixing for single-molecule spectroscopy. Nat. Methods 20, 1479–1482 (2023).
Beard, D. A. Taylor dispersion of a solute in a microfluidic channel. J. Appl. Phys. 89, 4667–4669 (2001).
Wunderlich, B., Nettels, D. & Schuler, B. Taylor dispersion and the position-to-time conversion in microfluidic mixing devices. Lab Chip 14, 219–228 (2014).
Charmet, J., Arosio, P. & Knowles, T. P. J. Microfluidics for protein biophysics. J. Mol. Biol. 430, 565–580 (2018).
Benke, S. et al. Combining rapid microfluidic mixing and three-color single-molecule FRET for probing the kinetics of protein conformational changes. J. Phys. Chem. B 125, 6617–6628 (2021).
Barth, A., Voith von Voithenberg, L. & Lamb, D. C. Quantitative single-molecule three-color Förster resonance energy transfer by photon distribution analysis. J. Phys. Chem. B 123, 6901–6916 (2019).
Yang, T. et al. Droplet-based microfluidic temperature-jump platform for the rapid assessment of biomolecular kinetics. Anal. Chem. 94, 16675–16684 (2022).
Polinkovsky, M. E. et al. Ultrafast cooling reveals microsecond-scale biomolecular dynamics. Nat. Commun. 5, 5737 (2014).
Abate, A. R., Hung, T., Mary, P., Agresti, J. J. & Weitz, D. A. High-throughput injection with microfluidics using picoinjectors. Proc. Natl Acad. Sci. USA 107, 19163–19166 (2010).
Liao, D. et al. Single molecule correlation spectroscopy in continuous flow mixers with zero-mode waveguides. Opt. Expr. 16, 10077–10090 (2008).
Holmstrom, E. D. & Nesbitt, D. J. Real-time infrared overtone laser control of temperature in picoliter H2O samples: ‘nanobathtubs’ for single molecule microscopy. J. Phys. Chem. Lett. 1, 2264–2268 (2010).
Zhao, R. et al. Laser-assisted single-molecule refolding (LASR). Biophys. J. 99, 1925–1931 (2010).
Holmstrom, E. D., Dupuis, N. F. & Nesbitt, D. J. Pulsed IR heating studies of single-molecule DNA duplex dissociation kinetics and thermodynamics. Biophys. J. 106, 220–231 (2014).
Sakmann, B. & Neher, E. Single Channel Recording (Plenum Press, 1995).
Barkai, E., Brown, F. L. H., Orrit, M. & Yang, H. Theory and Evaluation of Single-Molecule Signals (World Scientific Pub., Co., 2009).
Tavakoli, M., Taylor, J. N., Li, C. B., Komatsuzaki, T. & Pressé, S. Single molecule data analysis: an introduction. Adv. Chem. Phys. 162, 205–305 (2017).
Götz, M. et al. A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories. Nat. Commun. 13, 5402 (2022).
Chowdhury, A., Nettels, D. & Schuler, B. Interaction dynamics of intrinsically disordered proteins from single-molecule spectroscopy. Annu. Rev. Biophys. 52, 433–62 (2023).
Gopich, I. V. Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET. J. Chem. Phys. 142, 034110 (2015).
D’Agostini, G. Bayesian Reasoning in Data Analysis: A Critical Introduction (World Scientific, 2003).
Schanda, P. & Haran, G. NMR and smFRET insights into fast protein motions and their relation to function. Annu. Rev. Biophys. 53, 247–273 (2024).
Kinz-Thompson, C. D., Ray, K. K. & Gonzalez, R. L. Jr. Bayesian inference: the comprehensive approach to analyzing single-molecule experiments. Annu. Rev. Biophys. 50, 191–208 (2021).
Gopich, I. V. & Szabo, A. Decoding the pattern of photon colors in single-molecule FRET. J. Phys. Chem. B 113, 10965–10973 (2009).
Zosel, F., Mercadante, D., Nettels, D. & Schuler, B. A proline switch explains kinetic heterogeneity in a coupled folding and binding reaction. Nat. Commun. 9, 3332 (2018).
Ghosh, J. K. & Ramamoorthi, R. V. Bayesian Nonparametrics (Springer, 2003).
Pressé, S. & Sgouralis, I. Data Modeling for the Sciences: Applications, Basics, Computations (Cambridge Univ. Press, 2023).
Hines, K. E., Bankston, J. R. & Aldrich, R. W. Analyzing single-molecule time series via nonparametric Bayesian inference. Biophys. J. 108, 540–556 (2015).
Sgouralis, I. & Presse, S. An introduction to infinite HMMs for single-molecule data analysis. Biophys. J. 112, 2021–2029 (2017).
Sgouralis, I. et al. A Bayesian nonparametric approach to single molecule Förster resonance energy transfer. J. Phys. Chem. B 123, 675–688 (2019).
Saurabh, A. et al. Single-photon smFRET. I: Theory and conceptual basis. Biophys. Rep. 3, 100089 (2023).
Jazani, S. et al. An alternative framework for fluorescence correlation spectroscopy. Nat. Commun. 10, 3662 (2019).
Gopich, I. V., Kim, J. Y. & Chung, H. S. Analysis of photon trajectories from diffusing single molecules. J. Chem. Phys. 159, 024119 (2023).
Meng, F., Kim, J. Y., Gopich, I. V. & Chung, H. S. Single-molecule FRET and molecular diffusion analysis characterize stable oligomers of amyloid-beta 42 of extremely low population. PNAS Nexus 2, pgad253 (2023).
Liu, X., Jiang, Y., Cui, Y., Yuan, J. & Fang, X. Deep learning in single-molecule imaging and analysis: recent advances and prospects. Chem. Sci. 13, 11964–11980 (2022).
Xu, J. et al. Automated stoichiometry analysis of single-molecule fluorescence imaging traces via deep learning. J. Am. Chem. Soc. 141, 6976–6985 (2019).
Thomsen, J. et al. DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning. eLife 9, e60404 (2020).
Li, J., Zhang, L., Johnson-Buck, A. & Walter, N. G. Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning. Nat. Commun. 11, 5833 (2020).
Yuan, J. et al. Analyzing protein dynamics from fluorescence intensity traces using unsupervised deep learning network. Commun. Biol. 3, 669 (2020).
Meng, F., Yoo, J. & Chung, H. S. Single-molecule fluorescence imaging and deep learning reveal highly heterogeneous aggregation of amyloid-beta 42. Proc. Natl Acad. Sci. USA 119, e2116736119 (2022).
Wanninger, S. et al. Deep-LASI: deep-learning assisted, single-molecule imaging analysis of multi-color DNA origami structures. Nat. Commun. 14, 6564 (2023).
Ilieva, N. I., Galvanetto, N., Allegra, M., Brucale, M. & Laio, A. Automatic classification of single-molecule force spectroscopy traces from heterogeneous samples. Bioinformatics 36, 5014–5020 (2020).
von Chamier, L. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat. Commun. 12, 2276 (2021).
Bottaro, S. & Lindorff-Larsen, K. Biophysical experiments and biomolecular simulations: a perfect match? Science 361, 355–360 (2018).
Piana, S., Klepeis, J. L. & Shaw, D. E. Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr. Opin. Struct. Biol. 24, 98–105 (2014).
Voelz, V. A., Pande, V. S. & Bowman, G. R. Folding@home: achievements from over 20 years of citizen science herald the exascale era. Biophys. J. 122, 2852–2863 (2023).
Chung, H. S., Piana-Agostinetti, S., Shaw, D. E. & Eaton, W. A. Structural origin of slow diffusion in protein folding. Science 349, 1504–1510 (2015).
Galvanetto, N. et al. Extreme dynamics in a biomolecular condensate. Nature 619, 876–883 (2023).
Best, R. et al. Effect of flexibility and cis residues in single molecule FRET studies of polyproline. Proc. Natl Acad. Sci. USA 104, 18964–18969 (2007).
Hoefling, M. et al. Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach. PLoS ONE 6, e19791 (2011).
Pochorovski, I. et al. Experimental and computational study of BODIPY dye-labeled cavitand dynamics. J. Am. Chem. Soc. 136, 2441–2449 (2014).
Best, R. B., Hofmann, H., Nettels, D. & Schuler, B. Quantitative interpretation of FRET experiments via molecular simulation: force field and validation. Biophys. J. 108, 2721–2731 (2015).
Schröder, G. F., Alexiev, U. & Grubmüller, H. Simulation of fluorescence anisotropy experiments: probing protein dynamics. Biophys. J. 89, 3757–3770 (2005).
Grotz, K. K. et al. Dispersion correction alleviates dye stacking of single-stranded DNA and RNA in simulations of single-molecule fluorescence experiments. J. Phys. Chem. B 122, 11626–11639 (2018).
Zheng, W., Borgia, A., Borgia, M. B., Schuler, B. & Best, R. B. Empirical optimization of interactions between proteins and chemical denaturants in molecular simulations. J. Chem. Theory Comput. 11, 5543–5553 (2015).
Best, R. B. Computational and theoretical advances in studies of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 42, 147–154 (2017).
Best, R. B., Zheng, W. & Mittal, J. Balanced protein–water interactions improve properties of disordered proteins and non-specific protein association. J. Chem. Theory Comput. 10, 5113–5124 (2014).
Piana, S., Donchev, A. G., Robustelli, P. & Shaw, D. E. Water dispersion interactions strongly influence simulated structural properties of disordered protein States. J. Phys. Chem. B 119, 5113–5123 (2015).
Salvi, N., Abyzov, A. & Blackledge, M. Multi-timescale dynamics in intrinsically disordered proteins from NMR relaxation and molecular simulation. J. Phys. Chem. Lett. 7, 2483–2489 (2016).
Kummerer, F. et al. Fitting side-chain NMR relaxation data using molecular simulations. J. Chem. Theory Comput. 17, 5262–5275 (2021).
Ruff, K. M., Pappu, R. V. & Holehouse, A. S. Conformational preferences and phase behavior of intrinsically disordered low complexity sequences: insights from multiscale simulations. Curr. Opin. Struct. Biol. 56, 1–10 (2019).
Papoian, G. A. Coarse-Grained Modeling of Biomolecules (CRC Press, 2018).
Kim, Y. C. & Hummer, G. Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding. J. Mol. Biol. 375, 1416–1433 (2008).
Karanicolas, J. & Brooks, C. L. The origins of asymmetry in the folding transition states of protein L and protein G. Prot. Sci. 11, 2351–2361 (2002).
Tesei, G., Schulze, T. K., Crehuet, R. & Lindorff-Larsen, K. Accurate model of liquid–liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. Proc. Natl Acad. Sci. USA 118, e2111696118 (2021).
Heidarsson, P. O. et al. Release of linker histone from the nucleosome driven by polyelectrolyte competition with a disordered protein. Nat. Chem. 14, 224–231 (2022).
Zhang, B., Zheng, W., Papoian, G. A. & Wolynes, P. G. Exploring the free energy landscape of nucleosomes. J. Am. Chem. Soc. 138, 8126–8133 (2016).
Dannenhoffer-Lafage, T. & Best, R. B. A data-driven hydrophobicity scale for predicting liquid–liquid phase separation of proteins. J. Phys. Chem. B 125, 4046–4056 (2021).
Holmstrom, E. D. et al. Accurate transfer efficiencies, distance distributions, and ensembles of unfolded and intrinsically disordered proteins from single-molecule FRET. Methods Enzymol. 611, 287–325 (2018).
Holmstrom, E. D., Liu, Z. W., Nettels, D., Best, R. B. & Schuler, B. Disordered RNA chaperones can enhance nucleic acid folding via local charge screening. Nat. Commun. 10, 2453 (2019).
Rudzinski, J. E. Recent progress towards chemically-specific coarse-grained simulation models with consistent dynamical properties. Computation 7, 42 (2019).
Padding, J. T. & Briels, W. J. Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology. J. Phys. Condens. Matter 23, 233101 (2011).
Cranmer, K., Brehmer, J. & Louppe, G. The frontier of simulation-based inference. Proc. Natl Acad. Sci. USA 117, 30055–30062 (2020).
Dingeldein, L., Cossio, P. & Covino, R. Simulation-based inference of single-molecule force spectroscopy. Mach. Learn. Sci. Technol. 4, 025009 (2023).
Verdier, H. et al. Simulation-based inference for non-parametric statistical comparison of biomolecule dynamics. PLoS Comput. Biol. 19, e1010088 (2023).
Zoldak, G. & Rief, M. Force as a single molecule probe of multidimensional protein energy landscapes. Curr. Opin. Struct. Biol. 23, 48–57 (2013).
Hohng, S., Lee, S., Lee, J. & Jo, M. H. Maximizing information content of single-molecule FRET experiments: multi-color FRET and FRET combined with force or torque. Chem. Soc. Rev. 43, 1007–1013 (2014).
Wilson, H. & Wang, Q. ABEL-FRET: tether-free single-molecule FRET with hydrodynamic profiling. Nat. Methods 18, 816–820 (2021).
Chu, J. et al. Single-molecule fluorescence multiplexing by multi-parameter spectroscopic detection of nanostructured FRET labels. Nat. Nanotechnol. https://doi.org/10.1038/s41565-024-01672-8 (2024).
Sung, H. L. & Nesbitt, D. J. Ligand-dependent volumetric characterization of manganese riboswitch folding: a high-pressure single-molecule kinetic study. J. Phys. Chem. B 126, 9781–9789 (2022).
Patra, S., Anders, C., Erwin, N. & Winter, R. Osmolyte effects on the conformational dynamics of a DNA hairpin at ambient and extreme environmental conditions. Angew. Chem. 56, 5045–5049 (2017).
Michalet, X. et al. Development of new photon-counting detectors for single-molecule fluorescence microscopy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120035 (2013).
Dahmardeh, M., Mirzaalian Dastjerdi, H., Mazal, H., Kostler, H. & Sandoghdar, V. Self-supervised machine learning pushes the sensitivity limit in label-free detection of single proteins below 10 kDa. Nat. Methods 20, 442–447 (2023).
Yuan, H. et al. Temperature-cycle microscopy reveals single-molecule conformational heterogeneity. Phys. Chem. Chem. Phys. 17, 6532–6544 (2015).
Morales-Inostroza, L. et al. An optofluidic antenna for enhancing the sensitivity of single-emitter measurements. Nat. Commun. 15, 2545 (2023).
Budde, J.-H. et al. FRET nanoscopy enables seamless imaging of molecular assemblies with sub-nanometer resolution. Preprint at https://arxiv.org/abs/2108.00024 (2021).
Koenig, I. et al. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nat. Methods 12, 773–779 (2015).
Terterov, I., Nettels, D., Makarov, D. E. & Hofmann, H. Time-resolved burst variance analysis. Biophys. Rep. 3, 100116 (2023).
Vollmar, L., Schimpf, J., Hermann, B. & Hugel, T. Cochaperones convey the energy of ATP hydrolysis for directional action of Hsp90. Nat. Commun. 15, 569 (2024).
Song, K. V., Makarov, D. E. & Vouga, E. Compression algorithms reveal memory effects and static disorder in single-molecule trajectories. Phys. Rev. Res. 5, L012026 (2023).
Barth, A. et al. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. I. Theory of FRET-lines. J. Chem. Phys. 156, 141501 (2022).
Opanasyuk, O. et al. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. II. Quantitative analysis of multi-state kinetic networks. J. Chem. Phys. 157, 031501 (2022).
Adhikari, S. & Orrit, M. Progress and perspectives in single-molecule optical spectroscopy. J. Chem. Phys. 156, 160903 (2022).
Hwang, H. & Myong, S. Protein induced fluorescence enhancement (PIFE) for probing protein–nucleic acid interactions. Chem. Soc. Rev. 43, 1221–1229 (2014).
Ploetz, E. et al. A new twist on PIFE: photoisomerisation-related fluorescence enhancement. Methods Appl. Fluoresc. 12, 012001 (2023).
Doose, S., Neuweiler, H. & Sauer, M. Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. ChemPhysChem 10, 1389–1398 (2009).
Haenni, D., Zosel, F., Reymond, L., Nettels, D. & Schuler, B. Intramolecular distances and dynamics from the combined photon statistics of single-molecule FRET and photoinduced electron transfer. J. Phys. Chem. B 117, 13015–13028 (2013).
Weisenburger, S. et al. Cryogenic optical localization provides 3D protein structure data with Angstrom resolution. Nat. Methods 14, 141–144 (2017).
Gwosch, K. C. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17, 217–224 (2020).
Woll, D. et al. Polymers and single molecule fluorescence spectroscopy, what can we learn? Chem. Soc. Rev. 38, 313–328 (2009).
Kalinin, S., Valeri, A., Antonik, M., Felekyan, S. & Seidel, C. A. Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. J. Phys. Chem. B 114, 7983–7995 (2010).
Gopich, I. V. & Szabo, A. Single-molecule FRET with diffusion and conformational dynamics. J. Phys. Chem. B 111, 12925–12932 (2007).
Hoffmann, A. et al. Quantifying heterogeneity and conformational dynamics from single molecule FRET of diffusing molecules: recurrence analysis of single particles (RASP). Phys. Chem. Chem. Phys. 13, 1857–1871 (2011).
Cario, G. & Franck, J. Über sensibilisierte Fluoreszenz von Gasen. Z. Phys. 17, 202–212 (1923).
Kallmann, H. & London, F. Über quantenmechanische Energieübertragungen zwischen atomaren Systemen. Z. Phys. Chem. 2, 207–243 (1928).
Perrin, F. Théorie quantique des transferts d’activation entre molécules de méme espèce. Cas des solutions fluorescentes. Ann. Chim. Phys. 17, 283–314 (1932).
Andrews, D. L. in Tutorials in Complex Photonic Media (eds Noginov, M. A. et al.) (SPIE, 2009).
Masters, B. R. Paths to Förster’s resonance energy transfer (FRET) theory. Eur. Phys. J. H 39, 87–139 (2014).
Oppenheimer, J. R. Minutes of the Pasadena, California, Meeting June 18–20, 1941. Phys. Rev. 60, 158–165 (1941).
Arnold, W. & Oppenheimer, J. R. Internal conversion in the photosynthetic mechanism of blue-green algae. J. Gen. Physiol. 33, 423–435 (1950).
Förster, T. Energiewanderung und Fluoreszenz. Naturwissenschaften 6, 166–175 (1946).
Nelson, P. C. The role of quantum decoherence in FRET. Biophys. J. 115, 167–172 (2018).
Olaya-Castro, A. & Scholes, G. D. Energy transfer from Förster–Dexter theory to quantum coherent light-harvesting. Int. Rev. Phys. Chem. 30, 49–77 (2011).
Clegg, R. M. in Reviews in Fluorescence (eds Geddes, C. D. & Lakowicz, J. R.) Vol. 3, 1–45 (Springer, 2006).
Felekyan, S. et al. Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Rev. Sci. Instrum. 76, 083104 (2005).
Viterbi, A. J. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13, 260 (1967).
Acknowledgements
The authors thank R. Covino, S. Gopi, G. Haran, H. Hofmann, E. Lipman, C. Lorenz and D. Makarov for insightful discussions and comments on the manuscript. This work was supported by the Swiss National Science Foundation and the Forschungskredit of the University of Zurich.
Author information
Authors and Affiliations
Contributions
All authors contributed to all aspects of this article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Nikos Hatzakis, Satyajit Patra and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Bayesian nonparametrics
-
A type of statistical models and methods characterized by large parameter spaces, such as unknown numbers of microstates and their connectivity, and by the construction of probability measures over these spaces.
- Chemical kinetics
-
Description of the time dependence of the interconversion between thermodynamic states and microstates of a system in terms of rates.
- Coarse-grained
-
In modelling complex systems or in renormalization, coarse-graining refers to the procedure in which two or more microscopic entities are replaced with a single entity to reduce the complexity or resolution of the model.
- Droplet microfluidics
-
A method to manipulate discrete, typically picolitre volumes of fluids in immiscible phases. For biomolecules, aqueous droplets in oil are commonly used.
- Ensemble average
-
The mean value of some observables obtained from simultaneous measurements of all members of a statistical ensemble. Single-molecule spectroscopy overcomes ensemble averaging.
- Fluorescence correlation spectroscopy
-
(FCS). Statistical analysis of fluctuations in fluorescence intensity or count rates via time correlation. FCS is a broadly applicable way of assessing biomolecular dynamics over a broad range of timescales.
- Förster resonance energy transfer
-
(FRET). Non-radiative transfer of excitation energy between two molecular entities separated by distances considerably exceeding the sum of their van der Waals radii in the very weak dipole–dipole coupling limit.
- Hydrodynamic focusing
-
A technique used in microfluidics, in which several fluid streams are combined in microfluidic channels to form a layer or jet that is so thin that it exchanges its solutes very rapidly with the neighbouring streams by diffusion.
- Local density of optical states
-
Measures the availability of electromagnetic modes at a given point in space and governs the deexcitation of a quantum emitter.
- Multiparameter fluorescence detection
-
Simultaneous acquisition of multiple fluorescence observables, such as wavelength, count rate, lifetime and anisotropy, as a function of time in a single measurement.
- Nanosecond FCS
-
(ncFCS). Variant of FCS that enables dynamics in the submicrosecond range to be measured by using a Hanbury Brown and Twiss configuration of single-photon detectors.
- Photon antibunching
-
Special distribution of time delays between photons that is characteristic for the emission of a single quantum emitter. Photon antibunching is detected as an anticorrelated component in fluorescence correlation spectroscopy on timescales comparable to the fluorescence lifetime.
- Reaction coordinate
-
A quantity used to describe the progress of a reaction, often chosen to reflect a change in experimental signal. In the context of Förster resonance energy transfer experiments, the reaction coordinate would typically be related to an intramolecular or intermolecular distance change.
- Reconfiguration times
-
Relaxation time of the correlation function of a point-to-point distance within a molecule, most commonly a polymer chain.
- Simulation-based inference
-
Emerging family of methods that infer the model parameters when the likelihood is intractable by integrating simulations with machine learning.
- Single-molecule spectroscopy
-
Methods that enable the physical properties of individual molecules to be measured.
- Time average
-
The mean value of some observables obtained from measurements of an individual member of the ensemble as a function of time, for example, as a result of time binning. Single-molecule spectroscopy overcomes time averaging for processes that can be resolved with the time resolution of the specific measurement.
- Transition paths
-
The successful reactant-to-product crossing of the free-energy barrier separating two free-energy minima. Transition paths are rare events with very short duration and thus challenging to resolve experimentally.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nettels, D., Galvanetto, N., Ivanović, M.T. et al. Single-molecule FRET for probing nanoscale biomolecular dynamics. Nat Rev Phys 6, 587–605 (2024). https://doi.org/10.1038/s42254-024-00748-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-024-00748-7