Abstract
Thermal transport is a fundamental mechanism of energy transfer process quite distinct from wave propagation phenomena. It can be manipulated well beyond the possibilities offered by natural materials with a new generation of artificial metamaterials: thermal metamaterials. Topological physics, a focal point in contemporary condensed matter physics, has been intertwined with thermal metamaterials in recent years. Inspired by topological photonics and topological acoustics in wave metamaterials, a new research field emerged recently, which we dub ‘topological thermotics’, which encompasses three primary branches: topological thermal conduction, convection and radiation. For topological thermal conduction, we discuss recent advances in both 1D and higher-dimensional thermal topological phases. For topological thermal convection, we discuss the implementation of thermal exceptional points with their unique properties and non-Hermitian thermal topological states. Finally, we review the most recent demonstration of topological effects in the near-field and far-field radiation. Anticipating future developments, we conclude by discussing potential directions of topological thermotics, including the expansion into other diffusion processes such as particle dynamics and plasma physics, and the integration with machine-learning techniques.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).
Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).
Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 96, 106802 (2006).
König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).
Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).
Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).
Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80, 076501 (2017).
Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb). Phys. Rev. B 85, 195320 (2012).
Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).
Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).
Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).
Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).
Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486–489 (2019).
Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019).
Zhang, X., Zangeneh-Nejad, F., Chen, Z.-G., Lu, M.-H. & Christensen, J. A second wave of topological phenomena in photonics and acoustics. Nature 618, 687–697 (2023).
Ni, X., Yves, S., Krasnok, A. & Alù, A. Topological metamaterials. Chem. Rev. 123, 7585–7654 (2023).
Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).
Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Xue, H., Yang, Y. & Zhang, B. Topological acoustics. Nat. Rev. Mater. 7, 974–990 (2022).
Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).
Zhu, W. et al. Topological phononic metamaterials. Rep. Prog. Phys. 86, 106501 (2023).
Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).
Maczewsky, L. J., Zeuner, J. M., Nolte, S. & Szameit, A. Observation of photonic anomalous Floquet topological insulators. Nat. Commun. 8, 13756 (2017).
Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019).
Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).
Li, F.-F. et al. Topological light-trapping on a dislocation. Nat. Commun. 9, 2462 (2018).
Liu, Y. et al. Bulk–disclination correspondence in topological crystalline insulators. Nature 589, 381–385 (2021).
Lin, Z.-K. et al. Topological phenomena at defects in acoustic, photonic and solid-state lattices. Nat. Rev. Phys. 5, 483–495 (2023).
Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).
Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).
He, H. et al. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature 560, 61–64 (2018).
Hu, B. et al. Non-Hermitian topological whispering gallery. Nature 597, 655–659 (2021).
Zhang, X. et al. Second-order topology and multidimensional topological transitions in sonic crystals. Nat. Phys. 15, 582–588 (2019).
Zhang, X. et al. Dimensional hierarchy of higher-order topology in three-dimensional sonic crystals. Nat. Commun. 10, 5331 (2019).
Xie, B.-Y. et al. Higher-order band topology. Nat. Rev. Phys. 3, 520–532 (2021).
Luo, L. et al. Observation of a phononic higher-order Weyl semimetal. Nat. Mater. 20, 794–799 (2021).
Xiang, X. et al. Demonstration of acoustic higher-order topological Stiefel–Whitney semimetal. Phys. Rev. Lett. 132, 197202 (2024).
Lin, Z.-K. et al. Topological Wannier cycles induced by sub-unit-cell artificial gauge flux in a sonic crystal. Nat. Mater. 21, 430–437 (2022).
Jiang, B. et al. Experimental observation of non-Abelian topological acoustic semimetals and their phase transitions. Nat. Phys. 17, 1239–1246 (2021).
Qiu, H. et al. Minimal non-Abelian nodal braiding in ideal metamaterials. Nat. Commun. 14, 1261 (2023).
Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016).
Zhang, Z. et al. Diffusion metamaterials. Nat. Rev. Phys. 5, 218–235 (2023).
Yang, F. et al. Controlling mass and energy diffusion with metamaterials. Rev. Mod. Phys. 96, 015002 (2024).
Yang, F.-B. & Huang, J.-P. Diffusionics: Diffusion Process Controlled by Diffusion Metamaterials (Springer Singapore, 2024).
Huang, J.-P. Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Springer Singapore, 2020).
Xu, L.-J. & Huang, J.-P. Transformation Thermotics and Extended Theories: Inside and Outside Metamaterials (Springer Singapore, 2023).
Yang, S., Wang, J., Dai, G., Yang, F. & Huang, J. Controlling macroscopic heat transfer with thermal metamaterials: theory, experiment and application. Phys. Rep. 908, 1–65 (2021).
Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021).
Ju, R. et al. Convective thermal metamaterials: exploring high-efficiency, directional, and wave-like heat transfer. Adv. Mater. 35, 2209123 (2023).
Fan, C., Gao, Y. & Huang, J. Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008).
Chen, T., Weng, C.-N. & Chen, J.-S. Cloak for curvilinearly anisotropic media in conduction. Appl. Phys. Lett. 93, 114103 (2008).
Narayana, S. & Sato, Y. Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012).
Yeung, W.-S. & Yang, R.-J. Introduction to Thermal Cloaking: Theory and Analysis in Conduction and Convection (Springer Singapore, 2022).
Lou, Q. & Xia, M.-G. Autonomously tuning multilayer thermal cloak with variable thermal conductivity based on thermal triggered dual phase-transition metamaterial. Chin. Phys. Lett. 40, 094401 (2023).
Hu, R. et al. Illusion thermotics. Adv. Mater. 30, 1707237 (2018).
Yang, F., Xu, L. & Huang, J. Thermal illusion of porous media with convection–diffusion process: transparency, concentrating, and cloaking. ES Energy Environ. 6, 45–50 (2019).
He, Z., Yuan, K., Xiong, G. & Wang, J. Inverse design and experimental verification of metamaterials for thermal illusion using genetic algorithms. Chin. Phys. Lett. 40, 104402 (2023).
Guo, J., Xu, G., Tian, D., Qu, Z. & Qiu, C.-W. A real-time self-adaptive thermal metasurface. Adv. Mater. 34, 2201093 (2022).
Yang, F. et al. Space-time thermal binary coding by spatiotemporally modulated metashell. Phys. Rev. Appl. 19, 054096 (2023).
Dai, G. & Huang, J. A transient regime for transforming thermal convection: cloaking, concentrating and rotating creeping flow and heat flux. J. Appl. Phys. 124, 235103 (2018).
Jin, P. et al. Tunable liquid–solid hybrid thermal metamaterials with a topology transition. Proc. Natl Acad. Sci. USA 120, e2217068120 (2023).
Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).
Zhai, Y. et al. Scalable-manufactured randomized glass–polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).
Xu, L., Yang, S., Dai, G. & Huang, J. Transformation omnithermotics: simultaneous manipulation of three basic modes of heat transfer. ES Energy Environ. 7, 65–70 (2020).
Xu, L., Dai, G. & Huang, J. Transformation multithermotics: controlling radiation and conduction simultaneously. Phys. Rev. Appl. 13, 024063 (2020).
Zhang, C.-X., Li, T.-J., Xu, L.-J. & Huang, J.-P. Dust-induced regulation of thermal radiation in water droplets. Chin. Phys. Lett. 40, 054401 (2023).
Yin, H. & Fan, C. Ultra-broadband thermal emitter for daytime radiative cooling with MIM metamaterials. Chin. Phys. Lett. 40, 077801 (2023).
Nakahara, M. Geometry, Topology and Physics (CRC Press, 2003).
Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982).
Asbóth, J. K., Oroszlány, L. & Pályi, A. A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions (Springer Cham, 2016).
Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).
Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).
Han, T. et al. Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014).
Xu, H., Shi, X., Gao, F., Sun, H. & Zhang, B. Ultrathin three-dimensional thermal cloak. Phys. Rev. Lett. 112, 054301 (2014).
Dai, G., Shang, J. & Huang, J. Theory of transformation thermal convection for creeping flow in porous media: cloaking, concentrating, and camouflage. Phys. Rev. E 97, 022129 (2018).
Dai, G., Yang, F., Wang, J., Xu, L. & Huang, J. Diffusive pseudo-conformal mapping: anisotropy-free transformation thermal media with perfect interface matching. Chaos Soliton. Fract. 174, 113849 (2023).
Xu, L. et al. Free-form and multi-physical metamaterials with forward conformality-assisted tracing. Nat. Comput. Sci. 4, 532–541 (2024).
Hu, H. et al. Observation of topological edge states in thermal diffusion. Adv. Mater. 34, 2202257 (2022).
Wu, H. et al. Higher-order topological states in thermal diffusion. Adv. Mater. 35, 2202257 (2023).
Qi, M. et al. Geometric phase and localized heat diffusion. Adv. Mater. 34, 2202241 (2022).
Tian, B., Wang, J., Dai, G., Ouyang, X. & Huang, J. Thermal metadevices with geometrically anisotropic heterogeneous composites. Int. J. Heat Mass Transf. 174, 121312 (2021).
Xu, G. et al. Diffusive topological transport in spatiotemporal thermal lattices. Nat. Phys. 18, 450–456 (2022).
Xu, G., Zhou, X., Yang, S., Wu, J. & Qiu, C.-W. Observation of bulk quadrupole in topological heat transport. Nat. Commun. 14, 3252 (2023).
Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698 (1979).
Yoshida, T. & Hatsugai, Y. Bulk-edge correspondence of classical diffusion phenomena. Sci. Rep. 11, 888 (2021).
Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61 (2017).
Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, eaat0346 (2018).
Benalcazar, W. A., Li, T. & Hughes, T. L. Quantization of fractional corner charge in cn-symmetric higher-order topological crystalline insulators. Phys. Rev. B 99, 245151 (2019).
Xie, B.-Y. et al. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Phys. Rev. Lett. 122, 233903 (2019).
Liu, Z. et al. Higher-order topological in-bulk corner state in pure diffusion systems. Phys. Rev. Lett. 132, 176302 (2024).
Chen, B., Pang, K., Zheng, R. & Liu, F. Hierarchical topological states in thermal diffusive networks. Phys. Rev. B 109, 054312 (2024).
Fukui, T., Yoshida, T. & Hatsugai, Y. Higher-order topological heat conduction on a lattice for detection of corner states. Phys. Rev. E 108, 024112 (2023).
Qi, M. et al. Observation of multiple topological corner states in thermal diffusion. Preprint at https://arxiv.org/abs/2304.12641 (2023).
Funayama, K., Hirotani, J., Miura, A. & Tanaka, H. Selectable diffusion direction with topologically protected edge modes. Commun. Phys. 6, 364 (2023).
Funayama, K., Hirotani, J., Miura, A. & Tanaka, H. Robustness of quantum spin Hall effect-inspired edge modes depending on c6 symmetry in topological diffusion systems. Appl. Phys. Lett. 123, 223104 (2023).
Strohm, C., Rikken, G. L. J. A. & Wyder, P. Phenomenological evidence for the phonon Hall effect. Phys. Rev. Lett. 95, 155901 (2005).
Zhang, L., Ren, J., Wang, J.-S. & Li, B. Topological nature of the phonon Hall effect. Phys. Rev. Lett. 105, 225901 (2010).
Liu, Z. in Diffusionics: Diffusion Process Controlled by Diffusion Metamaterials (eds Yang, F.-B. & Huang, J.-P.) Ch. 8 (Springer Singapore, 2024).
Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys. 69, 249 (2020).
Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).
Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998).
Kato, T. Perturbation Theory for Linear Operators (Springer Berlin Heidelberg, 1966).
Li, Y. et al. Anti-parity–time symmetry in diffusive systems. Science 364, 170–173 (2019).
Cao, P.-C. et al. Observation of parity–time symmetry in diffusive systems. Sci. Adv. 10, eadn1746 (2024).
Cao, P.-C., Li, Y., Peng, Y.-G., Qiu, C.-W. & Zhu, X.-F. High-order exceptional points in diffusive systems: robust APT symmetry against perturbation and phase oscillation at APT symmetry breaking. ES Energy Environ. 7, 48–55 (2020).
Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).
Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80–83 (2016).
Yoon, J. W. et al. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature 562, 86–90 (2018).
Xu, G., Li, Y., Li, W., Fan, S. & Qiu, C.-W. Configurable phase transitions in a topological thermal material. Phys. Rev. Lett. 127, 105901 (2021).
Xu, L. et al. Geometric phase, effective conductivity enhancement, and invisibility cloak in thermal convection–conduction. Int. J. Heat Mass Transf. 165, 120659 (2021).
Wang, C. Q. et al. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 16, 334–340 (2020).
Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).
Xu, G. et al. Non-Hermitian chiral heat transport. Phys. Rev. Lett. 130, 266303 (2023).
Xu, L. et al. Black-hole-inspired thermal trapping with graded heat-conduction metadevices. Natl Sci. Rev. 10, nwac159 (2023).
Cao, P.-C. et al. Diffusive skin effect and topological heat funneling. Commun. Phys. 4, 230 (2021).
Liu, Y.-K. et al. Observation of non-Hermitian skin effect in thermal diffusion. Sci. Bull. 69, 1228–1236 (2024).
Cao, P.-C., Peng, Y.-G., Li, Y. & Zhu, X.-F. Phase-locking diffusive skin effect. Chin. Phys. Lett. 39, 057801 (2022).
Liu, Z., Cao, P.-C., Li, Y. & Huang, J. Extended-localized transition in diffusive quasicrystals. Phys. Rev. Appl. 21, 064035 (2024).
Xu, L. & Huang, J. Robust one-way edge state in convection–diffusion systems. Europhys. Lett. 134, 60001 (2021).
Huang, Q.-K.-L., Liu, Y.-K., Cao, P.-C., Zhu, X.-F. & Li, Y. Two-dimensional thermal regulation based on non-Hermitian skin effect. Chin. Phys. Lett. 40, 106601 (2023).
Xu, G. et al. Observation of Weyl exceptional rings in thermal diffusion. Proc. Natl Acad. Sci. USA 119, e2110018119 (2022).
Xu, Y., Wang, S.-T. & Duan, L.-M. Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett. 118, 045701 (2017).
Cerjan, A., Huang, S., Chen, K. P., Chong, Y. & Rechtsman, M. C. Experimental realization of a Weyl exceptional ring. Nat. Photon. 13, 623–628 (2019).
Liu, J.-J. et al. Experimental realization of Weyl exceptional rings in a synthetic three-dimensional non-Hermitian phononic crystal. Phys. Rev. Lett. 129, 084301 (2022).
Biehs, S.-A. et al. Near-field radiative heat transfer in many-body systems. Rev. Mod. Phys. 93, 025009 (2021).
Tian, P. et al. Near-field radiative heat transfer between disordered multilayer systems. Chin. Phys. Lett. 40, 067802 (2023).
Ge, W.-X., Hu, Y., Gao, L. & Wu, X. Near-field thermal splitter based on magneto-optical nanoparticles. Chin. Phys. Lett. 40, 114401 (2023).
Ott, A. & Biehs, S.-A. Radiative heat flux through a topological Su–Schrieffer–Heeger chain of plasmonic nanoparticles. Phys. Rev. B 102, 115417 (2020).
Ott, A. & Biehs, S.-A. Topological near-field heat flow in a honeycomb lattice. Int. J. Heat Mass Transf. 190, 122796 (2022).
Ott, A., An, Z., Kittel, A. & Biehs, S.-A. Thermal near-field energy density and local density of states in topological one-dimensional Su–Schrieffer–Heeger chains and two-dimensional Su–Schrieffer–Heeger lattices of plasmonic nanoparticles. Phys. Rev. B 104, 165407 (2021).
Luo, M., Zhu, J., Biehs, S.-A., Zhao, J. & Liu, L. Residual surface charge mediated near-field radiative energy transfer: a topological insulator analog. Mater. Today Phys. 31, 100984 (2023).
Herz, F. & Biehs, S.-A. Thermal radiation and near-field thermal imaging of a plasmonic Su–Schrieffer–Heeger chain. Appl. Phys. Lett. 121, 181701 (2022).
Nikbakht, M. & Bahmani, F. Topological edge states in nanoparticle chains: isolating radiative heat flux. Phys. Rev. B 108, 064307 (2023).
Rosseland, S. Astrophysik auf atomtheoretischer Grundlage (Springer Berlin Heidelberg, 1931).
Hänggi, P. & Marchesoni, F. Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387–442 (2009).
Xu, L., Dai, G., Wang, G. & Huang, J. Geometric phase and bilayer cloak in macroscopic particle-diffusion systems. Phys. Rev. E 102, 032140 (2020).
Lieberman, M. A. & Lichtenberg, A. J. Principles of Plasma Discharges and Materials Processing (Wiley Interscience, 2005).
Chen, F. F. Introduction to Plasma Physics and Controlled Fusion (Springer Cham, 2016).
Huang, C.-W., Chen, Y.-C. & Nishimura, Y. Particle-in-cell simulation of plasma sheath dynamics with kinetic ions. IEEE Trans. Plasma Sci. 43, 675–682 (2015).
Zhang, Z. & Huang, J. Transformation plasma physics. Chin. Phys. Lett. 39, 075201 (2022).
Liu, Z. & Huang, J. Topological plasma transport from a diffusion view. Chin. Phys. Lett. 40, 110305 (2023).
Gao, W. et al. Photonic Weyl degeneracies in magnetized plasma. Nat. Commun. 7, 12435 (2016).
Parker, J. B., Burby, J. W., Marston, J. B. & Tobias, S. M. Nontrivial topology in the continuous spectrum of a magnetized plasma. Phys. Rev. Res. 2, 033425 (2020).
Parker, J. B., Marston, J., Tobias, S. M. & Zhu, Z. Topological gaseous plasmon polariton in realistic plasma. Phys. Rev. Lett. 124, 195001 (2020).
Fu, Y. & Qin, H. Topological phases and bulk-edge correspondence of magnetized cold plasmas. Nat. Commun. 12, 3924 (2021).
Yokoi, N. Unappreciated cross-helicity effects in plasma physics: anti-diffusion effects in dynamo and momentum transport. Rev. Mod. Plasma Phys. 7, 33 (2023).
Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020).
Zheng, L. et al. Emergent charge order in pressurized kagome superconductor CsV3Sb5. Nature 611, 682–687 (2022).
Zhong, Y. et al. Nodeless electron pairing in CsV3Sb5-derived kagome superconductors. Nature 617, 488–492 (2023).
Huang, H. & Liu, F. Quantum spin Hall effect and spin Bott index in a quasicrystal lattice. Phys. Rev. Lett. 121, 126401 (2018).
Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2020).
Liu, E. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 594, 46–50 (2021).
Wang, P. et al. One-dimensional Luttinger liquids in a two-dimensional moiré lattice. Nature 605, 57–62 (2022).
Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).
Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).
Li, H. et al. Twisted moiré conductive thermal metasurface. Nat. Commun. 15, 2169 (2024).
Biesenthal, T. et al. Fractal photonic topological insulators. Science 376, 1114–1119 (2022).
Yazdani, A., von Oppen, F., Halperin, B. I. & Yacoby, A. Hunting for Majoranas. Science 380, eade0850 (2023).
Valentini, M. et al. Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states. Science 373, 82–88 (2021).
Li, M. et al. Ordered and tunable Majorana-zero-mode lattice in naturally strained LiFeAs. Nature 606, 890–895 (2022).
Li, Y. et al. Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes. Phys. Rev. Lett. 115, 195503 (2015).
Shen, X., Li, Y., Jiang, C. & Huang, J. Temperature trapping: energy-free maintenance of constant temperatures as ambient temperature gradients change. Phys. Rev. Lett. 117, 055501 (2016).
Yang, Z. & Hu, J. Non-Hermitian Hopf-link exceptional line semimetals. Phys. Rev. B 99, 081102 (2019).
Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).
Yin, S., Galiffi, E. & Alù, A. Floquet metamaterials. eLight 2, 8 (2022).
Zhang, Y. & Kim, E.-A. Quantum loop topography for machine learning. Phys. Rev. Lett. 118, 216401 (2017).
Zhang, P., Shen, H. & Zhai, H. Machine learning topological invariants with neural networks. Phys. Rev. Lett. 120, 066401 (2018).
Long, Y., Ren, J. & Chen, H. Unsupervised manifold clustering of topological phononics. Phys. Rev. Lett. 124, 185501 (2020).
Scheurer, M. S. & Slager, R.-J. Unsupervised machine learning and band topology. Phys. Rev. Lett. 124, 226401 (2020).
Claussen, N., Bernevig, B. A. & Regnault, N. Detection of topological materials with machine learning. Phys. Rev. B 101, 245117 (2020).
Cao, G. et al. Artificial intelligence for high-throughput discovery of topological insulators: the example of alloyed tetradymites. Phys. Rev. Mater. 4, 034204 (2020).
Liu, H., Meng, S. & Liu, F. Screening two-dimensional materials with topological flat bands. Phys. Rev. Mater. 5, 084203 (2021).
Schleder, G. R., Focassio, B. & Fazzio, A. Machine learning for materials discovery: two-dimensional topological insulators. Appl. Phys. Rev. 8, 031409 (2021).
Andrejevic, N. et al. Machine-learning spectral indicators of topology. Adv. Mater. 34, 2204113 (2022).
Ma, A. et al. Topogivity: a machine-learned chemical rule for discovering topological materials. Nano Lett. 23, 772–778 (2023).
Zhu, C., Bamidele, E. A., Shen, X., Zhu, G. & Li, B. Machine learning aided design and optimization of thermal metamaterials. Chem. Rev. 124, 4258–4331 (2024).
Hu, R. et al. Machine-learning-optimized aperiodic superlattice minimizes coherent phonon heat conduction. Phys. Rev. X 10, 021050 (2020).
Hu, R. et al. Machine learning-optimized Tamm emitter for high-performance thermophotovoltaic system with detailed balance analysis. Nano Energy 72, 104687 (2020).
Ji, Q. et al. Design of thermal cloaks with isotropic materials based on machine learning. Int. J. Heat Mass Transf. 189, 122716 (2022).
Jin, P. et al. Deep learning-assisted active metamaterials with heat-enhanced thermal transport. Adv. Mater. 36, 2305791 (2024).
Budich, J. C. & Bergholtz, E. J. Non-Hermitian topological sensors. Phys. Rev. Lett. 125, 180403 (2020).
Mao, J. et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019).
Ren, J. Geometric thermoelectric pump: energy harvesting beyond Seebeck and pyroelectric effects. Chin. Phys. Lett. 40, 090501 (2023).
Lin, K. et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 382, 691–697 (2023).
Zhao, X. et al. A solution-processed radiative cooling glass. Science 382, 684–691 (2023).
Acknowledgements
The authors are indebted to F. Yang and L. Xu for their insightful comments and suggestions on this review and extend their gratitude to R. B. Tao for his invaluable and encouraging discussions regarding the study of topology in thermal metamaterials. J.H. was supported by the National Natural Science Foundation of China under Grant Nos 12035004 and 12320101004, and the Innovation Program of the Shanghai Municipal Education Commission under Grant No. 2023ZKZD06. J.-H.J. was supported by the National Natural Science Foundation of China (Grant No. 12125504) and the ‘Hundred Talents Program’ of the Chinese Academy of Sciences. F.M. was supported by the National Natural Science Foundation of China (Grant No. 12350710786).
Author information
Authors and Affiliations
Contributions
Z.L. researched data for the article. Z.L., F.M., J.-H.J. and J.H. contributed substantially to discussion of the content. Z.L., P.J., M.L. and C.W. wrote the article. J.-H.J. and J.H. reviewed and/or edited the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Peer review
Peer review information
Nature Reviews Physics thanks Xue-Feng Zhu and Muamer Kadic for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, Z., Jin, P., Lei, M. et al. Topological thermal transport. Nat Rev Phys 6, 554–565 (2024). https://doi.org/10.1038/s42254-024-00745-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-024-00745-w