Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Topological thermal transport

Abstract

Thermal transport is a fundamental mechanism of energy transfer process quite distinct from wave propagation phenomena. It can be manipulated well beyond the possibilities offered by natural materials with a new generation of artificial metamaterials: thermal metamaterials. Topological physics, a focal point in contemporary condensed matter physics, has been intertwined with thermal metamaterials in recent years. Inspired by topological photonics and topological acoustics in wave metamaterials, a new research field emerged recently, which we dub ‘topological thermotics’, which encompasses three primary branches: topological thermal conduction, convection and radiation. For topological thermal conduction, we discuss recent advances in both 1D and higher-dimensional thermal topological phases. For topological thermal convection, we discuss the implementation of thermal exceptional points with their unique properties and non-Hermitian thermal topological states. Finally, we review the most recent demonstration of topological effects in the near-field and far-field radiation. Anticipating future developments, we conclude by discussing potential directions of topological thermotics, including the expansion into other diffusion processes such as particle dynamics and plasma physics, and the integration with machine-learning techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topological theory and transformation theory.
Fig. 2: One-dimensional topological phase in pure conduction systems.
Fig. 3: Higher-order topological insulator in pure conduction systems.
Fig. 4: Exceptional point and its properties in conduction–convection systems.
Fig. 5: Non-Hermitian topology in conduction–convection systems.

Similar content being viewed by others

References

  1. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  2. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  3. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  4. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 96, 106802 (2006).

    Google Scholar 

  5. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  6. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article  ADS  Google Scholar 

  7. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  ADS  Google Scholar 

  8. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  9. Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80, 076501 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  10. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  ADS  Google Scholar 

  11. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    Article  ADS  Google Scholar 

  12. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  13. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  14. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  15. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  16. Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    Article  ADS  Google Scholar 

  17. Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486–489 (2019).

    Article  ADS  Google Scholar 

  18. Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019).

    Article  ADS  Google Scholar 

  19. Zhang, X., Zangeneh-Nejad, F., Chen, Z.-G., Lu, M.-H. & Christensen, J. A second wave of topological phenomena in photonics and acoustics. Nature 618, 687–697 (2023).

    Article  ADS  Google Scholar 

  20. Ni, X., Yves, S., Krasnok, A. & Alù, A. Topological metamaterials. Chem. Rev. 123, 7585–7654 (2023).

    Article  Google Scholar 

  21. Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    Article  MathSciNet  Google Scholar 

  22. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article  ADS  Google Scholar 

  23. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  24. Xue, H., Yang, Y. & Zhang, B. Topological acoustics. Nat. Rev. Mater. 7, 974–990 (2022).

    Article  ADS  Google Scholar 

  25. Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).

    Article  Google Scholar 

  26. Zhu, W. et al. Topological phononic metamaterials. Rep. Prog. Phys. 86, 106501 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  27. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  28. Maczewsky, L. J., Zeuner, J. M., Nolte, S. & Szameit, A. Observation of photonic anomalous Floquet topological insulators. Nat. Commun. 8, 13756 (2017).

    Article  ADS  Google Scholar 

  29. Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019).

    Article  ADS  Google Scholar 

  30. Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  31. Li, F.-F. et al. Topological light-trapping on a dislocation. Nat. Commun. 9, 2462 (2018).

    Article  ADS  Google Scholar 

  32. Liu, Y. et al. Bulk–disclination correspondence in topological crystalline insulators. Nature 589, 381–385 (2021).

    Article  ADS  Google Scholar 

  33. Lin, Z.-K. et al. Topological phenomena at defects in acoustic, photonic and solid-state lattices. Nat. Rev. Phys. 5, 483–495 (2023).

    Article  Google Scholar 

  34. Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).

    Article  Google Scholar 

  35. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Article  Google Scholar 

  36. Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).

    Article  ADS  Google Scholar 

  37. He, H. et al. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature 560, 61–64 (2018).

    Article  ADS  Google Scholar 

  38. Hu, B. et al. Non-Hermitian topological whispering gallery. Nature 597, 655–659 (2021).

    Article  ADS  Google Scholar 

  39. Zhang, X. et al. Second-order topology and multidimensional topological transitions in sonic crystals. Nat. Phys. 15, 582–588 (2019).

    Article  Google Scholar 

  40. Zhang, X. et al. Dimensional hierarchy of higher-order topology in three-dimensional sonic crystals. Nat. Commun. 10, 5331 (2019).

    Article  ADS  Google Scholar 

  41. Xie, B.-Y. et al. Higher-order band topology. Nat. Rev. Phys. 3, 520–532 (2021).

    Article  Google Scholar 

  42. Luo, L. et al. Observation of a phononic higher-order Weyl semimetal. Nat. Mater. 20, 794–799 (2021).

    Article  ADS  Google Scholar 

  43. Xiang, X. et al. Demonstration of acoustic higher-order topological Stiefel–Whitney semimetal. Phys. Rev. Lett. 132, 197202 (2024).

    Article  ADS  Google Scholar 

  44. Lin, Z.-K. et al. Topological Wannier cycles induced by sub-unit-cell artificial gauge flux in a sonic crystal. Nat. Mater. 21, 430–437 (2022).

    Article  ADS  Google Scholar 

  45. Jiang, B. et al. Experimental observation of non-Abelian topological acoustic semimetals and their phase transitions. Nat. Phys. 17, 1239–1246 (2021).

    Article  Google Scholar 

  46. Qiu, H. et al. Minimal non-Abelian nodal braiding in ideal metamaterials. Nat. Commun. 14, 1261 (2023).

    Article  ADS  Google Scholar 

  47. Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016).

    Article  Google Scholar 

  48. Zhang, Z. et al. Diffusion metamaterials. Nat. Rev. Phys. 5, 218–235 (2023).

    Article  Google Scholar 

  49. Yang, F. et al. Controlling mass and energy diffusion with metamaterials. Rev. Mod. Phys. 96, 015002 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  50. Yang, F.-B. & Huang, J.-P. Diffusionics: Diffusion Process Controlled by Diffusion Metamaterials (Springer Singapore, 2024).

  51. Huang, J.-P. Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Springer Singapore, 2020).

  52. Xu, L.-J. & Huang, J.-P. Transformation Thermotics and Extended Theories: Inside and Outside Metamaterials (Springer Singapore, 2023).

  53. Yang, S., Wang, J., Dai, G., Yang, F. & Huang, J. Controlling macroscopic heat transfer with thermal metamaterials: theory, experiment and application. Phys. Rep. 908, 1–65 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  54. Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021).

    Article  ADS  Google Scholar 

  55. Ju, R. et al. Convective thermal metamaterials: exploring high-efficiency, directional, and wave-like heat transfer. Adv. Mater. 35, 2209123 (2023).

    Article  Google Scholar 

  56. Fan, C., Gao, Y. & Huang, J. Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008).

    Article  ADS  Google Scholar 

  57. Chen, T., Weng, C.-N. & Chen, J.-S. Cloak for curvilinearly anisotropic media in conduction. Appl. Phys. Lett. 93, 114103 (2008).

    Article  ADS  Google Scholar 

  58. Narayana, S. & Sato, Y. Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012).

    Article  ADS  Google Scholar 

  59. Yeung, W.-S. & Yang, R.-J. Introduction to Thermal Cloaking: Theory and Analysis in Conduction and Convection (Springer Singapore, 2022).

  60. Lou, Q. & Xia, M.-G. Autonomously tuning multilayer thermal cloak with variable thermal conductivity based on thermal triggered dual phase-transition metamaterial. Chin. Phys. Lett. 40, 094401 (2023).

    Article  ADS  Google Scholar 

  61. Hu, R. et al. Illusion thermotics. Adv. Mater. 30, 1707237 (2018).

    Article  ADS  Google Scholar 

  62. Yang, F., Xu, L. & Huang, J. Thermal illusion of porous media with convection–diffusion process: transparency, concentrating, and cloaking. ES Energy Environ. 6, 45–50 (2019).

    Google Scholar 

  63. He, Z., Yuan, K., Xiong, G. & Wang, J. Inverse design and experimental verification of metamaterials for thermal illusion using genetic algorithms. Chin. Phys. Lett. 40, 104402 (2023).

    Article  ADS  Google Scholar 

  64. Guo, J., Xu, G., Tian, D., Qu, Z. & Qiu, C.-W. A real-time self-adaptive thermal metasurface. Adv. Mater. 34, 2201093 (2022).

    Article  Google Scholar 

  65. Yang, F. et al. Space-time thermal binary coding by spatiotemporally modulated metashell. Phys. Rev. Appl. 19, 054096 (2023).

    Article  ADS  Google Scholar 

  66. Dai, G. & Huang, J. A transient regime for transforming thermal convection: cloaking, concentrating and rotating creeping flow and heat flux. J. Appl. Phys. 124, 235103 (2018).

    Article  ADS  Google Scholar 

  67. Jin, P. et al. Tunable liquid–solid hybrid thermal metamaterials with a topology transition. Proc. Natl Acad. Sci. USA 120, e2217068120 (2023).

    Article  MathSciNet  Google Scholar 

  68. Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    Article  ADS  Google Scholar 

  69. Zhai, Y. et al. Scalable-manufactured randomized glass–polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).

    Article  ADS  Google Scholar 

  70. Xu, L., Yang, S., Dai, G. & Huang, J. Transformation omnithermotics: simultaneous manipulation of three basic modes of heat transfer. ES Energy Environ. 7, 65–70 (2020).

    Google Scholar 

  71. Xu, L., Dai, G. & Huang, J. Transformation multithermotics: controlling radiation and conduction simultaneously. Phys. Rev. Appl. 13, 024063 (2020).

    Article  ADS  Google Scholar 

  72. Zhang, C.-X., Li, T.-J., Xu, L.-J. & Huang, J.-P. Dust-induced regulation of thermal radiation in water droplets. Chin. Phys. Lett. 40, 054401 (2023).

    Article  ADS  Google Scholar 

  73. Yin, H. & Fan, C. Ultra-broadband thermal emitter for daytime radiative cooling with MIM metamaterials. Chin. Phys. Lett. 40, 077801 (2023).

    Article  ADS  Google Scholar 

  74. Nakahara, M. Geometry, Topology and Physics (CRC Press, 2003).

  75. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982).

    Article  ADS  Google Scholar 

  76. Asbóth, J. K., Oroszlány, L. & Pályi, A. A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions (Springer Cham, 2016).

  77. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  78. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  79. Han, T. et al. Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014).

    Article  ADS  Google Scholar 

  80. Xu, H., Shi, X., Gao, F., Sun, H. & Zhang, B. Ultrathin three-dimensional thermal cloak. Phys. Rev. Lett. 112, 054301 (2014).

    Article  ADS  Google Scholar 

  81. Dai, G., Shang, J. & Huang, J. Theory of transformation thermal convection for creeping flow in porous media: cloaking, concentrating, and camouflage. Phys. Rev. E 97, 022129 (2018).

    Article  ADS  Google Scholar 

  82. Dai, G., Yang, F., Wang, J., Xu, L. & Huang, J. Diffusive pseudo-conformal mapping: anisotropy-free transformation thermal media with perfect interface matching. Chaos Soliton. Fract. 174, 113849 (2023).

    Article  MathSciNet  Google Scholar 

  83. Xu, L. et al. Free-form and multi-physical metamaterials with forward conformality-assisted tracing. Nat. Comput. Sci. 4, 532–541 (2024).

    Article  Google Scholar 

  84. Hu, H. et al. Observation of topological edge states in thermal diffusion. Adv. Mater. 34, 2202257 (2022).

    Article  Google Scholar 

  85. Wu, H. et al. Higher-order topological states in thermal diffusion. Adv. Mater. 35, 2202257 (2023).

    Google Scholar 

  86. Qi, M. et al. Geometric phase and localized heat diffusion. Adv. Mater. 34, 2202241 (2022).

    Article  Google Scholar 

  87. Tian, B., Wang, J., Dai, G., Ouyang, X. & Huang, J. Thermal metadevices with geometrically anisotropic heterogeneous composites. Int. J. Heat Mass Transf. 174, 121312 (2021).

    Article  Google Scholar 

  88. Xu, G. et al. Diffusive topological transport in spatiotemporal thermal lattices. Nat. Phys. 18, 450–456 (2022).

    Article  Google Scholar 

  89. Xu, G., Zhou, X., Yang, S., Wu, J. & Qiu, C.-W. Observation of bulk quadrupole in topological heat transport. Nat. Commun. 14, 3252 (2023).

    Article  ADS  Google Scholar 

  90. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698 (1979).

    Article  ADS  Google Scholar 

  91. Yoshida, T. & Hatsugai, Y. Bulk-edge correspondence of classical diffusion phenomena. Sci. Rep. 11, 888 (2021).

    Article  Google Scholar 

  92. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  93. Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, eaat0346 (2018).

    Article  ADS  Google Scholar 

  94. Benalcazar, W. A., Li, T. & Hughes, T. L. Quantization of fractional corner charge in cn-symmetric higher-order topological crystalline insulators. Phys. Rev. B 99, 245151 (2019).

    Article  ADS  Google Scholar 

  95. Xie, B.-Y. et al. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Phys. Rev. Lett. 122, 233903 (2019).

    Article  ADS  Google Scholar 

  96. Liu, Z. et al. Higher-order topological in-bulk corner state in pure diffusion systems. Phys. Rev. Lett. 132, 176302 (2024).

    Article  ADS  Google Scholar 

  97. Chen, B., Pang, K., Zheng, R. & Liu, F. Hierarchical topological states in thermal diffusive networks. Phys. Rev. B 109, 054312 (2024).

    Article  ADS  Google Scholar 

  98. Fukui, T., Yoshida, T. & Hatsugai, Y. Higher-order topological heat conduction on a lattice for detection of corner states. Phys. Rev. E 108, 024112 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  99. Qi, M. et al. Observation of multiple topological corner states in thermal diffusion. Preprint at https://arxiv.org/abs/2304.12641 (2023).

  100. Funayama, K., Hirotani, J., Miura, A. & Tanaka, H. Selectable diffusion direction with topologically protected edge modes. Commun. Phys. 6, 364 (2023).

    Article  Google Scholar 

  101. Funayama, K., Hirotani, J., Miura, A. & Tanaka, H. Robustness of quantum spin Hall effect-inspired edge modes depending on c6 symmetry in topological diffusion systems. Appl. Phys. Lett. 123, 223104 (2023).

    Article  ADS  Google Scholar 

  102. Strohm, C., Rikken, G. L. J. A. & Wyder, P. Phenomenological evidence for the phonon Hall effect. Phys. Rev. Lett. 95, 155901 (2005).

    Article  ADS  Google Scholar 

  103. Zhang, L., Ren, J., Wang, J.-S. & Li, B. Topological nature of the phonon Hall effect. Phys. Rev. Lett. 105, 225901 (2010).

    Article  ADS  Google Scholar 

  104. Liu, Z. in Diffusionics: Diffusion Process Controlled by Diffusion Metamaterials (eds Yang, F.-B. & Huang, J.-P.) Ch. 8 (Springer Singapore, 2024).

  105. Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys. 69, 249 (2020).

    Article  ADS  Google Scholar 

  106. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  107. Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  108. Kato, T. Perturbation Theory for Linear Operators (Springer Berlin Heidelberg, 1966).

  109. Li, Y. et al. Anti-parity–time symmetry in diffusive systems. Science 364, 170–173 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  110. Cao, P.-C. et al. Observation of parity–time symmetry in diffusive systems. Sci. Adv. 10, eadn1746 (2024).

    Article  Google Scholar 

  111. Cao, P.-C., Li, Y., Peng, Y.-G., Qiu, C.-W. & Zhu, X.-F. High-order exceptional points in diffusive systems: robust APT symmetry against perturbation and phase oscillation at APT symmetry breaking. ES Energy Environ. 7, 48–55 (2020).

    Google Scholar 

  112. Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).

    Article  ADS  Google Scholar 

  113. Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80–83 (2016).

    Article  ADS  Google Scholar 

  114. Yoon, J. W. et al. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature 562, 86–90 (2018).

    Article  ADS  Google Scholar 

  115. Xu, G., Li, Y., Li, W., Fan, S. & Qiu, C.-W. Configurable phase transitions in a topological thermal material. Phys. Rev. Lett. 127, 105901 (2021).

    Article  ADS  Google Scholar 

  116. Xu, L. et al. Geometric phase, effective conductivity enhancement, and invisibility cloak in thermal convection–conduction. Int. J. Heat Mass Transf. 165, 120659 (2021).

    Article  Google Scholar 

  117. Wang, C. Q. et al. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 16, 334–340 (2020).

    Article  ADS  Google Scholar 

  118. Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).

    Article  ADS  Google Scholar 

  119. Xu, G. et al. Non-Hermitian chiral heat transport. Phys. Rev. Lett. 130, 266303 (2023).

    Article  ADS  Google Scholar 

  120. Xu, L. et al. Black-hole-inspired thermal trapping with graded heat-conduction metadevices. Natl Sci. Rev. 10, nwac159 (2023).

    Article  Google Scholar 

  121. Cao, P.-C. et al. Diffusive skin effect and topological heat funneling. Commun. Phys. 4, 230 (2021).

    Article  Google Scholar 

  122. Liu, Y.-K. et al. Observation of non-Hermitian skin effect in thermal diffusion. Sci. Bull. 69, 1228–1236 (2024).

    Article  Google Scholar 

  123. Cao, P.-C., Peng, Y.-G., Li, Y. & Zhu, X.-F. Phase-locking diffusive skin effect. Chin. Phys. Lett. 39, 057801 (2022).

    Article  ADS  Google Scholar 

  124. Liu, Z., Cao, P.-C., Li, Y. & Huang, J. Extended-localized transition in diffusive quasicrystals. Phys. Rev. Appl. 21, 064035 (2024).

    Article  Google Scholar 

  125. Xu, L. & Huang, J. Robust one-way edge state in convection–diffusion systems. Europhys. Lett. 134, 60001 (2021).

    Article  ADS  Google Scholar 

  126. Huang, Q.-K.-L., Liu, Y.-K., Cao, P.-C., Zhu, X.-F. & Li, Y. Two-dimensional thermal regulation based on non-Hermitian skin effect. Chin. Phys. Lett. 40, 106601 (2023).

    Article  ADS  Google Scholar 

  127. Xu, G. et al. Observation of Weyl exceptional rings in thermal diffusion. Proc. Natl Acad. Sci. USA 119, e2110018119 (2022).

    Article  MathSciNet  Google Scholar 

  128. Xu, Y., Wang, S.-T. & Duan, L.-M. Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett. 118, 045701 (2017).

    Article  ADS  Google Scholar 

  129. Cerjan, A., Huang, S., Chen, K. P., Chong, Y. & Rechtsman, M. C. Experimental realization of a Weyl exceptional ring. Nat. Photon. 13, 623–628 (2019).

    Article  ADS  Google Scholar 

  130. Liu, J.-J. et al. Experimental realization of Weyl exceptional rings in a synthetic three-dimensional non-Hermitian phononic crystal. Phys. Rev. Lett. 129, 084301 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  131. Biehs, S.-A. et al. Near-field radiative heat transfer in many-body systems. Rev. Mod. Phys. 93, 025009 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  132. Tian, P. et al. Near-field radiative heat transfer between disordered multilayer systems. Chin. Phys. Lett. 40, 067802 (2023).

    Article  ADS  Google Scholar 

  133. Ge, W.-X., Hu, Y., Gao, L. & Wu, X. Near-field thermal splitter based on magneto-optical nanoparticles. Chin. Phys. Lett. 40, 114401 (2023).

    Article  ADS  Google Scholar 

  134. Ott, A. & Biehs, S.-A. Radiative heat flux through a topological Su–Schrieffer–Heeger chain of plasmonic nanoparticles. Phys. Rev. B 102, 115417 (2020).

    Article  ADS  Google Scholar 

  135. Ott, A. & Biehs, S.-A. Topological near-field heat flow in a honeycomb lattice. Int. J. Heat Mass Transf. 190, 122796 (2022).

    Article  Google Scholar 

  136. Ott, A., An, Z., Kittel, A. & Biehs, S.-A. Thermal near-field energy density and local density of states in topological one-dimensional Su–Schrieffer–Heeger chains and two-dimensional Su–Schrieffer–Heeger lattices of plasmonic nanoparticles. Phys. Rev. B 104, 165407 (2021).

    Article  ADS  Google Scholar 

  137. Luo, M., Zhu, J., Biehs, S.-A., Zhao, J. & Liu, L. Residual surface charge mediated near-field radiative energy transfer: a topological insulator analog. Mater. Today Phys. 31, 100984 (2023).

    Article  Google Scholar 

  138. Herz, F. & Biehs, S.-A. Thermal radiation and near-field thermal imaging of a plasmonic Su–Schrieffer–Heeger chain. Appl. Phys. Lett. 121, 181701 (2022).

    Article  ADS  Google Scholar 

  139. Nikbakht, M. & Bahmani, F. Topological edge states in nanoparticle chains: isolating radiative heat flux. Phys. Rev. B 108, 064307 (2023).

    Article  ADS  Google Scholar 

  140. Rosseland, S. Astrophysik auf atomtheoretischer Grundlage (Springer Berlin Heidelberg, 1931).

  141. Hänggi, P. & Marchesoni, F. Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387–442 (2009).

    Article  ADS  Google Scholar 

  142. Xu, L., Dai, G., Wang, G. & Huang, J. Geometric phase and bilayer cloak in macroscopic particle-diffusion systems. Phys. Rev. E 102, 032140 (2020).

    Article  ADS  Google Scholar 

  143. Lieberman, M. A. & Lichtenberg, A. J. Principles of Plasma Discharges and Materials Processing (Wiley Interscience, 2005).

  144. Chen, F. F. Introduction to Plasma Physics and Controlled Fusion (Springer Cham, 2016).

  145. Huang, C.-W., Chen, Y.-C. & Nishimura, Y. Particle-in-cell simulation of plasma sheath dynamics with kinetic ions. IEEE Trans. Plasma Sci. 43, 675–682 (2015).

    Article  ADS  Google Scholar 

  146. Zhang, Z. & Huang, J. Transformation plasma physics. Chin. Phys. Lett. 39, 075201 (2022).

    Article  ADS  Google Scholar 

  147. Liu, Z. & Huang, J. Topological plasma transport from a diffusion view. Chin. Phys. Lett. 40, 110305 (2023).

    Article  ADS  Google Scholar 

  148. Gao, W. et al. Photonic Weyl degeneracies in magnetized plasma. Nat. Commun. 7, 12435 (2016).

    Article  ADS  Google Scholar 

  149. Parker, J. B., Burby, J. W., Marston, J. B. & Tobias, S. M. Nontrivial topology in the continuous spectrum of a magnetized plasma. Phys. Rev. Res. 2, 033425 (2020).

    Article  Google Scholar 

  150. Parker, J. B., Marston, J., Tobias, S. M. & Zhu, Z. Topological gaseous plasmon polariton in realistic plasma. Phys. Rev. Lett. 124, 195001 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  151. Fu, Y. & Qin, H. Topological phases and bulk-edge correspondence of magnetized cold plasmas. Nat. Commun. 12, 3924 (2021).

    Article  ADS  Google Scholar 

  152. Yokoi, N. Unappreciated cross-helicity effects in plasma physics: anti-diffusion effects in dynamo and momentum transport. Rev. Mod. Plasma Phys. 7, 33 (2023).

    Article  ADS  Google Scholar 

  153. Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020).

    Article  ADS  Google Scholar 

  154. Zheng, L. et al. Emergent charge order in pressurized kagome superconductor CsV3Sb5. Nature 611, 682–687 (2022).

    Article  ADS  Google Scholar 

  155. Zhong, Y. et al. Nodeless electron pairing in CsV3Sb5-derived kagome superconductors. Nature 617, 488–492 (2023).

    Article  ADS  Google Scholar 

  156. Huang, H. & Liu, F. Quantum spin Hall effect and spin Bott index in a quasicrystal lattice. Phys. Rev. Lett. 121, 126401 (2018).

    Article  ADS  Google Scholar 

  157. Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2020).

    Article  ADS  Google Scholar 

  158. Liu, E. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 594, 46–50 (2021).

    Article  ADS  Google Scholar 

  159. Wang, P. et al. One-dimensional Luttinger liquids in a two-dimensional moiré lattice. Nature 605, 57–62 (2022).

    Article  ADS  Google Scholar 

  160. Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).

    Article  ADS  Google Scholar 

  161. Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article  ADS  Google Scholar 

  162. Li, H. et al. Twisted moiré conductive thermal metasurface. Nat. Commun. 15, 2169 (2024).

    Article  ADS  Google Scholar 

  163. Biesenthal, T. et al. Fractal photonic topological insulators. Science 376, 1114–1119 (2022).

    Article  ADS  Google Scholar 

  164. Yazdani, A., von Oppen, F., Halperin, B. I. & Yacoby, A. Hunting for Majoranas. Science 380, eade0850 (2023).

    Article  Google Scholar 

  165. Valentini, M. et al. Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states. Science 373, 82–88 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  166. Li, M. et al. Ordered and tunable Majorana-zero-mode lattice in naturally strained LiFeAs. Nature 606, 890–895 (2022).

    Article  ADS  Google Scholar 

  167. Li, Y. et al. Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes. Phys. Rev. Lett. 115, 195503 (2015).

    Article  ADS  Google Scholar 

  168. Shen, X., Li, Y., Jiang, C. & Huang, J. Temperature trapping: energy-free maintenance of constant temperatures as ambient temperature gradients change. Phys. Rev. Lett. 117, 055501 (2016).

    Article  ADS  Google Scholar 

  169. Yang, Z. & Hu, J. Non-Hermitian Hopf-link exceptional line semimetals. Phys. Rev. B 99, 081102 (2019).

    Article  ADS  Google Scholar 

  170. Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).

    Article  ADS  Google Scholar 

  171. Yin, S., Galiffi, E. & Alù, A. Floquet metamaterials. eLight 2, 8 (2022).

    Article  Google Scholar 

  172. Zhang, Y. & Kim, E.-A. Quantum loop topography for machine learning. Phys. Rev. Lett. 118, 216401 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  173. Zhang, P., Shen, H. & Zhai, H. Machine learning topological invariants with neural networks. Phys. Rev. Lett. 120, 066401 (2018).

    Article  ADS  Google Scholar 

  174. Long, Y., Ren, J. & Chen, H. Unsupervised manifold clustering of topological phononics. Phys. Rev. Lett. 124, 185501 (2020).

    Article  ADS  Google Scholar 

  175. Scheurer, M. S. & Slager, R.-J. Unsupervised machine learning and band topology. Phys. Rev. Lett. 124, 226401 (2020).

    Article  ADS  Google Scholar 

  176. Claussen, N., Bernevig, B. A. & Regnault, N. Detection of topological materials with machine learning. Phys. Rev. B 101, 245117 (2020).

    Article  ADS  Google Scholar 

  177. Cao, G. et al. Artificial intelligence for high-throughput discovery of topological insulators: the example of alloyed tetradymites. Phys. Rev. Mater. 4, 034204 (2020).

    Article  Google Scholar 

  178. Liu, H., Meng, S. & Liu, F. Screening two-dimensional materials with topological flat bands. Phys. Rev. Mater. 5, 084203 (2021).

    Article  Google Scholar 

  179. Schleder, G. R., Focassio, B. & Fazzio, A. Machine learning for materials discovery: two-dimensional topological insulators. Appl. Phys. Rev. 8, 031409 (2021).

    Article  ADS  Google Scholar 

  180. Andrejevic, N. et al. Machine-learning spectral indicators of topology. Adv. Mater. 34, 2204113 (2022).

    Article  Google Scholar 

  181. Ma, A. et al. Topogivity: a machine-learned chemical rule for discovering topological materials. Nano Lett. 23, 772–778 (2023).

    Article  ADS  Google Scholar 

  182. Zhu, C., Bamidele, E. A., Shen, X., Zhu, G. & Li, B. Machine learning aided design and optimization of thermal metamaterials. Chem. Rev. 124, 4258–4331 (2024).

    Article  Google Scholar 

  183. Hu, R. et al. Machine-learning-optimized aperiodic superlattice minimizes coherent phonon heat conduction. Phys. Rev. X 10, 021050 (2020).

    Google Scholar 

  184. Hu, R. et al. Machine learning-optimized Tamm emitter for high-performance thermophotovoltaic system with detailed balance analysis. Nano Energy 72, 104687 (2020).

    Article  Google Scholar 

  185. Ji, Q. et al. Design of thermal cloaks with isotropic materials based on machine learning. Int. J. Heat Mass Transf. 189, 122716 (2022).

    Article  Google Scholar 

  186. Jin, P. et al. Deep learning-assisted active metamaterials with heat-enhanced thermal transport. Adv. Mater. 36, 2305791 (2024).

    Article  Google Scholar 

  187. Budich, J. C. & Bergholtz, E. J. Non-Hermitian topological sensors. Phys. Rev. Lett. 125, 180403 (2020).

    Article  ADS  Google Scholar 

  188. Mao, J. et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019).

    Article  ADS  Google Scholar 

  189. Ren, J. Geometric thermoelectric pump: energy harvesting beyond Seebeck and pyroelectric effects. Chin. Phys. Lett. 40, 090501 (2023).

    Article  ADS  Google Scholar 

  190. Lin, K. et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 382, 691–697 (2023).

    Article  ADS  Google Scholar 

  191. Zhao, X. et al. A solution-processed radiative cooling glass. Science 382, 684–691 (2023).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to F. Yang and L. Xu for their insightful comments and suggestions on this review and extend their gratitude to R. B. Tao for his invaluable and encouraging discussions regarding the study of topology in thermal metamaterials. J.H. was supported by the National Natural Science Foundation of China under Grant Nos 12035004 and 12320101004, and the Innovation Program of the Shanghai Municipal Education Commission under Grant No. 2023ZKZD06. J.-H.J. was supported by the National Natural Science Foundation of China (Grant No. 12125504) and the ‘Hundred Talents Program’ of the Chinese Academy of Sciences. F.M. was supported by the National Natural Science Foundation of China (Grant No. 12350710786).

Author information

Authors and Affiliations

Authors

Contributions

Z.L. researched data for the article. Z.L., F.M., J.-H.J. and J.H. contributed substantially to discussion of the content. Z.L., P.J., M.L. and C.W. wrote the article. J.-H.J. and J.H. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Jian-Hua Jiang or Jiping Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Peer review

Peer review information

Nature Reviews Physics thanks Xue-Feng Zhu and Muamer Kadic for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Jin, P., Lei, M. et al. Topological thermal transport. Nat Rev Phys 6, 554–565 (2024). https://doi.org/10.1038/s42254-024-00745-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00745-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing