Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Single-molecule FRET for probing nanoscale biomolecular dynamics

Abstract

Single-molecule spectroscopy is a powerful method for studying the physics of molecular systems, particularly biomolecules, such as proteins and nucleic acids. By avoiding ensemble averaging, single-molecule techniques can resolve structural distributions and fluctuations even for complex and conformationally heterogeneous systems; they also reveal the close link between biological function and the statistical mechanics of the underlying processes. The combination of single-molecule fluorescence detection with Förster resonance energy transfer has become an essential tool for probing biomolecular dynamics on timescales ranging from nanoseconds to days. This Review briefly outlines the state of the art of single-molecule Förster resonance energy transfer spectroscopy and then highlights some of the most important physics-based developments that are expected to further expand the scope of the technique. Key areas of progress include improved time resolution, access to nonequilibrium dynamics and synergies with advances in data analysis and simulations. These developments create new opportunities for attaining a comprehensive understanding of the dynamics and functional mechanisms of biological processes at the nanoscale.

Key points

  • The functions of biological macromolecules depend on changes in their conformations across 24 orders of magnitude in time.

  • Single-molecule Förster resonance energy transfer can be used to probe biomolecular dynamics on nanometre-length scales across timescales from nanoseconds to days.

  • An important challenge is to increase the time resolution for measurements of rapid dynamics and nonequilibrium processes.

  • Nanophotonics, microfluidic mixing and advances in data analysis and molecular simulations are particularly promising strategies for extending the scope of single-molecule Förster resonance energy transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timescales of biomolecular dynamics probed with single-molecule Förster resonance energy transfer.
Fig. 2: Nanophotonic enhancement of fluorescence for single-molecule spectroscopy.
Fig. 3: Nonequilibrium single-molecule dynamics.
Fig. 4: Data analysis and simulations.

Similar content being viewed by others

References

  1. Tanford, C. & Reynolds, J. Nature’s Robots: A History of Proteins (Oxford Univ. Press, 2003).

  2. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  ADS  Google Scholar 

  3. Benson, D. A. et al. GenBank. Nucleic Acids Res. 42, D32–D37 (2014).

    Article  Google Scholar 

  4. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  Google Scholar 

  5. McCammon, J. A. & Harvey, S. C. Dynamics of Proteins and Nucleic Acids (Cambridge Univ. Press, 1988).

  6. Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    Article  ADS  Google Scholar 

  7. Haran, G. & Riven, I. Perspective: how fast dynamics affect slow function in protein machines. J. Phys. Chem. B 127, 4687–4693 (2023).

    Article  Google Scholar 

  8. Bahar, I., Jernigan, R. & Dill, K. A. Protein Actions: Principles and Modeling (Garland Science, Taylor & Francis Group, 2017).

  9. Jaenicke, R. Protein folding. In Proc. 28th Conf. German Biochemical Society, University of Regensburg, Regensburg, West Germany, 10–12 September 1979 (Elsevier, 1980).

  10. Fersht, A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (World Scientific, 2017).

  11. van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).

    Article  Google Scholar 

  12. Kulzer, F. & Orrit, M. Single-molecule optics. Annu. Rev. Phys. Chem. 55, 585–611 (2004).

    Article  ADS  Google Scholar 

  13. Moerner, W. E. A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J. Phys. Chem. B 106, 910–927 (2002).

    Article  Google Scholar 

  14. Gräslund, A., Rigler, R. & Widengren, J. Single Molecule Spectroscopy in Chemistry, Physics and Biology Vol. 96 (Springer, 2010).

  15. Makarov, D. E. Single Molecule Science — Physical Principles and Models (CRC Press, 2015).

  16. Ha, T. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl Acad. Sci. USA 93, 6264–6268 (1996).

    Article  ADS  Google Scholar 

  17. Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978).

    Article  Google Scholar 

  18. Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys.-Berl. 6, 55–75 (1948).

    Article  ADS  Google Scholar 

  19. Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. & Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008).

    Article  Google Scholar 

  20. Lerner, E. et al. FRET-based dynamic structural biology: challenges, perspectives and an appeal for open-science practices. eLife 10, e60416 (2021).

    Article  Google Scholar 

  21. Dimura, M. et al. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr. Opin. Struct. Biol. 40, 163–185 (2016).

    Article  Google Scholar 

  22. Hellenkamp, B. et al. Precision and accuracy of single-molecule FRET measurements a multi-laboratory benchmark study. Nat. Methods 15, 669–676 (2018).

    Article  Google Scholar 

  23. Agam, G. et al. Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins. Nat. Methods 20, 523–535 (2023).

    Article  Google Scholar 

  24. Lemke, E. A. Site-specific labeling of proteins for single-molecule FRET measurements using genetically encoded ketone functionalities. Methods Mol. Biol. 751, 3–15 (2011).

    Article  Google Scholar 

  25. Zosel, F., Holla, A. & Schuler, B. Labeling of proteins for single-molecule fluorescence spectroscopy. Methods Mol. Biol. 2376, 207–233 (2022).

    Article  Google Scholar 

  26. Ha, T. & Tinnefeld, P. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem. 63, 595–617 (2012).

    Article  ADS  Google Scholar 

  27. Campos, L. A. et al. A photoprotection strategy for microsecond-resolution single-molecule fluorescence spectroscopy. Nat. Methods 8, 143–146 (2011).

    Article  Google Scholar 

  28. Sustarsic, M. & Kapanidis, A. N. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells. Curr. Opin. Struct. Biol. 34, 52–59 (2015).

    Article  Google Scholar 

  29. Schuler, B. & Hofmann, H. Single-molecule spectroscopy of protein folding dynamics expanding scope and timescales. Curr. Opin. Struct. Biol. 23, 36–47 (2013).

    Article  Google Scholar 

  30. Mazal, H. & Haran, G. Single-molecule FRET methods to study the dynamics of proteins at work. Curr. Opin. Biomed. Eng. 12, 8–17 (2019).

    Article  Google Scholar 

  31. Michalet, X. et al. Detectors for single-molecule fluorescence imaging and spectroscopy. J. Mod. Opt. 54, 239 (2007).

    Article  ADS  Google Scholar 

  32. Selvin, P. R. & Ha, T. Single-Molecule Techniques: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2008).

  33. Juette, M. F. et al. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat. Methods 13, 341–344 (2016).

    Article  Google Scholar 

  34. Pati, A. K. et al. Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores. Proc. Natl Acad. Sci. USA 117, 24305–24315 (2020).

    Article  ADS  Google Scholar 

  35. Bronzi, D., Villa, F., Tisa, S., Tosi, A. & Zappa, F. SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review. IEEE Sens. J. 16, 3–12 (2016).

    Article  ADS  Google Scholar 

  36. Brand, L., Eggeling, C., Zander, C., Drexhage, K. H. & Seidel, C. A. M. Single-molecule identification of Coumarin-120 by time-resolved fluorescence detection: comparison of one- and two-photon excitation in solution. J. Phys. Chem. A 101, 4313–4321 (1997).

    Article  Google Scholar 

  37. Vermeer, B. & Schmid, S. Can DyeCycling break the photobleaching limit in single-molecule FRET? Nano Res. 15, 9818–9830 (2022).

    Article  ADS  Google Scholar 

  38. Sisamakis, E., Valeri, A., Kalinin, S., Rothwell, P. J. & Seidel, C. A. M. Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol. 475, 455–514 (2010).

    Article  Google Scholar 

  39. Gambin, Y. & Deniz, A. A. Multicolor single-molecule FRET to explore protein folding and binding. Mol. Biosyst. 6, 1540–1547 (2010).

    Article  Google Scholar 

  40. Götz, M., Wortmann, P., Schmid, S. & Hugel, T. A multicolor single-molecule FRET approach to study protein dynamics and interactions simultaneously. Methods Enzymol. 581, 487–516 (2016).

    Article  Google Scholar 

  41. Van Der Meer, B. W., Coker, G. III & Chen, S. Y. S. Resonance Energy Transfer: Theory and Data (VCH Publishers, Inc., 1994).

  42. Kurtsiefer, C., Zarda, P., Mayer, S. & Weinfurter, H. The breakdown flash of silicon avalanche photodiodes back door for eavesdropper attacks? J. Mod. Opt. 48, 2039–2047 (2001).

    Article  ADS  Google Scholar 

  43. Nettels, D., Gopich, I. V., Hoffmann, A. & Schuler, B. Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc. Natl Acad. Sci. USA 104, 2655–2660 (2007).

    Article  ADS  Google Scholar 

  44. Kudryavtsev, V. et al. Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements. ChemPhysChem 13, 1060–1078 (2012).

    Article  Google Scholar 

  45. Schuler, B., Soranno, A., Hofmann, H. & Nettels, D. Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu. Rev. Biophys. 45, 207–231 (2016).

    Article  Google Scholar 

  46. Lerner, E. et al. Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. Science 359, eaan1133 (2018).

    Article  Google Scholar 

  47. Hänggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  48. Chung, H. S. & Eaton, W. A. Protein folding transition path times from single molecule FRET. Curr. Opin. Struct. Biol. 48, 30–39 (2018).

    Article  Google Scholar 

  49. Hoffer, N. Q. & Woodside, M. T. Probing microscopic conformational dynamics in folding reactions by measuring transition paths. Curr. Opin. Chem. Biol. 53, 68–74 (2019).

    Article  Google Scholar 

  50. McKinney, S. A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006).

    Article  ADS  Google Scholar 

  51. Talaga, D. S. Markov processes in single molecule fluorescence. Curr. Opin. Colloid 12, 285–296 (2007).

    Article  ADS  Google Scholar 

  52. Pirchi, M. et al. Photon-by-photon hidden Markov model analysis for microsecond single-molecule FRET kinetics. J. Phys. Chem. B 120, 13065–13075 (2016).

    Article  Google Scholar 

  53. Gopich, I. V. & Chung, H. S. Theory and analysis of single-molecule FRET experiments. Methods Mol. Biol. 2376, 247–282 (2022).

    Article  Google Scholar 

  54. Rigler, R. & Elson, E. S. Fluorescence Correlation Spectroscopy: Theory and Applications (Springer, 2001).

  55. Zander, C., Enderlein, J. & Keller, R. A. Single Molecule Detection in Solution (Wiley-VCH, 2002).

  56. Ghosh, A. & Enderlein, J. Advanced fluorescence correlation spectroscopy for studying biomolecular conformation. Curr. Opin. Struct. Biol. 70, 123–131 (2021).

    Article  Google Scholar 

  57. Felekyan, S., Kalinin, S., Sanabria, H., Valeri, A. & Seidel, C. A. M. Filtered FCS: species auto- and cross-correlation functions highlight binding and dynamics in biomolecules. ChemPhysChem 13, 1036–1053 (2012).

    Article  Google Scholar 

  58. Kapusta, P., Wahl, M., Benda, A., Hof, M. & Enderlein, J. Fluorescence lifetime correlation spectroscopy. J. Fluoresc. 17, 43–48 (2007).

    Article  Google Scholar 

  59. Soranno, A. et al. Quantifying internal friction in unfolded and intrinsically disordered proteins with single molecule spectroscopy. Proc. Natl Acad. Sci. USA 109, 17800–17806 (2012).

    Article  ADS  Google Scholar 

  60. Schuler, B. et al. Binding without folding the biomolecular function of disordered polyelectrolyte complexes. Curr. Opin. Struct. Biol. 60, 66–76 (2019).

    Article  Google Scholar 

  61. Fuxreiter, M. & Tompa, P. Fuzziness: structural disorder in protein complexes. Trends Biochem. Sci. 33, 2–8 (2012).

    Google Scholar 

  62. Borgia, A. et al. Extreme disorder in an ultrahigh-affinity protein complex. Nature 555, 61–66 (2018).

    Article  ADS  Google Scholar 

  63. Wiggers, F. et al. Diffusion of a disordered protein on its folded ligand. Proc. Natl Acad. Sci. USA 118, e2106690118 (2021).

    Article  Google Scholar 

  64. Sauer, M., Hofkens, J. & Enderlein, J. Handbook of Fluorescence Spectroscopy and Imaging: From Single Molecules to Ensembles.(Wiley-VCH, 2011).

  65. Hübner, C. G. et al. Photon antibunching and collective effects in the fluorescence of single bichromophoric molecules. Phys. Rev. Lett. 91, 093903 (2003).

    Article  ADS  Google Scholar 

  66. Chung, H. S., Louis, J. M. & Eaton, W. A. Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories. Proc. Natl. Acad. Sci. USA 106, 11837–11844 (2009).

    Article  ADS  Google Scholar 

  67. Chung, H. S., McHale, K., Louis, J. M. & Eaton, W. A. Single-molecule fluorescence experiments determine protein folding transition path times. Science 335, 981–984 (2012).

    Article  ADS  Google Scholar 

  68. Giannini, V., Fernandez-Dominguez, A. I., Heck, S. C. & Maier, S. A. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888–3912 (2011).

    Article  Google Scholar 

  69. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681–681 (1946).

    Google Scholar 

  70. Barnes, W. L., Horsley, S. A. R. & Vos, W. L. Classical antennas, quantum emitters, and densities of optical states. J. Optics 22, 073501 (2020).

    Article  ADS  Google Scholar 

  71. Dirac, P. A. M. The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. A 114, 243–265 (1927).

    Article  ADS  Google Scholar 

  72. Andrew, P. & Barnes, W. L. Förster energy transfer in an optical microcavity. Science 290, 785–788 (2000).

    Article  ADS  Google Scholar 

  73. Barnes, W. L. Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt. 45, 661–699 (1998).

    Article  ADS  Google Scholar 

  74. Gregor, I., Chizhik, A., Karedla, N. & Enderlein, J. Metal-induced energy transfer. Nanophotonics 8, 1689–1699 (2019).

    Article  Google Scholar 

  75. Chhabra, R. et al. Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers. Nanotechnology 20, 485201 (2009).

    Article  ADS  Google Scholar 

  76. Seelig, J. et al. Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level. Nano Lett. 7, 685–689 (2007).

    Article  ADS  Google Scholar 

  77. Acuna, G. P. et al. Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. ACS Nano 6, 3189–3195 (2012).

    Article  Google Scholar 

  78. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2006).

  79. Drexhage, K. H. Influence of a dielectric interface on fluorescence decay time. J. Lumin. 12, 693–701 (1970).

    Article  Google Scholar 

  80. Maccaferri, N. et al. Recent advances in plasmonic nanocavities for single-molecule spectroscopy. Nanoscale Adv. 3, 633–642 (2021).

    Article  ADS  Google Scholar 

  81. Acuna, G. P. et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).

    Article  ADS  Google Scholar 

  82. Glembockyte, V., Grabenhorst, L., Trofymchuk, K. & Tinnefeld, P. DNA origami nanoantennas for fluorescence enhancement. Acc. Chem. Res. 54, 3338–3348 (2021).

    Article  Google Scholar 

  83. Liu, N. & Liedl, T. DNA-assembled advanced plasmonic architectures. Chem. Rev. 118, 3032–3053 (2018).

    Article  Google Scholar 

  84. Grabenhorst, L., Sturzenegger, F., Hasler, M., Schuler, B. & Tinnefeld, P. Single-molecule FRET at 10 MHz count rates. J. Am. Chem. Soc. 146, 3539–3544 (2024).

    Article  Google Scholar 

  85. Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

    Article  ADS  Google Scholar 

  86. Bethe, H. A. Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944).

    Article  ADS  MathSciNet  Google Scholar 

  87. Punj, D. et al. Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations. Wires Nanomed. Nanobiotechnol. 6, 268–282 (2014).

    Article  Google Scholar 

  88. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    Article  ADS  Google Scholar 

  89. Rigneault, H. et al. Enhancement of single-molecule fluorescence detection in subwavelength apertures. Phys. Rev. Lett. 95, 117401 (2005).

    Article  ADS  Google Scholar 

  90. Baibakov, M. et al. Extending single-molecule Förster resonance energy transfer (FRET) range beyond 10 nanometers in zero-mode waveguides. ACS Nano 13, 8469–8480 (2019).

    Article  Google Scholar 

  91. de Torres, J., Ghenuche, P., Moparthi, S. B., Grigoriev, V. & Wenger, J. FRET enhancement in aluminum zero-mode waveguides. ChemPhysChem 16, 782–788 (2015).

    Article  Google Scholar 

  92. Baibakov, M., Patra, S., Claude, J. B. & Wenger, J. Long-range single-molecule Förster resonance energy transfer between Alexa dyes in zero-mode waveguides. ACS Omega 5, 6947–6955 (2020).

    Article  Google Scholar 

  93. Patra, S., Claude, J. B. & Wenger, J. Fluorescence brightness, photostability, and energy transfer enhancement of immobilized single molecules in zero-mode waveguide nanoapertures. ACS Photon. 9, 2109–2118 (2022).

    Article  Google Scholar 

  94. Nüesch, M. F. et al. Single-molecule detection of ultrafast biomolecular dynamics with nanophotonics. J. Am. Chem. Soc. 144, 52–56 (2022).

    Article  Google Scholar 

  95. Mothi, N. & Muñoz, V. Protein folding dynamics as diffusion on a free energy surface: rate equation terms, transition paths, and analysis of single-molecule photon trajectories. J. Phys. Chem. B 125, 12413–12425 (2021).

    Article  Google Scholar 

  96. Kim, J. Y., Meng, F., Yoo, J. & Chung, H. S. Diffusion-limited association of disordered protein by non-native electrostatic interactions. Nat. Commun. 9, 4707 (2018).

    Article  ADS  Google Scholar 

  97. Sturzenegger, F. et al. Transition path times of coupled folding and binding reveal the formation of an encounter complex. Nat. Commun. 9, 4708 (2018).

    Article  ADS  Google Scholar 

  98. Kim, J. Y. & Chung, H. S. Disordered proteins follow diverse transition paths as they fold and bind to a partner. Science 368, 1253–1257 (2020).

    Article  ADS  Google Scholar 

  99. de Torres, J. et al. Plasmonic nanoantennas enable forbidden Förster dipole–dipole energy transfer and enhance the FRET efficiency. Nano Lett. 16, 6222–6230 (2016).

    Article  ADS  Google Scholar 

  100. Baibakov, M. et al. Zero-mode waveguides can be made better: fluorescence enhancement with rectangular aluminum nanoapertures from the visible to the deep ultraviolet. Nanoscale Adv. 2, 4153–4160 (2020).

    Article  ADS  Google Scholar 

  101. Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Tech. 25, 063001 (2012).

    Article  ADS  Google Scholar 

  102. Steinfeld, J. I., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics 2nd edn (Prentice Hall, Inc., 1999).

  103. Lee, C. Y., Chang, C. L., Wang, Y. N. & Fu, L. M. Microfluidic mixing: a review. Int. J. Mol. Sci. 12, 3263–3287 (2011).

    Article  Google Scholar 

  104. Streets, A. M. & Huang, Y. Microfluidics for biological measurements with single-molecule resolution. Curr. Opin. Biotechnol. 25, 69–77 (2014).

    Article  Google Scholar 

  105. Knight, J. B., Vishwanath, A., Brody, J. P. & Austin, R. H. Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys. Rev. Lett. 80, 3863–3866 (1998).

    Article  ADS  Google Scholar 

  106. Brody, J. P., Yager, P., Goldstein, R. E. & Austin, R. H. Biotechnology at low Reynolds numbers. Biophys. J. 71, 3430–3441 (1996).

    Article  ADS  Google Scholar 

  107. Dimotakis, P. E. Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329–356 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  108. Wunderlich, B. et al. Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes. Nat. Protoc. 8, 1459–1474 (2013).

    Article  Google Scholar 

  109. Pfeil, S. H., Wickersham, C. E., Hoffmann, A. & Lipman, E. A. A microfluidic mixing system for single-molecule measurements. Rev. Sci. Instrum. 80, 055105 (2009).

    Article  ADS  Google Scholar 

  110. Yao, S. & Bakajin, O. Improvements in mixing time and mixing uniformity in devices designed for studies of protein folding kinetics. Anal. Chem. 79, 5753–5759 (2007).

    Article  Google Scholar 

  111. Hertzog, D. E. et al. Femtomole mixer for microsecond kinetic studies of protein folding. Anal. Chem. 76, 7169–7178 (2004).

    Article  Google Scholar 

  112. Lipman, E. A., Schuler, B., Bakajin, O. & Eaton, W. A. Single-molecule measurement of protein folding kinetics. Science 301, 1233–1235 (2003).

    Article  ADS  Google Scholar 

  113. Hamadani, K. M. & Weiss, S. Nonequilibrium single molecule protein folding in a coaxial mixer. Biophys. J. 95, 352–365 (2008).

    Article  Google Scholar 

  114. Gambin, Y. et al. Visualizing a one-way protein encounter complex by ultrafast single-molecule mixing. Nat. Methods 8, 239–241 (2011).

    Article  Google Scholar 

  115. Orte, A., Craggs, T. D., White, S. S., Jackson, S. E. & Klenerman, D. Evidence of an intermediate and parallel pathways in protein unfolding from single-molecule fluorescence. J. Am. Chem. Soc. 130, 7898–7907 (2008).

    Article  Google Scholar 

  116. Borgia, A. et al. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single molecule fluorescence spectroscopy. Nat. Commun. 2, 1195 (2012).

    Article  ADS  Google Scholar 

  117. Soranno, A. et al. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations. Proc. Natl Acad. Sci. USA 114, E1833–E1839 (2017).

    Article  Google Scholar 

  118. Dingfelder, F. et al. Slow escape from a helical misfolded state of the pore-forming toxin cytolysin A. JACS Au 1, 1217–1230 (2021).

    Article  Google Scholar 

  119. Zijlstra, N. et al. Rapid microfluidic dilution for single-molecule spectroscopy of low-affinity biomolecular complexes. Angew. Chem. Int. Ed. Engl. 56, 7126–7129 (2017).

    Article  Google Scholar 

  120. Hellenkamp, B., Thurn, J., Stadlmeier, M. & Hugel, T. Kinetics of transient protein complexes determined via diffusion-independent microfluidic mixing and fluorescence stoichiometry. J. Phys. Chem. B 122, 11554–11560 (2018).

    Article  Google Scholar 

  121. Dingfelder, F. et al. Rapid microfluidic double-jump mixing device for single-molecule spectroscopy. J. Am. Chem. Soc. 139, 6062–6065 (2017).

    Article  Google Scholar 

  122. Droplet Microfluidics Vol. 12 (The Royal Society of Chemistry, 2021).

  123. Song, H., Bringer, M. R., Tice, J. D., Gerdts, C. J. & Ismagilov, R. F. Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Appl. Phys. Lett. 83, 4664–4666 (2003).

    Article  ADS  Google Scholar 

  124. Yang, T. et al. Rapid droplet-based mixing for single-molecule spectroscopy. Nat. Methods 20, 1479–1482 (2023).

    Article  Google Scholar 

  125. Beard, D. A. Taylor dispersion of a solute in a microfluidic channel. J. Appl. Phys. 89, 4667–4669 (2001).

    Article  ADS  Google Scholar 

  126. Wunderlich, B., Nettels, D. & Schuler, B. Taylor dispersion and the position-to-time conversion in microfluidic mixing devices. Lab Chip 14, 219–228 (2014).

    Article  Google Scholar 

  127. Charmet, J., Arosio, P. & Knowles, T. P. J. Microfluidics for protein biophysics. J. Mol. Biol. 430, 565–580 (2018).

    Article  Google Scholar 

  128. Benke, S. et al. Combining rapid microfluidic mixing and three-color single-molecule FRET for probing the kinetics of protein conformational changes. J. Phys. Chem. B 125, 6617–6628 (2021).

    Article  Google Scholar 

  129. Barth, A., Voith von Voithenberg, L. & Lamb, D. C. Quantitative single-molecule three-color Förster resonance energy transfer by photon distribution analysis. J. Phys. Chem. B 123, 6901–6916 (2019).

    Article  Google Scholar 

  130. Yang, T. et al. Droplet-based microfluidic temperature-jump platform for the rapid assessment of biomolecular kinetics. Anal. Chem. 94, 16675–16684 (2022).

    Article  Google Scholar 

  131. Polinkovsky, M. E. et al. Ultrafast cooling reveals microsecond-scale biomolecular dynamics. Nat. Commun. 5, 5737 (2014).

    Article  ADS  Google Scholar 

  132. Abate, A. R., Hung, T., Mary, P., Agresti, J. J. & Weitz, D. A. High-throughput injection with microfluidics using picoinjectors. Proc. Natl Acad. Sci. USA 107, 19163–19166 (2010).

    Article  ADS  Google Scholar 

  133. Liao, D. et al. Single molecule correlation spectroscopy in continuous flow mixers with zero-mode waveguides. Opt. Expr. 16, 10077–10090 (2008).

    Article  ADS  Google Scholar 

  134. Holmstrom, E. D. & Nesbitt, D. J. Real-time infrared overtone laser control of temperature in picoliter H2O samples: ‘nanobathtubs’ for single molecule microscopy. J. Phys. Chem. Lett. 1, 2264–2268 (2010).

    Article  Google Scholar 

  135. Zhao, R. et al. Laser-assisted single-molecule refolding (LASR). Biophys. J. 99, 1925–1931 (2010).

    Article  ADS  Google Scholar 

  136. Holmstrom, E. D., Dupuis, N. F. & Nesbitt, D. J. Pulsed IR heating studies of single-molecule DNA duplex dissociation kinetics and thermodynamics. Biophys. J. 106, 220–231 (2014).

    Article  ADS  Google Scholar 

  137. Sakmann, B. & Neher, E. Single Channel Recording (Plenum Press, 1995).

  138. Barkai, E., Brown, F. L. H., Orrit, M. & Yang, H. Theory and Evaluation of Single-Molecule Signals (World Scientific Pub., Co., 2009).

    Google Scholar 

  139. Tavakoli, M., Taylor, J. N., Li, C. B., Komatsuzaki, T. & Pressé, S. Single molecule data analysis: an introduction. Adv. Chem. Phys. 162, 205–305 (2017).

    Google Scholar 

  140. Götz, M. et al. A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories. Nat. Commun. 13, 5402 (2022).

    Article  ADS  Google Scholar 

  141. Chowdhury, A., Nettels, D. & Schuler, B. Interaction dynamics of intrinsically disordered proteins from single-molecule spectroscopy. Annu. Rev. Biophys. 52, 433–62 (2023).

    Article  Google Scholar 

  142. Gopich, I. V. Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET. J. Chem. Phys. 142, 034110 (2015).

    Article  ADS  Google Scholar 

  143. D’Agostini, G. Bayesian Reasoning in Data Analysis: A Critical Introduction (World Scientific, 2003).

  144. Schanda, P. & Haran, G. NMR and smFRET insights into fast protein motions and their relation to function. Annu. Rev. Biophys. 53, 247–273 (2024).

    Article  Google Scholar 

  145. Kinz-Thompson, C. D., Ray, K. K. & Gonzalez, R. L. Jr. Bayesian inference: the comprehensive approach to analyzing single-molecule experiments. Annu. Rev. Biophys. 50, 191–208 (2021).

    Article  Google Scholar 

  146. Gopich, I. V. & Szabo, A. Decoding the pattern of photon colors in single-molecule FRET. J. Phys. Chem. B 113, 10965–10973 (2009).

    Article  Google Scholar 

  147. Zosel, F., Mercadante, D., Nettels, D. & Schuler, B. A proline switch explains kinetic heterogeneity in a coupled folding and binding reaction. Nat. Commun. 9, 3332 (2018).

    Article  ADS  Google Scholar 

  148. Ghosh, J. K. & Ramamoorthi, R. V. Bayesian Nonparametrics (Springer, 2003).

  149. Pressé, S. & Sgouralis, I. Data Modeling for the Sciences: Applications, Basics, Computations (Cambridge Univ. Press, 2023).

  150. Hines, K. E., Bankston, J. R. & Aldrich, R. W. Analyzing single-molecule time series via nonparametric Bayesian inference. Biophys. J. 108, 540–556 (2015).

    Article  ADS  Google Scholar 

  151. Sgouralis, I. & Presse, S. An introduction to infinite HMMs for single-molecule data analysis. Biophys. J. 112, 2021–2029 (2017).

    Article  ADS  Google Scholar 

  152. Sgouralis, I. et al. A Bayesian nonparametric approach to single molecule Förster resonance energy transfer. J. Phys. Chem. B 123, 675–688 (2019).

    Article  Google Scholar 

  153. Saurabh, A. et al. Single-photon smFRET. I: Theory and conceptual basis. Biophys. Rep. 3, 100089 (2023).

    Google Scholar 

  154. Jazani, S. et al. An alternative framework for fluorescence correlation spectroscopy. Nat. Commun. 10, 3662 (2019).

    Article  ADS  Google Scholar 

  155. Gopich, I. V., Kim, J. Y. & Chung, H. S. Analysis of photon trajectories from diffusing single molecules. J. Chem. Phys. 159, 024119 (2023).

    Article  ADS  Google Scholar 

  156. Meng, F., Kim, J. Y., Gopich, I. V. & Chung, H. S. Single-molecule FRET and molecular diffusion analysis characterize stable oligomers of amyloid-beta 42 of extremely low population. PNAS Nexus 2, pgad253 (2023).

    Article  Google Scholar 

  157. Liu, X., Jiang, Y., Cui, Y., Yuan, J. & Fang, X. Deep learning in single-molecule imaging and analysis: recent advances and prospects. Chem. Sci. 13, 11964–11980 (2022).

    Article  Google Scholar 

  158. Xu, J. et al. Automated stoichiometry analysis of single-molecule fluorescence imaging traces via deep learning. J. Am. Chem. Soc. 141, 6976–6985 (2019).

    Article  Google Scholar 

  159. Thomsen, J. et al. DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning. eLife 9, e60404 (2020).

    Article  Google Scholar 

  160. Li, J., Zhang, L., Johnson-Buck, A. & Walter, N. G. Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning. Nat. Commun. 11, 5833 (2020).

    Article  ADS  Google Scholar 

  161. Yuan, J. et al. Analyzing protein dynamics from fluorescence intensity traces using unsupervised deep learning network. Commun. Biol. 3, 669 (2020).

    Article  Google Scholar 

  162. Meng, F., Yoo, J. & Chung, H. S. Single-molecule fluorescence imaging and deep learning reveal highly heterogeneous aggregation of amyloid-beta 42. Proc. Natl Acad. Sci. USA 119, e2116736119 (2022).

    Article  Google Scholar 

  163. Wanninger, S. et al. Deep-LASI: deep-learning assisted, single-molecule imaging analysis of multi-color DNA origami structures. Nat. Commun. 14, 6564 (2023).

    Article  ADS  Google Scholar 

  164. Ilieva, N. I., Galvanetto, N., Allegra, M., Brucale, M. & Laio, A. Automatic classification of single-molecule force spectroscopy traces from heterogeneous samples. Bioinformatics 36, 5014–5020 (2020).

    Article  Google Scholar 

  165. von Chamier, L. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat. Commun. 12, 2276 (2021).

    Article  ADS  Google Scholar 

  166. Bottaro, S. & Lindorff-Larsen, K. Biophysical experiments and biomolecular simulations: a perfect match? Science 361, 355–360 (2018).

    Article  ADS  Google Scholar 

  167. Piana, S., Klepeis, J. L. & Shaw, D. E. Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr. Opin. Struct. Biol. 24, 98–105 (2014).

    Article  Google Scholar 

  168. Voelz, V. A., Pande, V. S. & Bowman, G. R. Folding@home: achievements from over 20 years of citizen science herald the exascale era. Biophys. J. 122, 2852–2863 (2023).

    Article  ADS  Google Scholar 

  169. Chung, H. S., Piana-Agostinetti, S., Shaw, D. E. & Eaton, W. A. Structural origin of slow diffusion in protein folding. Science 349, 1504–1510 (2015).

    Article  ADS  Google Scholar 

  170. Galvanetto, N. et al. Extreme dynamics in a biomolecular condensate. Nature 619, 876–883 (2023).

    Article  ADS  Google Scholar 

  171. Best, R. et al. Effect of flexibility and cis residues in single molecule FRET studies of polyproline. Proc. Natl Acad. Sci. USA 104, 18964–18969 (2007).

    Article  ADS  Google Scholar 

  172. Hoefling, M. et al. Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach. PLoS ONE 6, e19791 (2011).

    Article  ADS  Google Scholar 

  173. Pochorovski, I. et al. Experimental and computational study of BODIPY dye-labeled cavitand dynamics. J. Am. Chem. Soc. 136, 2441–2449 (2014).

    Article  Google Scholar 

  174. Best, R. B., Hofmann, H., Nettels, D. & Schuler, B. Quantitative interpretation of FRET experiments via molecular simulation: force field and validation. Biophys. J. 108, 2721–2731 (2015).

    Article  ADS  Google Scholar 

  175. Schröder, G. F., Alexiev, U. & Grubmüller, H. Simulation of fluorescence anisotropy experiments: probing protein dynamics. Biophys. J. 89, 3757–3770 (2005).

    Article  ADS  Google Scholar 

  176. Grotz, K. K. et al. Dispersion correction alleviates dye stacking of single-stranded DNA and RNA in simulations of single-molecule fluorescence experiments. J. Phys. Chem. B 122, 11626–11639 (2018).

    Article  Google Scholar 

  177. Zheng, W., Borgia, A., Borgia, M. B., Schuler, B. & Best, R. B. Empirical optimization of interactions between proteins and chemical denaturants in molecular simulations. J. Chem. Theory Comput. 11, 5543–5553 (2015).

    Article  Google Scholar 

  178. Best, R. B. Computational and theoretical advances in studies of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 42, 147–154 (2017).

    Article  Google Scholar 

  179. Best, R. B., Zheng, W. & Mittal, J. Balanced protein–water interactions improve properties of disordered proteins and non-specific protein association. J. Chem. Theory Comput. 10, 5113–5124 (2014).

    Article  Google Scholar 

  180. Piana, S., Donchev, A. G., Robustelli, P. & Shaw, D. E. Water dispersion interactions strongly influence simulated structural properties of disordered protein States. J. Phys. Chem. B 119, 5113–5123 (2015).

    Article  Google Scholar 

  181. Salvi, N., Abyzov, A. & Blackledge, M. Multi-timescale dynamics in intrinsically disordered proteins from NMR relaxation and molecular simulation. J. Phys. Chem. Lett. 7, 2483–2489 (2016).

    Article  Google Scholar 

  182. Kummerer, F. et al. Fitting side-chain NMR relaxation data using molecular simulations. J. Chem. Theory Comput. 17, 5262–5275 (2021).

    Article  Google Scholar 

  183. Ruff, K. M., Pappu, R. V. & Holehouse, A. S. Conformational preferences and phase behavior of intrinsically disordered low complexity sequences: insights from multiscale simulations. Curr. Opin. Struct. Biol. 56, 1–10 (2019).

    Article  Google Scholar 

  184. Papoian, G. A. Coarse-Grained Modeling of Biomolecules (CRC Press, 2018).

  185. Kim, Y. C. & Hummer, G. Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding. J. Mol. Biol. 375, 1416–1433 (2008).

    Article  Google Scholar 

  186. Karanicolas, J. & Brooks, C. L. The origins of asymmetry in the folding transition states of protein L and protein G. Prot. Sci. 11, 2351–2361 (2002).

    Article  Google Scholar 

  187. Tesei, G., Schulze, T. K., Crehuet, R. & Lindorff-Larsen, K. Accurate model of liquid–liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. Proc. Natl Acad. Sci. USA 118, e2111696118 (2021).

    Article  Google Scholar 

  188. Heidarsson, P. O. et al. Release of linker histone from the nucleosome driven by polyelectrolyte competition with a disordered protein. Nat. Chem. 14, 224–231 (2022).

    Article  Google Scholar 

  189. Zhang, B., Zheng, W., Papoian, G. A. & Wolynes, P. G. Exploring the free energy landscape of nucleosomes. J. Am. Chem. Soc. 138, 8126–8133 (2016).

    Article  Google Scholar 

  190. Dannenhoffer-Lafage, T. & Best, R. B. A data-driven hydrophobicity scale for predicting liquid–liquid phase separation of proteins. J. Phys. Chem. B 125, 4046–4056 (2021).

    Article  Google Scholar 

  191. Holmstrom, E. D. et al. Accurate transfer efficiencies, distance distributions, and ensembles of unfolded and intrinsically disordered proteins from single-molecule FRET. Methods Enzymol. 611, 287–325 (2018).

    Article  Google Scholar 

  192. Holmstrom, E. D., Liu, Z. W., Nettels, D., Best, R. B. & Schuler, B. Disordered RNA chaperones can enhance nucleic acid folding via local charge screening. Nat. Commun. 10, 2453 (2019).

    Article  ADS  Google Scholar 

  193. Rudzinski, J. E. Recent progress towards chemically-specific coarse-grained simulation models with consistent dynamical properties. Computation 7, 42 (2019).

    Article  Google Scholar 

  194. Padding, J. T. & Briels, W. J. Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology. J. Phys. Condens. Matter 23, 233101 (2011).

    Article  ADS  Google Scholar 

  195. Cranmer, K., Brehmer, J. & Louppe, G. The frontier of simulation-based inference. Proc. Natl Acad. Sci. USA 117, 30055–30062 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  196. Dingeldein, L., Cossio, P. & Covino, R. Simulation-based inference of single-molecule force spectroscopy. Mach. Learn. Sci. Technol. 4, 025009 (2023).

    Article  ADS  Google Scholar 

  197. Verdier, H. et al. Simulation-based inference for non-parametric statistical comparison of biomolecule dynamics. PLoS Comput. Biol. 19, e1010088 (2023).

    Article  Google Scholar 

  198. Zoldak, G. & Rief, M. Force as a single molecule probe of multidimensional protein energy landscapes. Curr. Opin. Struct. Biol. 23, 48–57 (2013).

    Article  Google Scholar 

  199. Hohng, S., Lee, S., Lee, J. & Jo, M. H. Maximizing information content of single-molecule FRET experiments: multi-color FRET and FRET combined with force or torque. Chem. Soc. Rev. 43, 1007–1013 (2014).

    Article  Google Scholar 

  200. Wilson, H. & Wang, Q. ABEL-FRET: tether-free single-molecule FRET with hydrodynamic profiling. Nat. Methods 18, 816–820 (2021).

    Article  Google Scholar 

  201. Chu, J. et al. Single-molecule fluorescence multiplexing by multi-parameter spectroscopic detection of nanostructured FRET labels. Nat. Nanotechnol. https://doi.org/10.1038/s41565-024-01672-8 (2024).

  202. Sung, H. L. & Nesbitt, D. J. Ligand-dependent volumetric characterization of manganese riboswitch folding: a high-pressure single-molecule kinetic study. J. Phys. Chem. B 126, 9781–9789 (2022).

    Article  Google Scholar 

  203. Patra, S., Anders, C., Erwin, N. & Winter, R. Osmolyte effects on the conformational dynamics of a DNA hairpin at ambient and extreme environmental conditions. Angew. Chem. 56, 5045–5049 (2017).

    Article  Google Scholar 

  204. Michalet, X. et al. Development of new photon-counting detectors for single-molecule fluorescence microscopy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120035 (2013).

    Article  Google Scholar 

  205. Dahmardeh, M., Mirzaalian Dastjerdi, H., Mazal, H., Kostler, H. & Sandoghdar, V. Self-supervised machine learning pushes the sensitivity limit in label-free detection of single proteins below 10 kDa. Nat. Methods 20, 442–447 (2023).

    Article  Google Scholar 

  206. Yuan, H. et al. Temperature-cycle microscopy reveals single-molecule conformational heterogeneity. Phys. Chem. Chem. Phys. 17, 6532–6544 (2015).

    Article  Google Scholar 

  207. Morales-Inostroza, L. et al. An optofluidic antenna for enhancing the sensitivity of single-emitter measurements. Nat. Commun. 15, 2545 (2023).

    Article  ADS  Google Scholar 

  208. Budde, J.-H. et al. FRET nanoscopy enables seamless imaging of molecular assemblies with sub-nanometer resolution. Preprint at https://arxiv.org/abs/2108.00024 (2021).

  209. Koenig, I. et al. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nat. Methods 12, 773–779 (2015).

    Article  Google Scholar 

  210. Terterov, I., Nettels, D., Makarov, D. E. & Hofmann, H. Time-resolved burst variance analysis. Biophys. Rep. 3, 100116 (2023).

    Google Scholar 

  211. Vollmar, L., Schimpf, J., Hermann, B. & Hugel, T. Cochaperones convey the energy of ATP hydrolysis for directional action of Hsp90. Nat. Commun. 15, 569 (2024).

    Article  ADS  Google Scholar 

  212. Song, K. V., Makarov, D. E. & Vouga, E. Compression algorithms reveal memory effects and static disorder in single-molecule trajectories. Phys. Rev. Res. 5, L012026 (2023).

    Article  Google Scholar 

  213. Barth, A. et al. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. I. Theory of FRET-lines. J. Chem. Phys. 156, 141501 (2022).

    Article  ADS  Google Scholar 

  214. Opanasyuk, O. et al. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. II. Quantitative analysis of multi-state kinetic networks. J. Chem. Phys. 157, 031501 (2022).

    Article  ADS  Google Scholar 

  215. Adhikari, S. & Orrit, M. Progress and perspectives in single-molecule optical spectroscopy. J. Chem. Phys. 156, 160903 (2022).

    Article  ADS  Google Scholar 

  216. Hwang, H. & Myong, S. Protein induced fluorescence enhancement (PIFE) for probing protein–nucleic acid interactions. Chem. Soc. Rev. 43, 1221–1229 (2014).

    Article  Google Scholar 

  217. Ploetz, E. et al. A new twist on PIFE: photoisomerisation-related fluorescence enhancement. Methods Appl. Fluoresc. 12, 012001 (2023).

    Article  ADS  Google Scholar 

  218. Doose, S., Neuweiler, H. & Sauer, M. Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. ChemPhysChem 10, 1389–1398 (2009).

    Article  Google Scholar 

  219. Haenni, D., Zosel, F., Reymond, L., Nettels, D. & Schuler, B. Intramolecular distances and dynamics from the combined photon statistics of single-molecule FRET and photoinduced electron transfer. J. Phys. Chem. B 117, 13015–13028 (2013).

    Article  Google Scholar 

  220. Weisenburger, S. et al. Cryogenic optical localization provides 3D protein structure data with Angstrom resolution. Nat. Methods 14, 141–144 (2017).

    Article  Google Scholar 

  221. Gwosch, K. C. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17, 217–224 (2020).

    Article  Google Scholar 

  222. Woll, D. et al. Polymers and single molecule fluorescence spectroscopy, what can we learn? Chem. Soc. Rev. 38, 313–328 (2009).

    Article  Google Scholar 

  223. Kalinin, S., Valeri, A., Antonik, M., Felekyan, S. & Seidel, C. A. Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. J. Phys. Chem. B 114, 7983–7995 (2010).

    Article  Google Scholar 

  224. Gopich, I. V. & Szabo, A. Single-molecule FRET with diffusion and conformational dynamics. J. Phys. Chem. B 111, 12925–12932 (2007).

    Article  Google Scholar 

  225. Hoffmann, A. et al. Quantifying heterogeneity and conformational dynamics from single molecule FRET of diffusing molecules: recurrence analysis of single particles (RASP). Phys. Chem. Chem. Phys. 13, 1857–1871 (2011).

    Article  Google Scholar 

  226. Cario, G. & Franck, J. Über sensibilisierte Fluoreszenz von Gasen. Z. Phys. 17, 202–212 (1923).

    Article  ADS  Google Scholar 

  227. Kallmann, H. & London, F. Über quantenmechanische Energieübertragungen zwischen atomaren Systemen. Z. Phys. Chem. 2, 207–243 (1928).

    Google Scholar 

  228. Perrin, F. Théorie quantique des transferts d’activation entre molécules de méme espèce. Cas des solutions fluorescentes. Ann. Chim. Phys. 17, 283–314 (1932).

    ADS  Google Scholar 

  229. Andrews, D. L. in Tutorials in Complex Photonic Media (eds Noginov, M. A. et al.) (SPIE, 2009).

  230. Masters, B. R. Paths to Förster’s resonance energy transfer (FRET) theory. Eur. Phys. J. H 39, 87–139 (2014).

    Article  ADS  Google Scholar 

  231. Oppenheimer, J. R. Minutes of the Pasadena, California, Meeting June 18–20, 1941. Phys. Rev. 60, 158–165 (1941).

    Article  ADS  Google Scholar 

  232. Arnold, W. & Oppenheimer, J. R. Internal conversion in the photosynthetic mechanism of blue-green algae. J. Gen. Physiol. 33, 423–435 (1950).

    Article  Google Scholar 

  233. Förster, T. Energiewanderung und Fluoreszenz. Naturwissenschaften 6, 166–175 (1946).

    Article  ADS  Google Scholar 

  234. Nelson, P. C. The role of quantum decoherence in FRET. Biophys. J. 115, 167–172 (2018).

    Article  ADS  Google Scholar 

  235. Olaya-Castro, A. & Scholes, G. D. Energy transfer from Förster–Dexter theory to quantum coherent light-harvesting. Int. Rev. Phys. Chem. 30, 49–77 (2011).

    Article  Google Scholar 

  236. Clegg, R. M. in Reviews in Fluorescence (eds Geddes, C. D. & Lakowicz, J. R.) Vol. 3, 1–45 (Springer, 2006).

  237. Felekyan, S. et al. Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Rev. Sci. Instrum. 76, 083104 (2005).

    Article  ADS  Google Scholar 

  238. Viterbi, A. J. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13, 260 (1967).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank R. Covino, S. Gopi, G. Haran, H. Hofmann, E. Lipman, C. Lorenz and D. Makarov for insightful discussions and comments on the manuscript. This work was supported by the Swiss National Science Foundation and the Forschungskredit of the University of Zurich.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this article.

Corresponding authors

Correspondence to Daniel Nettels or Benjamin Schuler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Nikos Hatzakis, Satyajit Patra and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bayesian nonparametrics

A type of statistical models and methods characterized by large parameter spaces, such as unknown numbers of microstates and their connectivity, and by the construction of probability measures over these spaces.

Chemical kinetics

Description of the time dependence of the interconversion between thermodynamic states and microstates of a system in terms of rates.

Coarse-grained

In modelling complex systems or in renormalization, coarse-graining refers to the procedure in which two or more microscopic entities are replaced with a single entity to reduce the complexity or resolution of the model.

Droplet microfluidics

A method to manipulate discrete, typically picolitre volumes of fluids in immiscible phases. For biomolecules, aqueous droplets in oil are commonly used.

Ensemble average

The mean value of some observables obtained from simultaneous measurements of all members of a statistical ensemble. Single-molecule spectroscopy overcomes ensemble averaging.

Fluorescence correlation spectroscopy

(FCS). Statistical analysis of fluctuations in fluorescence intensity or count rates via time correlation. FCS is a broadly applicable way of assessing biomolecular dynamics over a broad range of timescales.

Förster resonance energy transfer

(FRET). Non-radiative transfer of excitation energy between two molecular entities separated by distances considerably exceeding the sum of their van der Waals radii in the very weak dipole–dipole coupling limit.

Hydrodynamic focusing

A technique used in microfluidics, in which several fluid streams are combined in microfluidic channels to form a layer or jet that is so thin that it exchanges its solutes very rapidly with the neighbouring streams by diffusion.

Local density of optical states

Measures the availability of electromagnetic modes at a given point in space and governs the deexcitation of a quantum emitter.

Multiparameter fluorescence detection

Simultaneous acquisition of multiple fluorescence observables, such as wavelength, count rate, lifetime and anisotropy, as a function of time in a single measurement.

Nanosecond FCS

(ncFCS). Variant of FCS that enables dynamics in the submicrosecond range to be measured by using a Hanbury Brown and Twiss configuration of single-photon detectors.

Photon antibunching

Special distribution of time delays between photons that is characteristic for the emission of a single quantum emitter. Photon antibunching is detected as an anticorrelated component in fluorescence correlation spectroscopy on timescales comparable to the fluorescence lifetime.

Reaction coordinate

A quantity used to describe the progress of a reaction, often chosen to reflect a change in experimental signal. In the context of Förster resonance energy transfer experiments, the reaction coordinate would typically be related to an intramolecular or intermolecular distance change.

Reconfiguration times

Relaxation time of the correlation function of a point-to-point distance within a molecule, most commonly a polymer chain.

Simulation-based inference

Emerging family of methods that infer the model parameters when the likelihood is intractable by integrating simulations with machine learning.

Single-molecule spectroscopy

Methods that enable the physical properties of individual molecules to be measured.

Time average

The mean value of some observables obtained from measurements of an individual member of the ensemble as a function of time, for example, as a result of time binning. Single-molecule spectroscopy overcomes time averaging for processes that can be resolved with the time resolution of the specific measurement.

Transition paths

The successful reactant-to-product crossing of the free-energy barrier separating two free-energy minima. Transition paths are rare events with very short duration and thus challenging to resolve experimentally.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nettels, D., Galvanetto, N., Ivanović, M.T. et al. Single-molecule FRET for probing nanoscale biomolecular dynamics. Nat Rev Phys 6, 587–605 (2024). https://doi.org/10.1038/s42254-024-00748-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00748-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing