Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Experimental aspects of indefinite causal order in quantum mechanics

Abstract

In the past decade, the toolkit of quantum information has been expanded to include processes in which the basic operations do not have definite causal relations. Originally considered in the context of the unification of quantum mechanics and general relativity, these causally indefinite processes have been shown to offer advantages in a wide variety of quantum-information processing tasks, ranging from quantum computation to quantum metrology. Here, we overview these advantages and the experimental efforts to realize them. We survey both the experimental techniques employed and the theoretical methods developed in support of the experiments, before discussing the interpretations of current experimental results and giving an outlook on the future of the field.

Key points

  • An indefinite causal order (ICO) is a situation wherein the order of different events or operations is placed in a quantum superposition. Thus one cannot ascribe a definite order to these operations.

  • The best-studied process with an ICO is the quantum switch, which applies a set of quantum gates in a superposition of all possible permutations. The quantum switch has been experimentally implemented using various degrees of freedom encoded in single photons.

  • There is a strong analogy between processes with an ICO and entangled states. This analogy can be used to design techniques to certify ICO.

  • The quantum switch can be used to achieve advantages that go beyond devices that can be described by the quantum circuit model. Although there is no general computational advantage from the quantum switch, there are many specific applications, including quantum computation protocols, quantum communication, quantum metrology and even quantum thermodynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different control state encodings to realize the quantum switch.
Fig. 2: Certification of indefinite causal order.
Fig. 3: Experimental applications of indefinite causal order processes.
Fig. 4: Experimental loopholes.

Similar content being viewed by others

References

  1. Ried, K. et al. A quantum advantage for inferring causal structure. Nat. Phys. 11, 414–420 (2015).

    Google Scholar 

  2. Maclean, J.-P. W., Ried, K., Spekkens, R. W. & Resch, K. J. Quantum-coherent mixtures of causal relations. Nat. Commun. 8, 15149 (2017).

    ADS  Google Scholar 

  3. Carvacho, G. et al. Experimental violation of local causality in a quantum network. Nat. Commun. 8, 14775 (2017).

    ADS  Google Scholar 

  4. Carvacho, G., Chaves, R. & Sciarrino, F. Perspective on experimental quantum causality. Europhys. Lett. 125, 30001 (2019).

    ADS  Google Scholar 

  5. Chiribella, G. & Ebler, D. Quantum speedup in the identification of cause–effect relations. Nat. Commun. 10, 1472 (2019).

    ADS  Google Scholar 

  6. Tavakoli, A., Pozas-Kerstjens, A., Luo, M.-X. & Renou, M.-O. Bell nonlocality in networks. Rep. Prog. Phys. 85, 056001 (2022).

    ADS  MathSciNet  Google Scholar 

  7. Hardy, L. Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure. J. Phys. A Math. Gen. 40, 3081–3099 (2007).

    ADS  MathSciNet  Google Scholar 

  8. Hardy, L. in Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle 379–401 (Springer, 2009).

  9. Chiribella, G., D’Ariano, G. M., Perinotti, P. & Valiron, B. Quantum computations without definite causal structure. Phys. Rev. A 88, 022318 (2013). The paper in which the quantum switch was first proposed. It showed that the quantum switch could be used to accomplish tasks that cannot be done in the quantum circuit model.

    ADS  Google Scholar 

  10. Procopio, L. M. et al. Experimental superposition of orders of quantum gates. Nat. Commun. 6, 7913 (2015). The first experiment to implement the quantum switch, demonstrating the advantage of indefinite causal order by playing a promise problem.

    ADS  Google Scholar 

  11. Colnaghi, T., D’Ariano, G. M., Facchini, S. & Perinotti, P. Quantum computation with programmable connections between gates. Phys. Lett. A 376, 2940–2943 (2012).

    ADS  Google Scholar 

  12. Oreshkov, O., Costa, F. & Brukner, Č. Quantum correlations with no causal order. Nat. Commun. 3, 1092 (2012). The theoretical paper which first defined the notion of causal non-separability.

    ADS  Google Scholar 

  13. Araújo, M. et al. Witnessing causal nonseparability. N. J. Phys. 17, 102001 (2015).

    Google Scholar 

  14. Rubino, G. et al. Experimental verification of an indefinite causal order. Sci. Adv. 3, e1602589 (2017). The first experimental measurement of a causal witness, which also represents the first time that the causal non-separability of a process was explicitly measured.

    ADS  Google Scholar 

  15. Goswami, K. et al. Indefinite causal order in a quantum switch. Phys. Rev. Lett. 121, 090503 (2018).

    ADS  Google Scholar 

  16. Guérin, P. A., Feix, A., Araújo, M. & Brukner, Č. Exponential communication complexity advantage from quantum superposition of the direction of communication. Phys. Rev. Lett. 117, 100502 (2016).

    ADS  Google Scholar 

  17. Wei, K. et al. Experimental quantum switching for exponentially superior quantum communication complexity. Phys. Rev. Lett. 122, 120504 (2019). An application-based experiment showing the exponential advantage that can be obtained with the quantum switch at a communication complexity task.

    ADS  Google Scholar 

  18. Schiansky, P. et al. Demonstration of universal time-reversal for qubit processes. Optica 10, 200 (2023).

    ADS  Google Scholar 

  19. Yin, P. et al. Experimental super-Heisenberg quantum metrology with indefinite gate order. Nat. Phys. 19, 1–6 (2023). An experiment showing that an indefinite causal order can be used to obtain super-Heisenberg scaling in quantum metrology.

    Google Scholar 

  20. Cao, H. et al. Quantum simulation of indefinite causal order induced quantum refrigeration. Phys. Rev. Res. 4, L032029 (2022).

    Google Scholar 

  21. Goswami, K. & Romero, J. Experiments on quantum causality. AVS Quantum Sci. 2, 037101 (2020).

    ADS  Google Scholar 

  22. Brukner, Č. Quantum causality. Nat. Phys. 10, 259–263 (2014).

    Google Scholar 

  23. Andersson, E., Bergou, J. & Jex, I. Comparison of unitary transforms using Franson interferometry. J. Mod. Opt. 52, 1485–1494 (2005).

    ADS  Google Scholar 

  24. Zhou, X.-Q. et al. Adding control to arbitrary unknown quantum operations. Nat. Commun. 2, 413 (2011).

    ADS  Google Scholar 

  25. Araújo, M., Feix, A., Costa, F. & Brukner, Č. Quantum circuits cannot control unknown operations. N. J. Phys. 16, 093026 (2014).

    Google Scholar 

  26. Araújo, M., Costa, F. & Brukner, Č. Computational advantage from quantum-controlled ordering of gates. Phys. Rev. Lett. 113, 250402 (2014).

    ADS  Google Scholar 

  27. Friis, N., Dunjko, V., Dür, W. & Briegel, H. J. Implementing quantum control for unknown subroutines. Phys. Rev. A 89, 030303 (2014).

    ADS  Google Scholar 

  28. Goswami, K., Cao, Y., Paz-Silva, G. A., Romero, J. & White, A. G. Increasing communication capacity via superposition of order. Phys. Rev. Res. 2, 033292 (2020).

    Google Scholar 

  29. Strömberg, T., Schiansky, P., Peterson, R. W., Quintino, M. T. & Walther, P. Demonstration of a quantum switch in a Sagnac configuration. Phys. Rev. Lett. 131, 060803 (2023).

    ADS  Google Scholar 

  30. Liu, W.-Q. et al. Experimentally demonstrating indefinite causal order algorithms to solve the generalized Deutsch’s problem. Preprint at https://arxiv.org/abs/2305.05416 (2023).

  31. Antesberger, M., Quintino, M. T., Walther, P. & Rozema, L. A. Higher-order process matrix tomography of a passively-stable quantum switch. PRX Quantum 5, 010325 (2024).

    ADS  Google Scholar 

  32. Rubino, G. et al. Experimental quantum communication enhancement by superposing trajectories. Phys. Rev. Res. 3, 013093 (2021).

    ADS  Google Scholar 

  33. Rubino, G. et al. Experimental entanglement of temporal order. Quantum 6, 621 (2022).

    Google Scholar 

  34. Guo, Y. et al. Experimental transmission of quantum information using a superposition of causal orders. Phys. Rev. Lett. 124, 030502 (2020).

    ADS  Google Scholar 

  35. Cao, H. et al. Semi-device-independent certification of indefinite causal order in a photonic quantum switch. Optica 10, 561 (2023). An experiment taking steps to verify indefinite causal order going beyond the device-dependent framework, which is also notable in that both parties in the quantum switch were given non-unitary measure-and-reprepare channels.

    ADS  Google Scholar 

  36. Zhu, G., Chen, Y., Hasegawa, Y. & Xue, P. Charging quantum batteries via indefinite causal order: theory and experiment. Phys. Rev. Lett. 131, 240401 (2023). An experiment showing that indefinite causal order can boost the amount of energy charged and the thermal efficiency of quantum battery, showcasing the versatility of such processes.

    ADS  MathSciNet  Google Scholar 

  37. An, M. et al. Noisy quantum parameter estimation with indefinite causal order. Phys. Rev. A 109, 012603 (2024).

    ADS  MathSciNet  Google Scholar 

  38. Reed, M. & Simon, B. Methods of Modern Mathematical Physics: Functional Analysis Vol. 1 (Gulf Professional Publishing, 1980).

  39. Rambo, T. M., Altepeter, J. B., Kumar, P. & D’Ariano, G. M. Functional quantum computing: an optical approach. Phys. Rev. A 93, 052321 (2016).

    ADS  Google Scholar 

  40. Dong, Q., Quintino, M. T., Soeda, A. & Murao, M. The quantum switch is uniquely defined by its action on unitary operations. Quantum 7, 1169 (2023).

    Google Scholar 

  41. Abbott, A. A., Giarmatzi, C., Costa, F. & Branciard, C. Multipartite causal correlations: polytopes and inequalities. Phys. Rev. A 94, 032131 (2016).

    ADS  Google Scholar 

  42. Abbott, A. A., Wechs, J., Costa, F. & Branciard, C. Genuinely multipartite noncausality. Quantum 1, 39 (2017).

    Google Scholar 

  43. Wechs, J., Abbott, A. A. & Branciard, C. On the definition and characterisation of multipartite causal (non)separability. N. J. Phys. 21, 013027 (2019).

    Google Scholar 

  44. Taddei, M. M. et al. Computational advantage from the quantum superposition of multiple temporal orders of photonic gates. PRX Quantum 2, 010320 (2021).

    Google Scholar 

  45. Cariñe, J. et al. Multi-core fiber integrated multi-port beam splitters for quantum information processing. Optica 7, 542 (2020).

    ADS  Google Scholar 

  46. Felce, D. & Vedral, V. Quantum refrigeration with indefinite causal order. Phys. Rev. Lett. 125, 070603 (2020).

    ADS  MathSciNet  Google Scholar 

  47. Felce, D., Vedral, V. & Tennie, F. Refrigeration with indefinite causal orders on a cloud quantum computer. Preprint at https://arxiv.org/abs/2107.12413 (2021).

  48. Nie, X. et al. Experimental realization of a quantum refrigerator driven by indefinite causal orders. Phys. Rev. Lett. 129, 100603 (2022).

    ADS  Google Scholar 

  49. Chiribella, G. & Liu, Z. Quantum operations with indefinite time direction. Commun. Phys. 5, 190 (2022).

    Google Scholar 

  50. Mendl, C. B. & Wolf, M. M. Unital quantum channels — convex structure and revivals of Birkhoff’s theorem. Commun. Math. Phys. 289, 1057–1086 (2009).

    ADS  MathSciNet  Google Scholar 

  51. Strömberg, T. et al. Experimental superposition of a quantum evolution with its time reverse. Phys. Rev. Res. 6, 023071 (2024).

    Google Scholar 

  52. Guo, Y. et al. Experimental demonstration of input–output indefiniteness in a single quantum device. Phys. Rev. Lett. 132, 160201 (2024).

    ADS  Google Scholar 

  53. Liu, Z., Yang, M. & Chiribella, G. Quantum communication through devices with indefinite input–output direction. N. J. Phys. 25, 043017 (2023).

    MathSciNet  Google Scholar 

  54. Purves, T. & Short, A. J. Quantum theory cannot violate a causal inequality. Phys. Rev. Lett. 127, 110402 (2021).

    ADS  MathSciNet  Google Scholar 

  55. Baumeler, Ä., Feix, A. & Wolf, S. Maximal incompatibility of locally classical behavior and global causal order in multiparty scenarios. Phys. Rev. A 90, 042106 (2014).

    ADS  Google Scholar 

  56. Baumeler, Ä. & Wolf, S. The space of logically consistent classical processes without causal order. N. J. Phys. 18, 013036 (2016).

    Google Scholar 

  57. Araújo, M., Feix, A., Navascués, M. & Brukner, Č. A purification postulate for quantum mechanics with indefinite causal order. Quantum 1, 10 (2017).

    Google Scholar 

  58. Tselentis, E.-E. & Baumeler, ń. Admissible causal structures and correlations. PRX Quantum 4, 040307 (2023).

    ADS  Google Scholar 

  59. Vanrietvelde, A., Ormrod, N., Kristjánsson, H. & Barrett, J. Consistent circuits for indefinite causal order. Preprint at https://arxiv.org/abs/2206.10042 (2022).

  60. van der Lugt, T., Barrett, J. & Chiribella, G. Device-independent certification of indefinite causal order in the quantum switch. Nat. Commun. 14, 5811 (2023). A proposal for a device-independent verification of indefinite causal order that can be realized with the quantum switch; this proposal has yet to be experimentally implemented.

    ADS  Google Scholar 

  61. van der Lugt, T. & Ormrod, N. Possibilistic and maximal indefinite causal order in the quantum switch. Preprint at https://arxiv.org/abs/2311.00557 (2023).

  62. Branciard, C. Witnesses of causal nonseparability: an introduction and a few case studies. Sci. Rep. 6, 26018 (2016).

    ADS  Google Scholar 

  63. Bavaresco, J., Murao, M. & Quintino, M. T. Strict hierarchy between parallel, sequential, and indefinite-causal-order strategies for channel discrimination. Phys. Rev. Lett. 127, 200504 (2021).

    ADS  MathSciNet  Google Scholar 

  64. Svetlichny, G. Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066 (1987).

    ADS  MathSciNet  Google Scholar 

  65. Seevinck, M. & Svetlichny, G. Bell-type inequalities for partial separability in n-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002).

    ADS  MathSciNet  Google Scholar 

  66. Giarmatzi, C. et al. Multi-time quantum process tomography of a superconducting qubit. Preprint at https://arxiv.org/abs/2308.00750 (2023).

  67. White, G. A. L., Hill, C. D., Pollock, F. A., Hollenberg, L. C. L. & Modi, K. Demonstration of non-Markovian process characterisation and control on a quantum processor. Nat. Commun. 11, 6301 (2020).

    ADS  Google Scholar 

  68. White, G. A. L., Pollock, F. A., Hollenberg, L. C. L., Hill, C. D. & Modi, K. From many-body to many-time physics. Preprint at https://arxiv.org/abs/2107.13934 (2021).

  69. Guo, Y. et al. Experimental demonstration of instrument-specific quantum memory effects and non-Markovian process recovery for common-cause processes. Phys. Rev. Lett. 126, 230401 (2021).

    ADS  Google Scholar 

  70. Zych, M., Costa, F., Pikovski, I. & Brukner, Č. Bell’s theorem for temporal order. Nat. Commun. 10, 3772 (2019).

    ADS  Google Scholar 

  71. Wiseman, H. M., Jones, S. J. & Doherty, A. C. Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007).

    ADS  MathSciNet  Google Scholar 

  72. Uola, R., Moroder, T. & Gühne, O. Joint measurability of generalized measurements implies classicality. Phys. Rev. Lett. 113, 160403 (2014).

    ADS  Google Scholar 

  73. Quintino, M. T., Vértesi, T. & Brunner, N. Joint measurability, Einstein–Podolsky–Rosen steering, and Bell nonlocality. Phys. Rev. Lett. 113, 160402 (2014).

    ADS  Google Scholar 

  74. Branciard, C., Cavalcanti, E. G., Walborn, S. P., Scarani, V. & Wiseman, H. M. One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301 (2012).

    ADS  Google Scholar 

  75. Bavaresco, J., Araújo, M., Brukner, Č. & Quintino, M. T. Semi-device-independent certification of indefinite causal order. Quantum 3, 176 (2019).

    Google Scholar 

  76. Dourdent, H., Abbott, A. A., Brunner, N., Šupić, I. & Branciard, C. Semi-device-independent certification of causal nonseparability with trusted quantum inputs. Phys. Rev. Lett. 129, 090402 (2022).

    ADS  MathSciNet  Google Scholar 

  77. Aspect, A. Bell’s inequality test: more ideal than ever. Nature 398, 189–190 (1999).

    ADS  Google Scholar 

  78. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969).

    ADS  Google Scholar 

  79. Bell, J. S. On the Einstein–Podolsky–Rosen paradox. Phys. Phys. Fiz. 1, 195 (1964).

    MathSciNet  Google Scholar 

  80. Bell, J. S. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447 (1966).

    ADS  MathSciNet  Google Scholar 

  81. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039 (1998).

    ADS  MathSciNet  Google Scholar 

  82. Aspect, A., Grangier, P. & Roger, G. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981).

    ADS  Google Scholar 

  83. Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938 (1972).

    ADS  Google Scholar 

  84. Tóth, G. & Gühne, O. Detecting genuine multipartite entanglement with two local measurements. Phys. Rev. Lett. 94, 060501 (2005).

    ADS  Google Scholar 

  85. Gühne, O., Lu, C.-Y., Gao, W.-B. & Pan, J.-W. Toolbox for entanglement detection and fidelity estimation. Phys. Rev. A 76, 030305 (2007).

    ADS  Google Scholar 

  86. Oreshkov, O. & Giarmatzi, C. Causal and causally separable processes. N. J. Phys. 18, 093020 (2016).

    Google Scholar 

  87. Brukner, Č. Bounding quantum correlations with indefinite causal order. N. J. Phys. 17, 083034 (2015).

    MathSciNet  Google Scholar 

  88. Branciard, C., Araújo, M., Feix, A., Costa, F. & Brukner, Č. The simplest causal inequalities and their violation. N. J. Phys. 18, 013008 (2016).

    MathSciNet  Google Scholar 

  89. Miklin, N., Abbott, A. A., Branciard, C., Chaves, R. & Budroni, C. The entropic approach to causal correlations. N. J. Phys. 19, 113041 (2017).

    Google Scholar 

  90. Wechs, J., Branciard, C. & Oreshkov, O. Existence of processes violating causal inequalities on time-delocalised subsystems. Nat. Commun. 14, 1471 (2023).

    ADS  Google Scholar 

  91. Silva, R. et al. Connecting processes with indefinite causal order and multi-time quantum states. N. J. Phys. 19, 103022 (2017).

    Google Scholar 

  92. Dimić, A., Milivojević, M., Gočanin, D., Móller, N. S. & Brukner, Č. Simulating indefinite causal order with Rindler observers. Front. Phys. 8, 470 (2020).

    Google Scholar 

  93. Gogioso, S. & Pinzani, N. The geometry of causality. Preprint at https://arxiv.org/abs/2303.09017 (2023).

  94. Bong, K.-W. et al. A strong no-go theorem on the Wigner’s friend paradox. Nat. Phys. 16, 1199–1205 (2020).

    Google Scholar 

  95. Taddei, M. M., Nery, R. V. & Aolita, L. Quantum superpositions of causal orders as an operational resource. Phys. Rev. Res. 1, 033174 (2019).

    Google Scholar 

  96. Chitambar, E. & Gour, G. Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019).

    ADS  MathSciNet  Google Scholar 

  97. Araújo, M., Guérin, P. A. & Baumeler, A. Quantum computation with indefinite causal structures. Phys. Rev. A 96, 052315 (2017).

    ADS  Google Scholar 

  98. Chiribella, G. Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys. Rev. A 86, 040301 (2012).

    ADS  Google Scholar 

  99. Renner, M. J. & Brukner, Č. Computational advantage from a quantum superposition of qubit gate orders. Phys. Rev. Lett. 128, 230503 (2022).

    ADS  MathSciNet  Google Scholar 

  100. Bavaresco, J., Murao, M. & Quintino, M. T. Unitary channel discrimination beyond group structures: advantages of sequential and indefinite-causal-order strategies. J. Math. Phys. 63, 042203 (2022).

    ADS  MathSciNet  Google Scholar 

  101. Renner, M. J. & Brukner, Č. Reassessing the computational advantage of quantum-controlled ordering of gates. Phys. Rev. Res. 3, 043012 (2021).

    Google Scholar 

  102. Buhrman, H., Cleve, R., Massar, S. & de Wolf, R. Nonlocality and communication complexity. Rev. Mod. Phys. 82, 665–698 (2010).

    ADS  Google Scholar 

  103. Buhrman, H. R., Cleve, R. & Wigderson, A. Quantum vs. classical communication and computation. In Proc. 30th Annual ACM Symposium on Theory of Computing 63–68 (Association for Computing Machinery, 1999).

  104. Raz, R. Exponential separation of quantum and classical communication complexity. In Proc. Thirty-first Annual ACM Symposium on Theory of Computing 358–367 (Association for Computing Machinery, 1999).

  105. Baumeler, Ä. & Wolf, S. Perfect signaling among three parties violating predefined causal order. In 2014 IEEE International Symposium on Information Theory 526–530 (IEEE, 2014).

  106. Feix, A., Araújo, M. & Brukner, Č. Quantum superposition of the order of parties as a communication resource. Phys. Rev. A 92, 052326 (2015).

    ADS  Google Scholar 

  107. Ebler, D., Salek, S. & Chiribella, G. Enhanced communication with the assistance of indefinite causal order. Phys. Rev. Lett. 120, 120502 (2018).

    ADS  Google Scholar 

  108. Salek, S., Ebler, D. & Chiribella, G. Quantum communication in a superposition of causal orders. Preprint at https://arxiv.org/abs/1809.06655 (2018).

  109. Wilde, M. M. Quantum Information Theory (Cambridge Univ. Press, 2013).

  110. Chiribella, G. et al. Indefinite causal order enables perfect quantum communication with zero capacity channels. N. J. Phys. 23, 033039 (2021).

    MathSciNet  Google Scholar 

  111. Kristjánsson, H., Chiribella, G., Salek, S., Ebler, D. & Wilson, M. Resource theories of communication. N. J. Phys. 22, 073014 (2020).

    MathSciNet  Google Scholar 

  112. Chiribella, G. & Kristjánsson, H. Quantum Shannon theory with superpositions of trajectories. Proc. R. Soc. Lond. A Math. Phys. Sci. 475, 20180903 (2019).

    ADS  MathSciNet  Google Scholar 

  113. Procopio, L. M., Delgado, F., Enríquez, M., Belabas, N. & Levenson, J. A. Sending classical information via three noisy channels in superposition of causal orders. Phys. Rev. A 101, 012346 (2020).

    ADS  Google Scholar 

  114. Procopio, L. M., Delgado, F., Enríquez, M., Belabas, N. & Levenson, J. A. Communication enhancement through quantum coherent control of N channels in an indefinite causal-order scenario. Entropy 21, 1012 (2019).

    ADS  MathSciNet  Google Scholar 

  115. Sazim, S., Sedlak, M., Singh, K. & Pati, A. K. Classical communication with indefinite causal order for N completely depolarizing channels. Phys. Rev. A 103, 062610 (2021).

    ADS  MathSciNet  Google Scholar 

  116. Caleffi, M. & Cacciapuoti, A. S. Quantum switch for the quantum internet: noiseless communications through noisy channels. IEEE J. Sel. Areas Commun. 38, 575–588 (2020).

    Google Scholar 

  117. Abbott, A. A., Wechs, J., Horsman, D., Mhalla, M. & Branciard, C. Communication through coherent control of quantum channels. Quantum 4, 333 (2020).

    Google Scholar 

  118. Guérin, P. A., Rubino, G. & Brukner, Č. Communication through quantum-controlled noise. Phys. Rev. A 99, 062317 (2019).

    ADS  Google Scholar 

  119. Gisin, N., Linden, N., Massar, S. & Popescu, S. Error filtration and entanglement purification for quantum communication. Phys. Rev. A 72, 012338 (2005).

    ADS  Google Scholar 

  120. Pang, A. O. et al. Experimental communication through superposition of quantum channels. Quantum 7, 1125 (2023).

    Google Scholar 

  121. Lee, G., Hann, C. T., Puri, S., Girvin, S. M. & Jiang, L. Error suppression for arbitrary-size black box quantum operations. Phys. Rev. Lett. 131, 190601 (2023).

    ADS  MathSciNet  Google Scholar 

  122. Miguel-Ramiro, J. et al. Superposed quantum error mitigation. Phys. Rev. Lett. 131, 230601 (2023).

    ADS  MathSciNet  Google Scholar 

  123. Miguel-Ramiro, J. et al. Enhancing quantum computation via superposition of quantum gates. Phys. Rev. A 108, 062604 (2023).

    ADS  MathSciNet  Google Scholar 

  124. Spencer-Wood, H. Indefinite causal key distribution. Preprint at https://arxiv.org/abs/2303.03893 (2023).

  125. Koudia, S., Cacciapuoti, A. S. & Caleffi, M. Deterministic generation of multipartite entanglement via causal activation in the quantum internet. IEEE Access 11, 73863–73878 (2023).

    Google Scholar 

  126. Dey, I. & Marchetti, N. Entanglement distribution and quantum teleportation in higher dimension over the superposition of causal orders of quantum channels. Preprint at https://arxiv.org/abs/2303.10683 (2023).

  127. Simonov, K., Caleffi, M., Illiano, J. & Cacciapuoti, A. S. Universal quantum computation via superposed orders of single-qubit gates. Preprint at https://arxiv.org/abs/2311.13654 (2023).

  128. Zuo, Z., Hanks, M. & Kim, M. S. Coherent control of causal order of entanglement distillation. Phys. Rev. A 108, 062601 (2023).

    ADS  MathSciNet  Google Scholar 

  129. Chen, Y. & Hasegawa, Y. Indefinite causal order in quantum batteries. Preprint at https://arxiv.org/abs/2105.12466 (2021).

  130. Guha, T., Alimuddin, M. & Parashar, P. Thermodynamic advancement in the causally inseparable occurrence of thermal maps. Phys. Rev. A 102, 032215 (2020).

    ADS  Google Scholar 

  131. Guha, T., Roy, S., Simonov, K. & Zimborás, Z. Activation of thermal states by quantum SWITCH-driven thermalization and its limits. Preprint at https://arxiv.org/abs/2208.04034 (2022).

  132. Simonov, K., Francica, G., Guarnieri, G. & Paternostro, M. Work extraction from coherently activated maps via quantum switch. Phys. Rev. A 105, 032217 (2022).

    ADS  MathSciNet  Google Scholar 

  133. Rubino, G., Manzano, G. & Brukner, Č. Quantum superposition of thermodynamic evolutions with opposing time’s arrows. Commun. Phys. 4, 251 (2021).

    Google Scholar 

  134. Rubino, G. et al. Inferring work by quantum superposing forward and time-reversal evolutions. Phys. Rev. Res. 4, 013208 (2022).

    Google Scholar 

  135. Mancino, L., Sbroscia, M., Gianani, I., Roccia, E. & Barbieri, M. Quantum simulation of single-qubit thermometry using linear optics. Phys. Rev. Lett. 118, 130502 (2017).

    ADS  Google Scholar 

  136. Mancino, L. et al. Geometrical bounds on irreversibility in open quantum systems. Phys. Rev. Lett. 121, 160602 (2018).

    ADS  Google Scholar 

  137. Ball, P. A fridge without a cause. Nat. Mater. 21, 1099–1099 (2022).

    ADS  Google Scholar 

  138. Capela, M., Verma, H., Costa, F. & Céleri, L. C. Reassessing thermodynamic advantage from indefinite causal order. Phys. Rev. A 107, 062208 (2023).

    ADS  MathSciNet  Google Scholar 

  139. Liu, X., Ebler, D. & Dahlsten, O. Thermodynamics of quantum switch information capacity activation. Phys. Rev. Lett. 129, 230604 (2022).

    ADS  MathSciNet  Google Scholar 

  140. Xi, C. et al. Experimental validation of enhanced information capacity by quantum switch in accordance with thermodynamic laws. Preprint at https://arxiv.org/abs/2406.01951 (2024).

  141. Tang, H. et al. Demonstration of superior communication through thermodynamically free channels in an optical quantum switch. Preprint at https://arxiv.org/abs/2406.02236 (2024).

  142. Frey, M. Indefinite causal order aids quantum depolarizing channel identification. Quantum Inf. Process. 18, 96 (2019).

    ADS  Google Scholar 

  143. Ban, M. Quantum Fisher information of phase estimation in the presence of indefinite causal order. Phys. Lett. A 468, 128749 (2023).

    MathSciNet  Google Scholar 

  144. Chapeau-Blondeau, F. Noisy quantum metrology with the assistance of indefinite causal order. Phys. Rev. A 103, 032615 (2021).

    ADS  MathSciNet  Google Scholar 

  145. Kurdziałek, S., Górecki, W., Albarelli, F. & Demkowicz-Dobrzański, R. Using adaptiveness and causal superpositions against noise in quantum metrology. Phys. Rev. Lett. 131, 090801 (2023).

    ADS  MathSciNet  Google Scholar 

  146. Liu, Q., Hu, Z., Yuan, H. & Yang, Y. Optimal strategies of quantum metrology with a strict hierarchy. Phys. Rev. Lett. 130, 070803 (2023).

    ADS  MathSciNet  Google Scholar 

  147. Mothe, R., Branciard, C. & Abbott, A. A. Reassessing the advantage of indefinite causal orders for quantum metrology. Phys. Rev. A 109, 062435 (2024).

    MathSciNet  Google Scholar 

  148. Delgado, F. Parametric symmetries in architectures involving indefinite causal order and path superposition for quantum parameter estimation of Pauli channels. Symmetry 15, 1097 (2023).

    ADS  Google Scholar 

  149. Zhao, X., Yang, Y. & Chiribella, G. Quantum metrology with indefinite causal order. Phys. Rev. Lett. 124, 190503 (2020).

    ADS  MathSciNet  Google Scholar 

  150. Giacomini, F., Castro-Ruiz, E. & Brukner, Č. Indefinite causal structures for continuous-variable systems. N. J. Phys. 18, 113026 (2016).

    Google Scholar 

  151. Ban, M. Quantumness of qubit states interacting with two structured reservoirs in indefinite causal order. Phys. Lett. A 479, 128927 (2023).

    MathSciNet  Google Scholar 

  152. Gao, N. et al. Measuring incompatibility and clustering quantum observables with a quantum switch. Phys. Rev. Lett. 130, 170201 (2023).

    ADS  MathSciNet  Google Scholar 

  153. Pan, A. K. Leggett–Garg test of macrorealism using indefinite causal order of measurements. Phys. Lett. A 478, 128898 (2023).

    MathSciNet  Google Scholar 

  154. Krumm, M., Allard Guérin, P., Zauner, T. & Brukner, Č. Quantum teleportation of quantum causal structures. Preprint at https://arxiv.org/abs/2203.00433 (2022).

  155. Quintino, M. T., Dong, Q., Shimbo, A., Soeda, A. & Murao, M. Reversing unknown quantum transformations: universal quantum circuit for inverting general unitary operations. Phys. Rev. Lett. 123, 210502 (2019).

    ADS  Google Scholar 

  156. Quintino, M. T., Dong, Q., Shimbo, A., Soeda, A. & Murao, M. Probabilistic exact universal quantum circuits for transforming unitary operations. Phys. Rev. A 100, 062339 (2019).

    ADS  Google Scholar 

  157. Quintino, M. T. & Ebler, D. Deterministic transformations between unitary operations: exponential advantage with adaptive quantum circuits and the power of indefinite causality. Quantum 6, 679 (2022).

    Google Scholar 

  158. Yoshida, S., Soeda, A. & Murao, M. Reversing unknown qubit-unitary operation, deterministically and exactly. Phys. Rev. Lett. 131, 120602 (2023).

    ADS  MathSciNet  Google Scholar 

  159. Trillo, D., Dive, B. & Navascués, M. Universal quantum rewinding protocol with an arbitrarily high probability of success. Phys. Rev. Lett. 130, 110201 (2023).

    ADS  Google Scholar 

  160. Oreshkov, O. Time-delocalized quantum subsystems and operations: on the existence of processes with indefinite causal structure in quantum mechanics. Quantum 3, 206 (2019).

    Google Scholar 

  161. de la Hamette, A.-C., Kabel, V., Christodoulou, M. & Brukner, Č. Quantum diffeomorphisms cannot make indefinite causal order definite. Preprint at https://arxiv.org/abs/2211.15685 (2022).

  162. Fellous-Asiani, M. et al. Comparing the quantum switch and its simulations with energetically constrained operations. Phys. Rev. Res. 5, 023111 (2023).

    Google Scholar 

  163. Paunković, N. & Vojinović, M. Causal orders, quantum circuits and spacetime: distinguishing between definite and superposed causal orders. Quantum 4, 275 (2020).

    Google Scholar 

  164. Ormrod, N., Vanrietvelde, A. & Barrett, J. Causal structure in the presence of sectorial constraints, with application to the quantum switch. Quantum 7, 1028 (2023).

    Google Scholar 

  165. Vilasini, V. & Renner, R. Embedding cyclic causal structures in acyclic spacetimes: no-go results for process matrices. Preprint at https://arxiv.org/abs/2203.11245 (2022).

  166. Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics 2nd edn (Wiley, 2007).

  167. Felce, D., Vidal, N. T., Vedral, V. & Dias, E. O. Indefinite causal orders from superpositions in time. Phys. Rev. A 105, 062216 (2022).

    ADS  MathSciNet  Google Scholar 

  168. Cavalcanti, E. G., Chaves, R., Giacomini, F. & Liang, Y.-C. Fresh perspectives on the foundations of quantum physics. Nat. Rev. Phys. 5, 1–3 (2023).

    Google Scholar 

  169. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    ADS  Google Scholar 

  170. Giustina, M. et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).

    ADS  Google Scholar 

  171. Shalm, L. K. et al. Strong loophole-free test of local realism*. Phys. Rev. Lett. 115, 250402 (2015).

    ADS  Google Scholar 

  172. Jamiołkowski, A. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972).

    ADS  MathSciNet  Google Scholar 

  173. Choi, M.-D. Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975).

    MathSciNet  Google Scholar 

  174. Chiribella, G., D’Ariano, G. M. & Perinotti, P. Theoretical framework for quantum networks. Phys. Rev. A 80, 022339 (2009).

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was funded in whole, or in part, by the European Union (ERC, GRAVITES, no. 101071779) and its Horizon 2020 and Horizon Europe Research and Innovation Programme under grant agreement no. 899368 (EPIQUS) and no. 101135288 (EPIQUE) and the Marie Skłodowska-Curie grant agreement no. 956071 (AppQInfo). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. Further funding was received from the Austrian Science Fund (FWF) through 10.55776/COE1 (Quantum Science Austria), 10.55776/F71 (BeyondC) and 10.55776/FG5 (Research Group 5) and from the Air Force Office of Scientific Research under award number FA9550-21-1-0355 (QTRUST) and FA8655-23-1-7063 (TIQI); the financial support by the Austrian Federal Ministry of Labour and Economy, the National Foundation for Research, Technology and Development and the Christian Doppler Research Association is gratefully acknowledged. L.A.R. acknowledges support from the Erwin Schrödinger Center for Quantum Science and Technology (ESQ Discovery). B.-H.L. and Y.G. were supported by NSFC (no. 12374338 and no. 12204458) and China Postdoctoral Science Foundation (2021M700138 and BX2021289). This work benefitted from network activities through the INAQT network, supported by the Engineering and Physical Sciences Research Council (grant no. EP/W026910/1).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Lee A. Rozema or Philip Walther.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Rafael Chaves and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozema, L.A., Strömberg, T., Cao, H. et al. Experimental aspects of indefinite causal order in quantum mechanics. Nat Rev Phys 6, 483–499 (2024). https://doi.org/10.1038/s42254-024-00739-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00739-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing