Abstract
In the past decade, the toolkit of quantum information has been expanded to include processes in which the basic operations do not have definite causal relations. Originally considered in the context of the unification of quantum mechanics and general relativity, these causally indefinite processes have been shown to offer advantages in a wide variety of quantum-information processing tasks, ranging from quantum computation to quantum metrology. Here, we overview these advantages and the experimental efforts to realize them. We survey both the experimental techniques employed and the theoretical methods developed in support of the experiments, before discussing the interpretations of current experimental results and giving an outlook on the future of the field.
Key points
-
An indefinite causal order (ICO) is a situation wherein the order of different events or operations is placed in a quantum superposition. Thus one cannot ascribe a definite order to these operations.
-
The best-studied process with an ICO is the quantum switch, which applies a set of quantum gates in a superposition of all possible permutations. The quantum switch has been experimentally implemented using various degrees of freedom encoded in single photons.
-
There is a strong analogy between processes with an ICO and entangled states. This analogy can be used to design techniques to certify ICO.
-
The quantum switch can be used to achieve advantages that go beyond devices that can be described by the quantum circuit model. Although there is no general computational advantage from the quantum switch, there are many specific applications, including quantum computation protocols, quantum communication, quantum metrology and even quantum thermodynamics.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ried, K. et al. A quantum advantage for inferring causal structure. Nat. Phys. 11, 414–420 (2015).
Maclean, J.-P. W., Ried, K., Spekkens, R. W. & Resch, K. J. Quantum-coherent mixtures of causal relations. Nat. Commun. 8, 15149 (2017).
Carvacho, G. et al. Experimental violation of local causality in a quantum network. Nat. Commun. 8, 14775 (2017).
Carvacho, G., Chaves, R. & Sciarrino, F. Perspective on experimental quantum causality. Europhys. Lett. 125, 30001 (2019).
Chiribella, G. & Ebler, D. Quantum speedup in the identification of cause–effect relations. Nat. Commun. 10, 1472 (2019).
Tavakoli, A., Pozas-Kerstjens, A., Luo, M.-X. & Renou, M.-O. Bell nonlocality in networks. Rep. Prog. Phys. 85, 056001 (2022).
Hardy, L. Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure. J. Phys. A Math. Gen. 40, 3081–3099 (2007).
Hardy, L. in Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle 379–401 (Springer, 2009).
Chiribella, G., D’Ariano, G. M., Perinotti, P. & Valiron, B. Quantum computations without definite causal structure. Phys. Rev. A 88, 022318 (2013). The paper in which the quantum switch was first proposed. It showed that the quantum switch could be used to accomplish tasks that cannot be done in the quantum circuit model.
Procopio, L. M. et al. Experimental superposition of orders of quantum gates. Nat. Commun. 6, 7913 (2015). The first experiment to implement the quantum switch, demonstrating the advantage of indefinite causal order by playing a promise problem.
Colnaghi, T., D’Ariano, G. M., Facchini, S. & Perinotti, P. Quantum computation with programmable connections between gates. Phys. Lett. A 376, 2940–2943 (2012).
Oreshkov, O., Costa, F. & Brukner, Č. Quantum correlations with no causal order. Nat. Commun. 3, 1092 (2012). The theoretical paper which first defined the notion of causal non-separability.
Araújo, M. et al. Witnessing causal nonseparability. N. J. Phys. 17, 102001 (2015).
Rubino, G. et al. Experimental verification of an indefinite causal order. Sci. Adv. 3, e1602589 (2017). The first experimental measurement of a causal witness, which also represents the first time that the causal non-separability of a process was explicitly measured.
Goswami, K. et al. Indefinite causal order in a quantum switch. Phys. Rev. Lett. 121, 090503 (2018).
Guérin, P. A., Feix, A., Araújo, M. & Brukner, Č. Exponential communication complexity advantage from quantum superposition of the direction of communication. Phys. Rev. Lett. 117, 100502 (2016).
Wei, K. et al. Experimental quantum switching for exponentially superior quantum communication complexity. Phys. Rev. Lett. 122, 120504 (2019). An application-based experiment showing the exponential advantage that can be obtained with the quantum switch at a communication complexity task.
Schiansky, P. et al. Demonstration of universal time-reversal for qubit processes. Optica 10, 200 (2023).
Yin, P. et al. Experimental super-Heisenberg quantum metrology with indefinite gate order. Nat. Phys. 19, 1–6 (2023). An experiment showing that an indefinite causal order can be used to obtain super-Heisenberg scaling in quantum metrology.
Cao, H. et al. Quantum simulation of indefinite causal order induced quantum refrigeration. Phys. Rev. Res. 4, L032029 (2022).
Goswami, K. & Romero, J. Experiments on quantum causality. AVS Quantum Sci. 2, 037101 (2020).
Brukner, Č. Quantum causality. Nat. Phys. 10, 259–263 (2014).
Andersson, E., Bergou, J. & Jex, I. Comparison of unitary transforms using Franson interferometry. J. Mod. Opt. 52, 1485–1494 (2005).
Zhou, X.-Q. et al. Adding control to arbitrary unknown quantum operations. Nat. Commun. 2, 413 (2011).
Araújo, M., Feix, A., Costa, F. & Brukner, Č. Quantum circuits cannot control unknown operations. N. J. Phys. 16, 093026 (2014).
Araújo, M., Costa, F. & Brukner, Č. Computational advantage from quantum-controlled ordering of gates. Phys. Rev. Lett. 113, 250402 (2014).
Friis, N., Dunjko, V., Dür, W. & Briegel, H. J. Implementing quantum control for unknown subroutines. Phys. Rev. A 89, 030303 (2014).
Goswami, K., Cao, Y., Paz-Silva, G. A., Romero, J. & White, A. G. Increasing communication capacity via superposition of order. Phys. Rev. Res. 2, 033292 (2020).
Strömberg, T., Schiansky, P., Peterson, R. W., Quintino, M. T. & Walther, P. Demonstration of a quantum switch in a Sagnac configuration. Phys. Rev. Lett. 131, 060803 (2023).
Liu, W.-Q. et al. Experimentally demonstrating indefinite causal order algorithms to solve the generalized Deutsch’s problem. Preprint at https://arxiv.org/abs/2305.05416 (2023).
Antesberger, M., Quintino, M. T., Walther, P. & Rozema, L. A. Higher-order process matrix tomography of a passively-stable quantum switch. PRX Quantum 5, 010325 (2024).
Rubino, G. et al. Experimental quantum communication enhancement by superposing trajectories. Phys. Rev. Res. 3, 013093 (2021).
Rubino, G. et al. Experimental entanglement of temporal order. Quantum 6, 621 (2022).
Guo, Y. et al. Experimental transmission of quantum information using a superposition of causal orders. Phys. Rev. Lett. 124, 030502 (2020).
Cao, H. et al. Semi-device-independent certification of indefinite causal order in a photonic quantum switch. Optica 10, 561 (2023). An experiment taking steps to verify indefinite causal order going beyond the device-dependent framework, which is also notable in that both parties in the quantum switch were given non-unitary measure-and-reprepare channels.
Zhu, G., Chen, Y., Hasegawa, Y. & Xue, P. Charging quantum batteries via indefinite causal order: theory and experiment. Phys. Rev. Lett. 131, 240401 (2023). An experiment showing that indefinite causal order can boost the amount of energy charged and the thermal efficiency of quantum battery, showcasing the versatility of such processes.
An, M. et al. Noisy quantum parameter estimation with indefinite causal order. Phys. Rev. A 109, 012603 (2024).
Reed, M. & Simon, B. Methods of Modern Mathematical Physics: Functional Analysis Vol. 1 (Gulf Professional Publishing, 1980).
Rambo, T. M., Altepeter, J. B., Kumar, P. & D’Ariano, G. M. Functional quantum computing: an optical approach. Phys. Rev. A 93, 052321 (2016).
Dong, Q., Quintino, M. T., Soeda, A. & Murao, M. The quantum switch is uniquely defined by its action on unitary operations. Quantum 7, 1169 (2023).
Abbott, A. A., Giarmatzi, C., Costa, F. & Branciard, C. Multipartite causal correlations: polytopes and inequalities. Phys. Rev. A 94, 032131 (2016).
Abbott, A. A., Wechs, J., Costa, F. & Branciard, C. Genuinely multipartite noncausality. Quantum 1, 39 (2017).
Wechs, J., Abbott, A. A. & Branciard, C. On the definition and characterisation of multipartite causal (non)separability. N. J. Phys. 21, 013027 (2019).
Taddei, M. M. et al. Computational advantage from the quantum superposition of multiple temporal orders of photonic gates. PRX Quantum 2, 010320 (2021).
Cariñe, J. et al. Multi-core fiber integrated multi-port beam splitters for quantum information processing. Optica 7, 542 (2020).
Felce, D. & Vedral, V. Quantum refrigeration with indefinite causal order. Phys. Rev. Lett. 125, 070603 (2020).
Felce, D., Vedral, V. & Tennie, F. Refrigeration with indefinite causal orders on a cloud quantum computer. Preprint at https://arxiv.org/abs/2107.12413 (2021).
Nie, X. et al. Experimental realization of a quantum refrigerator driven by indefinite causal orders. Phys. Rev. Lett. 129, 100603 (2022).
Chiribella, G. & Liu, Z. Quantum operations with indefinite time direction. Commun. Phys. 5, 190 (2022).
Mendl, C. B. & Wolf, M. M. Unital quantum channels — convex structure and revivals of Birkhoff’s theorem. Commun. Math. Phys. 289, 1057–1086 (2009).
Strömberg, T. et al. Experimental superposition of a quantum evolution with its time reverse. Phys. Rev. Res. 6, 023071 (2024).
Guo, Y. et al. Experimental demonstration of input–output indefiniteness in a single quantum device. Phys. Rev. Lett. 132, 160201 (2024).
Liu, Z., Yang, M. & Chiribella, G. Quantum communication through devices with indefinite input–output direction. N. J. Phys. 25, 043017 (2023).
Purves, T. & Short, A. J. Quantum theory cannot violate a causal inequality. Phys. Rev. Lett. 127, 110402 (2021).
Baumeler, Ä., Feix, A. & Wolf, S. Maximal incompatibility of locally classical behavior and global causal order in multiparty scenarios. Phys. Rev. A 90, 042106 (2014).
Baumeler, Ä. & Wolf, S. The space of logically consistent classical processes without causal order. N. J. Phys. 18, 013036 (2016).
Araújo, M., Feix, A., Navascués, M. & Brukner, Č. A purification postulate for quantum mechanics with indefinite causal order. Quantum 1, 10 (2017).
Tselentis, E.-E. & Baumeler, ń. Admissible causal structures and correlations. PRX Quantum 4, 040307 (2023).
Vanrietvelde, A., Ormrod, N., Kristjánsson, H. & Barrett, J. Consistent circuits for indefinite causal order. Preprint at https://arxiv.org/abs/2206.10042 (2022).
van der Lugt, T., Barrett, J. & Chiribella, G. Device-independent certification of indefinite causal order in the quantum switch. Nat. Commun. 14, 5811 (2023). A proposal for a device-independent verification of indefinite causal order that can be realized with the quantum switch; this proposal has yet to be experimentally implemented.
van der Lugt, T. & Ormrod, N. Possibilistic and maximal indefinite causal order in the quantum switch. Preprint at https://arxiv.org/abs/2311.00557 (2023).
Branciard, C. Witnesses of causal nonseparability: an introduction and a few case studies. Sci. Rep. 6, 26018 (2016).
Bavaresco, J., Murao, M. & Quintino, M. T. Strict hierarchy between parallel, sequential, and indefinite-causal-order strategies for channel discrimination. Phys. Rev. Lett. 127, 200504 (2021).
Svetlichny, G. Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066 (1987).
Seevinck, M. & Svetlichny, G. Bell-type inequalities for partial separability in n-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002).
Giarmatzi, C. et al. Multi-time quantum process tomography of a superconducting qubit. Preprint at https://arxiv.org/abs/2308.00750 (2023).
White, G. A. L., Hill, C. D., Pollock, F. A., Hollenberg, L. C. L. & Modi, K. Demonstration of non-Markovian process characterisation and control on a quantum processor. Nat. Commun. 11, 6301 (2020).
White, G. A. L., Pollock, F. A., Hollenberg, L. C. L., Hill, C. D. & Modi, K. From many-body to many-time physics. Preprint at https://arxiv.org/abs/2107.13934 (2021).
Guo, Y. et al. Experimental demonstration of instrument-specific quantum memory effects and non-Markovian process recovery for common-cause processes. Phys. Rev. Lett. 126, 230401 (2021).
Zych, M., Costa, F., Pikovski, I. & Brukner, Č. Bell’s theorem for temporal order. Nat. Commun. 10, 3772 (2019).
Wiseman, H. M., Jones, S. J. & Doherty, A. C. Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007).
Uola, R., Moroder, T. & Gühne, O. Joint measurability of generalized measurements implies classicality. Phys. Rev. Lett. 113, 160403 (2014).
Quintino, M. T., Vértesi, T. & Brunner, N. Joint measurability, Einstein–Podolsky–Rosen steering, and Bell nonlocality. Phys. Rev. Lett. 113, 160402 (2014).
Branciard, C., Cavalcanti, E. G., Walborn, S. P., Scarani, V. & Wiseman, H. M. One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301 (2012).
Bavaresco, J., Araújo, M., Brukner, Č. & Quintino, M. T. Semi-device-independent certification of indefinite causal order. Quantum 3, 176 (2019).
Dourdent, H., Abbott, A. A., Brunner, N., Šupić, I. & Branciard, C. Semi-device-independent certification of causal nonseparability with trusted quantum inputs. Phys. Rev. Lett. 129, 090402 (2022).
Aspect, A. Bell’s inequality test: more ideal than ever. Nature 398, 189–190 (1999).
Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969).
Bell, J. S. On the Einstein–Podolsky–Rosen paradox. Phys. Phys. Fiz. 1, 195 (1964).
Bell, J. S. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447 (1966).
Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039 (1998).
Aspect, A., Grangier, P. & Roger, G. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981).
Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938 (1972).
Tóth, G. & Gühne, O. Detecting genuine multipartite entanglement with two local measurements. Phys. Rev. Lett. 94, 060501 (2005).
Gühne, O., Lu, C.-Y., Gao, W.-B. & Pan, J.-W. Toolbox for entanglement detection and fidelity estimation. Phys. Rev. A 76, 030305 (2007).
Oreshkov, O. & Giarmatzi, C. Causal and causally separable processes. N. J. Phys. 18, 093020 (2016).
Brukner, Č. Bounding quantum correlations with indefinite causal order. N. J. Phys. 17, 083034 (2015).
Branciard, C., Araújo, M., Feix, A., Costa, F. & Brukner, Č. The simplest causal inequalities and their violation. N. J. Phys. 18, 013008 (2016).
Miklin, N., Abbott, A. A., Branciard, C., Chaves, R. & Budroni, C. The entropic approach to causal correlations. N. J. Phys. 19, 113041 (2017).
Wechs, J., Branciard, C. & Oreshkov, O. Existence of processes violating causal inequalities on time-delocalised subsystems. Nat. Commun. 14, 1471 (2023).
Silva, R. et al. Connecting processes with indefinite causal order and multi-time quantum states. N. J. Phys. 19, 103022 (2017).
Dimić, A., Milivojević, M., Gočanin, D., Móller, N. S. & Brukner, Č. Simulating indefinite causal order with Rindler observers. Front. Phys. 8, 470 (2020).
Gogioso, S. & Pinzani, N. The geometry of causality. Preprint at https://arxiv.org/abs/2303.09017 (2023).
Bong, K.-W. et al. A strong no-go theorem on the Wigner’s friend paradox. Nat. Phys. 16, 1199–1205 (2020).
Taddei, M. M., Nery, R. V. & Aolita, L. Quantum superpositions of causal orders as an operational resource. Phys. Rev. Res. 1, 033174 (2019).
Chitambar, E. & Gour, G. Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019).
Araújo, M., Guérin, P. A. & Baumeler, A. Quantum computation with indefinite causal structures. Phys. Rev. A 96, 052315 (2017).
Chiribella, G. Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys. Rev. A 86, 040301 (2012).
Renner, M. J. & Brukner, Č. Computational advantage from a quantum superposition of qubit gate orders. Phys. Rev. Lett. 128, 230503 (2022).
Bavaresco, J., Murao, M. & Quintino, M. T. Unitary channel discrimination beyond group structures: advantages of sequential and indefinite-causal-order strategies. J. Math. Phys. 63, 042203 (2022).
Renner, M. J. & Brukner, Č. Reassessing the computational advantage of quantum-controlled ordering of gates. Phys. Rev. Res. 3, 043012 (2021).
Buhrman, H., Cleve, R., Massar, S. & de Wolf, R. Nonlocality and communication complexity. Rev. Mod. Phys. 82, 665–698 (2010).
Buhrman, H. R., Cleve, R. & Wigderson, A. Quantum vs. classical communication and computation. In Proc. 30th Annual ACM Symposium on Theory of Computing 63–68 (Association for Computing Machinery, 1999).
Raz, R. Exponential separation of quantum and classical communication complexity. In Proc. Thirty-first Annual ACM Symposium on Theory of Computing 358–367 (Association for Computing Machinery, 1999).
Baumeler, Ä. & Wolf, S. Perfect signaling among three parties violating predefined causal order. In 2014 IEEE International Symposium on Information Theory 526–530 (IEEE, 2014).
Feix, A., Araújo, M. & Brukner, Č. Quantum superposition of the order of parties as a communication resource. Phys. Rev. A 92, 052326 (2015).
Ebler, D., Salek, S. & Chiribella, G. Enhanced communication with the assistance of indefinite causal order. Phys. Rev. Lett. 120, 120502 (2018).
Salek, S., Ebler, D. & Chiribella, G. Quantum communication in a superposition of causal orders. Preprint at https://arxiv.org/abs/1809.06655 (2018).
Wilde, M. M. Quantum Information Theory (Cambridge Univ. Press, 2013).
Chiribella, G. et al. Indefinite causal order enables perfect quantum communication with zero capacity channels. N. J. Phys. 23, 033039 (2021).
Kristjánsson, H., Chiribella, G., Salek, S., Ebler, D. & Wilson, M. Resource theories of communication. N. J. Phys. 22, 073014 (2020).
Chiribella, G. & Kristjánsson, H. Quantum Shannon theory with superpositions of trajectories. Proc. R. Soc. Lond. A Math. Phys. Sci. 475, 20180903 (2019).
Procopio, L. M., Delgado, F., Enríquez, M., Belabas, N. & Levenson, J. A. Sending classical information via three noisy channels in superposition of causal orders. Phys. Rev. A 101, 012346 (2020).
Procopio, L. M., Delgado, F., Enríquez, M., Belabas, N. & Levenson, J. A. Communication enhancement through quantum coherent control of N channels in an indefinite causal-order scenario. Entropy 21, 1012 (2019).
Sazim, S., Sedlak, M., Singh, K. & Pati, A. K. Classical communication with indefinite causal order for N completely depolarizing channels. Phys. Rev. A 103, 062610 (2021).
Caleffi, M. & Cacciapuoti, A. S. Quantum switch for the quantum internet: noiseless communications through noisy channels. IEEE J. Sel. Areas Commun. 38, 575–588 (2020).
Abbott, A. A., Wechs, J., Horsman, D., Mhalla, M. & Branciard, C. Communication through coherent control of quantum channels. Quantum 4, 333 (2020).
Guérin, P. A., Rubino, G. & Brukner, Č. Communication through quantum-controlled noise. Phys. Rev. A 99, 062317 (2019).
Gisin, N., Linden, N., Massar, S. & Popescu, S. Error filtration and entanglement purification for quantum communication. Phys. Rev. A 72, 012338 (2005).
Pang, A. O. et al. Experimental communication through superposition of quantum channels. Quantum 7, 1125 (2023).
Lee, G., Hann, C. T., Puri, S., Girvin, S. M. & Jiang, L. Error suppression for arbitrary-size black box quantum operations. Phys. Rev. Lett. 131, 190601 (2023).
Miguel-Ramiro, J. et al. Superposed quantum error mitigation. Phys. Rev. Lett. 131, 230601 (2023).
Miguel-Ramiro, J. et al. Enhancing quantum computation via superposition of quantum gates. Phys. Rev. A 108, 062604 (2023).
Spencer-Wood, H. Indefinite causal key distribution. Preprint at https://arxiv.org/abs/2303.03893 (2023).
Koudia, S., Cacciapuoti, A. S. & Caleffi, M. Deterministic generation of multipartite entanglement via causal activation in the quantum internet. IEEE Access 11, 73863–73878 (2023).
Dey, I. & Marchetti, N. Entanglement distribution and quantum teleportation in higher dimension over the superposition of causal orders of quantum channels. Preprint at https://arxiv.org/abs/2303.10683 (2023).
Simonov, K., Caleffi, M., Illiano, J. & Cacciapuoti, A. S. Universal quantum computation via superposed orders of single-qubit gates. Preprint at https://arxiv.org/abs/2311.13654 (2023).
Zuo, Z., Hanks, M. & Kim, M. S. Coherent control of causal order of entanglement distillation. Phys. Rev. A 108, 062601 (2023).
Chen, Y. & Hasegawa, Y. Indefinite causal order in quantum batteries. Preprint at https://arxiv.org/abs/2105.12466 (2021).
Guha, T., Alimuddin, M. & Parashar, P. Thermodynamic advancement in the causally inseparable occurrence of thermal maps. Phys. Rev. A 102, 032215 (2020).
Guha, T., Roy, S., Simonov, K. & Zimborás, Z. Activation of thermal states by quantum SWITCH-driven thermalization and its limits. Preprint at https://arxiv.org/abs/2208.04034 (2022).
Simonov, K., Francica, G., Guarnieri, G. & Paternostro, M. Work extraction from coherently activated maps via quantum switch. Phys. Rev. A 105, 032217 (2022).
Rubino, G., Manzano, G. & Brukner, Č. Quantum superposition of thermodynamic evolutions with opposing time’s arrows. Commun. Phys. 4, 251 (2021).
Rubino, G. et al. Inferring work by quantum superposing forward and time-reversal evolutions. Phys. Rev. Res. 4, 013208 (2022).
Mancino, L., Sbroscia, M., Gianani, I., Roccia, E. & Barbieri, M. Quantum simulation of single-qubit thermometry using linear optics. Phys. Rev. Lett. 118, 130502 (2017).
Mancino, L. et al. Geometrical bounds on irreversibility in open quantum systems. Phys. Rev. Lett. 121, 160602 (2018).
Ball, P. A fridge without a cause. Nat. Mater. 21, 1099–1099 (2022).
Capela, M., Verma, H., Costa, F. & Céleri, L. C. Reassessing thermodynamic advantage from indefinite causal order. Phys. Rev. A 107, 062208 (2023).
Liu, X., Ebler, D. & Dahlsten, O. Thermodynamics of quantum switch information capacity activation. Phys. Rev. Lett. 129, 230604 (2022).
Xi, C. et al. Experimental validation of enhanced information capacity by quantum switch in accordance with thermodynamic laws. Preprint at https://arxiv.org/abs/2406.01951 (2024).
Tang, H. et al. Demonstration of superior communication through thermodynamically free channels in an optical quantum switch. Preprint at https://arxiv.org/abs/2406.02236 (2024).
Frey, M. Indefinite causal order aids quantum depolarizing channel identification. Quantum Inf. Process. 18, 96 (2019).
Ban, M. Quantum Fisher information of phase estimation in the presence of indefinite causal order. Phys. Lett. A 468, 128749 (2023).
Chapeau-Blondeau, F. Noisy quantum metrology with the assistance of indefinite causal order. Phys. Rev. A 103, 032615 (2021).
Kurdziałek, S., Górecki, W., Albarelli, F. & Demkowicz-Dobrzański, R. Using adaptiveness and causal superpositions against noise in quantum metrology. Phys. Rev. Lett. 131, 090801 (2023).
Liu, Q., Hu, Z., Yuan, H. & Yang, Y. Optimal strategies of quantum metrology with a strict hierarchy. Phys. Rev. Lett. 130, 070803 (2023).
Mothe, R., Branciard, C. & Abbott, A. A. Reassessing the advantage of indefinite causal orders for quantum metrology. Phys. Rev. A 109, 062435 (2024).
Delgado, F. Parametric symmetries in architectures involving indefinite causal order and path superposition for quantum parameter estimation of Pauli channels. Symmetry 15, 1097 (2023).
Zhao, X., Yang, Y. & Chiribella, G. Quantum metrology with indefinite causal order. Phys. Rev. Lett. 124, 190503 (2020).
Giacomini, F., Castro-Ruiz, E. & Brukner, Č. Indefinite causal structures for continuous-variable systems. N. J. Phys. 18, 113026 (2016).
Ban, M. Quantumness of qubit states interacting with two structured reservoirs in indefinite causal order. Phys. Lett. A 479, 128927 (2023).
Gao, N. et al. Measuring incompatibility and clustering quantum observables with a quantum switch. Phys. Rev. Lett. 130, 170201 (2023).
Pan, A. K. Leggett–Garg test of macrorealism using indefinite causal order of measurements. Phys. Lett. A 478, 128898 (2023).
Krumm, M., Allard Guérin, P., Zauner, T. & Brukner, Č. Quantum teleportation of quantum causal structures. Preprint at https://arxiv.org/abs/2203.00433 (2022).
Quintino, M. T., Dong, Q., Shimbo, A., Soeda, A. & Murao, M. Reversing unknown quantum transformations: universal quantum circuit for inverting general unitary operations. Phys. Rev. Lett. 123, 210502 (2019).
Quintino, M. T., Dong, Q., Shimbo, A., Soeda, A. & Murao, M. Probabilistic exact universal quantum circuits for transforming unitary operations. Phys. Rev. A 100, 062339 (2019).
Quintino, M. T. & Ebler, D. Deterministic transformations between unitary operations: exponential advantage with adaptive quantum circuits and the power of indefinite causality. Quantum 6, 679 (2022).
Yoshida, S., Soeda, A. & Murao, M. Reversing unknown qubit-unitary operation, deterministically and exactly. Phys. Rev. Lett. 131, 120602 (2023).
Trillo, D., Dive, B. & Navascués, M. Universal quantum rewinding protocol with an arbitrarily high probability of success. Phys. Rev. Lett. 130, 110201 (2023).
Oreshkov, O. Time-delocalized quantum subsystems and operations: on the existence of processes with indefinite causal structure in quantum mechanics. Quantum 3, 206 (2019).
de la Hamette, A.-C., Kabel, V., Christodoulou, M. & Brukner, Č. Quantum diffeomorphisms cannot make indefinite causal order definite. Preprint at https://arxiv.org/abs/2211.15685 (2022).
Fellous-Asiani, M. et al. Comparing the quantum switch and its simulations with energetically constrained operations. Phys. Rev. Res. 5, 023111 (2023).
Paunković, N. & Vojinović, M. Causal orders, quantum circuits and spacetime: distinguishing between definite and superposed causal orders. Quantum 4, 275 (2020).
Ormrod, N., Vanrietvelde, A. & Barrett, J. Causal structure in the presence of sectorial constraints, with application to the quantum switch. Quantum 7, 1028 (2023).
Vilasini, V. & Renner, R. Embedding cyclic causal structures in acyclic spacetimes: no-go results for process matrices. Preprint at https://arxiv.org/abs/2203.11245 (2022).
Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics 2nd edn (Wiley, 2007).
Felce, D., Vidal, N. T., Vedral, V. & Dias, E. O. Indefinite causal orders from superpositions in time. Phys. Rev. A 105, 062216 (2022).
Cavalcanti, E. G., Chaves, R., Giacomini, F. & Liang, Y.-C. Fresh perspectives on the foundations of quantum physics. Nat. Rev. Phys. 5, 1–3 (2023).
Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).
Giustina, M. et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).
Shalm, L. K. et al. Strong loophole-free test of local realism*. Phys. Rev. Lett. 115, 250402 (2015).
Jamiołkowski, A. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972).
Choi, M.-D. Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975).
Chiribella, G., D’Ariano, G. M. & Perinotti, P. Theoretical framework for quantum networks. Phys. Rev. A 80, 022339 (2009).
Acknowledgements
This research was funded in whole, or in part, by the European Union (ERC, GRAVITES, no. 101071779) and its Horizon 2020 and Horizon Europe Research and Innovation Programme under grant agreement no. 899368 (EPIQUS) and no. 101135288 (EPIQUE) and the Marie Skłodowska-Curie grant agreement no. 956071 (AppQInfo). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. Further funding was received from the Austrian Science Fund (FWF) through 10.55776/COE1 (Quantum Science Austria), 10.55776/F71 (BeyondC) and 10.55776/FG5 (Research Group 5) and from the Air Force Office of Scientific Research under award number FA9550-21-1-0355 (QTRUST) and FA8655-23-1-7063 (TIQI); the financial support by the Austrian Federal Ministry of Labour and Economy, the National Foundation for Research, Technology and Development and the Christian Doppler Research Association is gratefully acknowledged. L.A.R. acknowledges support from the Erwin Schrödinger Center for Quantum Science and Technology (ESQ Discovery). B.-H.L. and Y.G. were supported by NSFC (no. 12374338 and no. 12204458) and China Postdoctoral Science Foundation (2021M700138 and BX2021289). This work benefitted from network activities through the INAQT network, supported by the Engineering and Physical Sciences Research Council (grant no. EP/W026910/1).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Rafael Chaves and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rozema, L.A., Strömberg, T., Cao, H. et al. Experimental aspects of indefinite causal order in quantum mechanics. Nat Rev Phys 6, 483–499 (2024). https://doi.org/10.1038/s42254-024-00739-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-024-00739-8