Abstract
Speckle patterns are a powerful tool for high-precision metrology because they enable remarkable performance in relatively simple setups. Nonetheless, researchers in this field follow rather distinct approaches owing to underappreciated general principles underlying speckle phenomena. For example, speckle can be produced from a simple scatterer or from more complex, multiple scattering geometries. In this Expert Recommendation, we propose a standardization of metrics to quantify intrinsic speckle sensitivity that enables direct comparison between all scattering geometries. Moreover, we provide a general criterion that allows one to predict where multiple scattering is truly advantageous for a given task. This standardization and criterion will catalyse progress in speckle metrology but will also translate to other domains of disordered optics which are undergoing rapid developments at present.
Key points
-
Speckle, the granular patterns resulting from the random interference of light, can be harnessed for a wide variety of high-precision metrology applications.
-
At present, the research community uses different approaches to generate and analyse speckle, and a unified approach for comparing these methods does not exist.
-
The similarity, or Pearson correlation coefficient, is recommended as a standardized metric for assessing the intrinsic sensitivity of a speckle-generating system.
-
Multiple scattering geometries are often favoured by the community for increased sensitivity of measurements. However, multiple scattering is particularly beneficial for measurements wherein the speckle is generated through path-dependent changes.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Ā 30Ā days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data underpinning this work will be available through the University of St Andrews Research Data Portal at https://doi.org/10.17630/bcb2bff1-0d20-454a-89c5-8fd64b9e8ff8.
References
Bertolotti, J. & Katz, O. Imaging in complex media. Nat. Phys. 18, 1008ā1017 (2022).
Yoon, S. et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2, 141ā158 (2020).
Faccio, D., Velten, A. & Wetzstein, G. Non-line-of-sight imaging. Nat. Rev. Phys. 2, 318ā327 (2020).
Briers, D. et al. Laser speckle contrast imaging: theoretical and practical limitations. J. Biomed. Opt. 18, 066018 (2013).
Labeyrie, A. Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images. Astron. Astrophys. 6, 85ā87 (1970).
Ghez, A. M., Klein, B., Morris, M. & Becklin, E. High proper-motion stars in the vicinity of Sagittarius A*: evidence for a supermassive black hole at the center of our galaxy. Astrophys. J. 509, 678ā686 (1998).
Sapienza, R. Controlling random lasing action. Nat. Phys. 18, 976ā979 (2022).
Cao, H., Chriki, R., Bittner, S., Friesem, A. A. & Davidson, N. Complex lasers with controllable coherence. Nat. Rev. Phys. 1, 156ā168 (2019).
Cao, H. & Eliezer, Y. Harnessing disorder for photonic device applications. Appl. Phys. Rev. 9, 011309 (2022).
Gigan, S. Imaging and computing with disorder. Nat. Phys. 18, 980ā985 (2022).
Archbold, E., Burch, J. & Ennos, A. Recording of in-plane surface displacement by double-exposure speckle photography. Int. J. Opt. 17, 883ā898 (1970).
Wang, W., Yokozeki, T., Ishijima, R., Takeda, M. & Hanson, S. G. Optical vortex metrology based on the core structures of phase singularities in Laguerre-Gauss transform of a speckle pattern. Opt. Express 14, 10195ā10206 (2006).
Wang, W. et al. Optical vortex metrology for nanometric speckle displacement measurement. Opt. Express 14, 120ā127 (2006).
Wang, W., Ishii, N., Hanson, S. G., Miyamoto, Y. & Takeda, M. Phase singularities in analytic signal of white-light speckle pattern with application to micro-displacement measurement. Opt. Commun. 248, 59ā68 (2005).
Chakrabarti, M., Jakobsen, M. L. & Hanson, S. G. Speckle-based spectrometer. Opt. Lett. 40, 3264ā3267 (2015).
Hanson, S. G., Jakobsen, M. L. & Chakrabarti, M. The dynamic speckle-based wavemeter. In Speckle 2018: VII International Conference on Speckle Metrology Vol. 10834, 620ā625 (SPIE, 2018).
Mazilu, M., Mourka, A., Vettenburg, T., Wright, E. M. & Dholakia, K. Simultaneous determination of the constituent azimuthal and radial mode indices for light fields possessing orbital angular momentum. Appl. Phys. Lett. 100, 231115 (2012).
Sun, Y., Ni, F., Huang, Y., Liu, H. & Chen, X. Near-infrared speckle wavemeter based on nonlinear frequency conversion. Opt. Lett. 48, 4049ā4052 (2023).
Wan, Y., Wang, S., Fan, X., Zhang, Z. & He, Z. High-resolution wavemeter using Rayleigh speckle obtained by optical time domain reflectometry. Opt. Lett. 45, 799ā802 (2020).
Redding, B. & Cao, H. Using a multimode fiber as a high-resolution, low-loss spectrometer. Opt. Lett. 37, 3384ā3386 (2012).
Redding, B., Liew, S. F., Sarma, R. & Cao, H. Compact spectrometer based on a disordered photonic chip. Nat. Photon. 7, 746ā751 (2013).
Redding, B., Popoff, S. M. & Cao, H. All-fiber spectrometer based on speckle pattern reconstruction. Opt. Express 21, 6584ā6600 (2013).
Redding, B., Popoff, S. M., Bromberg, Y., Choma, M. A. & Cao, H. Noise analysis of spectrometers based on speckle pattern reconstruction. Appl. Opt. 53, 410ā417 (2014).
Coluccelli, N. et al. The optical frequency comb fibre spectrometer. Nat. Commun. 7, 12995 (2016).
Cao, H. Perspective on speckle spectrometers. J. Opt. 19, 060402 (2017).
Wan, Y., Fan, X. & He, Z. Review on speckle-based spectrum analyzer. Photonic Sens. 11, 187ā202 (2021).
Inalegwu, O. C., Gerald II, R. E. & Huang, J. A machine learning specklegram wavemeter (MaSWave) based on a short section of multimode fiber as the dispersive element. Sensors 23, 4574 (2023).
KĆ¼rĆ¼m, U., Wiecha, P. R., French, R. & Muskens, O. L. Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array. Opt. Express 27, 20965ā20979 (2019).
Guo, C. et al. Measuring refractive index of glass by using speckle. Appl. Opt. 57, E205āE217 (2018).
Luo, J. et al. Refractive index measurement of uniform liquid using an improved laser speckle method. Opt. Eng. 62, 044107 (2023).
Trivedi, V. et al. 3D printed hand-held refractometer based on laser speckle correlation. Opt. Lasers Eng. 118, 7ā13 (2019).
Facchin, M., Bruce, G. D. & Dholakia, K. Speckle-based determination of the polarisation state of single and multiple laser beams. OSA Contin. 3, 1302ā1313 (2020).
Kohlgraf-Owens, T. & Dogariu, A. Spatially resolved scattering polarimeter. Opt. Lett. 34, 1321ā1323 (2009).
Murray, M. J., Davis, A., Kirkendall, C. & Redding, B. Speckle-based strain sensing in multimode fiber. Opt. Express 27, 28494ā28506 (2019).
Graciani, G., Filoche, M. & Amblard, F. 3D stochastic interferometer detects picometer deformations and minute dielectric fluctuations of its optical volume. Commun. Phys. 5, 239 (2022).
Warren-Smith, S. C., Kilpatrick, A. D., Wisal, K. & Nguyen, L. V. Multimode optical fiber specklegram smart bed sensor array. J. Biomed. Opt. 27, 067002 (2022).
Bianchi, S. Vibration detection by observation of speckle patterns. Appl. Opt. 53, 931ā936 (2014).
Zalevsky, Z. et al. Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern. Opt. Express 17, 21566ā21580 (2009).
Anand, A. et al. Speckle-based optical sensor for low field Faraday rotation measurement. IEEE Sens. J. 13, 723ā727 (2012).
Wang, J.-J., Yan, S.-C., Ruan, Y.-P., Xu, F. & Lu, Y.-Q. Fiber-optic point-based sensor using specklegram measurement. Sensors 17, 2429 (2017).
Trivedi, V. et al. Optical temperature sensor using speckle field. Sens. Actuators A Phys. 216, 312ā317 (2014).
Kim, K., Yu, H., Lee, K. & Park, Y. Universal sensitivity of speckle intensity correlations to wavefront change in light diffusers. Sci. Rep. 7, 44435 (2017).
Gautam, A., Arora, G., Senthilkumaran, P. & Singh, R. K. Detecting topological index of randomly scattered V-point singularities using Stokes correlations. J. Opt. Soc. Am. A 41, 95ā103 (2024).
Berk, J. & Foreman, M. R. Role of multiple scattering in single particle perturbations in absorbing random media. Phys. Rev. Res. 3, 033111 (2021).
Van Der Kooij, H. M., Fokkink, R., Van Der Gucht, J. & Sprakel, J. Quantitative imaging of heterogeneous dynamics in drying and aging paints. Sci. Rep. 6, 34383 (2016).
Bruce, G. D., OāDonnell, L., Chen, M., Facchin, M. & Dholakia, K. Femtometer-resolved simultaneous measurement of multiple laser wavelengths in a speckle wavemeter. Opt. Lett. 45, 1926ā1929 (2020).
Kohlgraf-Owens, T. W. & Dogariu, A. Transmission matrices of random media: means for spectral polarimetric measurements. Opt. Lett. 35, 2236ā2238 (2010).
Facchin, M., Dholakia, K. & Bruce, G. D. Wavelength sensitivity of the speckle patterns produced by an integrating sphere. J. Phys. Photonics 3, 035005 (2021).
Sun, Q. et al. Compact nano-void spectrometer based on a stable engineered scattering system. Photon. Res. 10, 2328ā2336 (2022).
Cai, R. et al. Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning. Opt. Lett. 48, 3961ā3964 (2023).
Bruce, G. D., OāDonnell, L., Chen, M. & Dholakia, K. Overcoming the speckle correlation limit to achieve a fiber wavemeter with attometer resolution. Opt. Lett. 44, 1367ā1370 (2019).
Kelley, M. J., Shaw, T. J. & Valley, G. C. High-speed signal reconstruction for an RF spectrometer based on laser speckle imaging. In Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XVI Vol. 12420, 110ā118 (SPIE, 2023).
Murray, M. J., Murray, J. B., Schermer, R. T., McKinney, J. D. & Redding, B. High-speed RF spectral analysis using a Rayleigh backscattering speckle spectrometer. Opt. Express 31, 20651ā20664 (2023).
Tan, H., Li, B. & Crozier, K. B. Optical fiber speckle spectrometer based on reversed-lens smartphone microscope. Sci. Rep. 13, 12958 (2023).
Mazilu, M., Vettenburg, T., Di Falco, A. & Dholakia, K. Random super-prism wavelength meter. Opt. Lett. 39, 96ā99 (2014).
Malone, J. D., Aggarwal, N., Waller, L. & Bowden, A. K. DiffuserSpec: spectroscopy with Scotch tape. Opt. Lett. 48, 323ā326 (2023).
Metzger, N. K. et al. Harnessing speckle for a sub-femtometre resolved broadband wavemeter and laser stabilization. Nat. Commun. 8, 15610 (2017).
Gupta, R. K., Bruce, G. D., Powis, S. J. & Dholakia, K. Deep learning enabled laser speckle wavemeter with a high dynamic range. Laser Photon. Rev. 14, 2000120 (2020).
Kurekci, S., Kahraman, S. S. & Yuce, E. Single-pixel multimode fiber spectrometer via wavefront shaping. ACS Photonics 10, 2488ā2493 (2023).
Xu, H., Qin, Y., Hu, G. & Tsang, H. K. Cavity-enhanced scalable integrated temporal random-speckle spectrometry. Optica 10, 1177ā1188 (2023).
Tran, V., Sahoo, S. K., Wang, D. & Dang, C. Utilizing multiple scattering effect for highly sensitive optical refractive index sensing. Sens. Actuators A Phys. 301, 111776 (2020).
DƔvila, A. & Rayas, J. Single-shot phase detection in a speckle wavemeter for the measurement of femtometric wavelength change. Opt. Lasers Eng. 125, 105856 (2020).
Redding, B., Alam, M., Seifert, M. & Cao, H. High-resolution and broadband all-fiber spectrometers. Optica 1, 175ā180 (2014).
Wan, N. H. et al. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre. Nat. Commun. 6, 7762 (2015).
Liew, S. F., Redding, B., Choma, M. A., Tagare, H. D. & Cao, H. Broadband multimode fiber spectrometer. Opt. Lett. 41, 2029ā2032 (2016).
Facchin, M., Bruce, G. D. & Dholakia, K. Measurement of variations in gas refractive index with 10ā9 resolution using laser speckle. ACS Photonics 9, 830ā836 (2022).
Facchin, M., Bruce, G. D. & Dholakia, K. Measuring picometre-level displacements using speckle patterns produced by an integrating sphere. Sci. Rep. 13, 14607 (2023).
Trivedi, V. et al. Opto-mechanical magnetometer based on laser speckle correlation. Measurement 189, 110490 (2022).
Fujiwara, E., Ri, Y., Wu, Y. T., Fujimoto, H. & Suzuki, C. K. Evaluation of image matching techniques for optical fiber specklegram sensor analysis. Appl. Opt. 57, 9845ā9854 (2018).
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642ā1645 (2006).
Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793ā796 (2006).
Goodman, J. W. Speckle Phenomena in Optics (Roberts, 2007).
MatthĆØs, M. W., Del Hougne, P., De Rosny, J., Lerosey, G. & Popoff, S. M. Optical complex media as universal reconfigurable linear operators. Optica 6, 465ā472 (2019).
Popoff, S. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).
Facchin, M. On Speckle Patterns: Integrating Spheres, Metrology, and Beyond. PhD thesis, The Univ. of St Andrews (2023).
Carpenter, J., Eggleton, B. J. & Schrƶder, J. Observation of EisenbudāWignerāSmith states as principal modes in multimode fibre. Nat. Photon. 9, 751ā757 (2015).
MatthĆØs, M. W., Bromberg, Y., de Rosny, J. & Popoff, S. M. Learning and avoiding disorder in multimode fibers. Phys. Rev. X 11, 021060 (2021).
Ambichl, P. et al. Super- and anti-principal-modes in multimode waveguides. Phys. Rev. X 7, 041053 (2017).
Han, S., Bender, N. & Cao, H. Tailoring 3D speckle statistics. Phys. Rev. Lett. 130, 093802 (2023).
Bender, N., Haig, H., Christodoulides, D. N. & Wise, F. W. Spectral speckle customization. Optica 10, 1260ā1268 (2023).
Bouchet, D., Rotter, S. & Mosk, A. P. Maximum information states for coherent scattering measurements. Nat. Phys. 17, 564ā568 (2021).
Bender, N. et al. Coherent enhancement of optical remission in diffusive media. Proc. Natl Acad. Sci. USA 119, e2207089119 (2022).
Boreman, G. D., Sun, Y. & James, A. B. Generation of laser speckle with an integrating sphere. Opt. Eng. 29, 339ā342 (1990).
Rawson, E. G., Goodman, J. W. & Norton, R. E. Frequency dependence of modal noise in multimode optical fibers. J. Opt. Soc. Am. 70, 968ā976 (1980).
Narasimha, A. et al. A fully integrated 4āĆā10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13Ī¼m CMOS SOI technology. IEEE J. Solid-State Circuits 42, 2736ā2744 (2007).
Acknowledgements
This work was supported by funding from the Leverhulme Trust (RPG-2017-197), the UK Engineering and Physical Sciences Research Council (EP/P030017/1,EP/R004854/1) and the Australian Research Council (FL210100099). The authors acknowledge useful discussions with N. Dubost, P. Hawthorne and T. Bhide. The authors also appreciate discussions with Professor Hui Cao on the subtleties of the comparison between spectral correlation function and similarity metrics.
Author information
Authors and Affiliations
Contributions
This article was jointly conceived and written by all authors. M.F. developed the model. M.F. and S.N.K. collected experimental data. M.F., S.N.K. and G.D.B. analysed the data.
Corresponding author
Ethics declarations
Competing interests
K.D. holds patents which are granted or under examination in 17 territories entitled āDisordered Photonic Chip Spectrometerā or āRandom Wavelength Meterā. The other authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Maruthi Manoj Brundavanam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherās note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Facchin, M., Khan, S.N., Dholakia, K. et al. Determining intrinsic sensitivity and the role of multiple scattering in speckle metrology. Nat Rev Phys 6, 500ā508 (2024). https://doi.org/10.1038/s42254-024-00735-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-024-00735-y