Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Recommendation
  • Published:

Determining intrinsic sensitivity and the role of multiple scattering in speckle metrology

Abstract

Speckle patterns are a powerful tool for high-precision metrology because they enable remarkable performance in relatively simple setups. Nonetheless, researchers in this field follow rather distinct approaches owing to underappreciated general principles underlying speckle phenomena. For example, speckle can be produced from a simple scatterer or from more complex, multiple scattering geometries. In this Expert Recommendation, we propose a standardization of metrics to quantify intrinsic speckle sensitivity that enables direct comparison between all scattering geometries. Moreover, we provide a general criterion that allows one to predict where multiple scattering is truly advantageous for a given task. This standardization and criterion will catalyse progress in speckle metrology but will also translate to other domains of disordered optics which are undergoing rapid developments at present.

Key points

  • Speckle, the granular patterns resulting from the random interference of light, can be harnessed for a wide variety of high-precision metrology applications.

  • At present, the research community uses different approaches to generate and analyse speckle, and a unified approach for comparing these methods does not exist.

  • The similarity, or Pearson correlation coefficient, is recommended as a standardized metric for assessing the intrinsic sensitivity of a speckle-generating system.

  • Multiple scattering geometries are often favoured by the community for increased sensitivity of measurements. However, multiple scattering is particularly beneficial for measurements wherein the speckle is generated through path-dependent changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of speckle metrology.
Fig. 2: A comparison of metrics.
Fig. 3: Sensitivity of speckle to different changes.
Fig. 4: Path length distributions in typical scattering elements.

Similar content being viewed by others

Data availability

The data underpinning this work will be available through the University of St Andrews Research Data Portal at https://doi.org/10.17630/bcb2bff1-0d20-454a-89c5-8fd64b9e8ff8.

References

  1. Bertolotti, J. & Katz, O. Imaging in complex media. Nat. Phys. 18, 1008ā€“1017 (2022).

    Google ScholarĀ 

  2. Yoon, S. et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2, 141ā€“158 (2020).

    Google ScholarĀ 

  3. Faccio, D., Velten, A. & Wetzstein, G. Non-line-of-sight imaging. Nat. Rev. Phys. 2, 318ā€“327 (2020).

    Google ScholarĀ 

  4. Briers, D. et al. Laser speckle contrast imaging: theoretical and practical limitations. J. Biomed. Opt. 18, 066018 (2013).

    ADSĀ  Google ScholarĀ 

  5. Labeyrie, A. Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images. Astron. Astrophys. 6, 85ā€“87 (1970).

    ADSĀ  Google ScholarĀ 

  6. Ghez, A. M., Klein, B., Morris, M. & Becklin, E. High proper-motion stars in the vicinity of Sagittarius A*: evidence for a supermassive black hole at the center of our galaxy. Astrophys. J. 509, 678ā€“686 (1998).

    ADSĀ  Google ScholarĀ 

  7. Sapienza, R. Controlling random lasing action. Nat. Phys. 18, 976ā€“979 (2022).

    Google ScholarĀ 

  8. Cao, H., Chriki, R., Bittner, S., Friesem, A. A. & Davidson, N. Complex lasers with controllable coherence. Nat. Rev. Phys. 1, 156ā€“168 (2019).

    Google ScholarĀ 

  9. Cao, H. & Eliezer, Y. Harnessing disorder for photonic device applications. Appl. Phys. Rev. 9, 011309 (2022).

    ADSĀ  Google ScholarĀ 

  10. Gigan, S. Imaging and computing with disorder. Nat. Phys. 18, 980ā€“985 (2022).

    Google ScholarĀ 

  11. Archbold, E., Burch, J. & Ennos, A. Recording of in-plane surface displacement by double-exposure speckle photography. Int. J. Opt. 17, 883ā€“898 (1970).

    Google ScholarĀ 

  12. Wang, W., Yokozeki, T., Ishijima, R., Takeda, M. & Hanson, S. G. Optical vortex metrology based on the core structures of phase singularities in Laguerre-Gauss transform of a speckle pattern. Opt. Express 14, 10195ā€“10206 (2006).

    ADSĀ  Google ScholarĀ 

  13. Wang, W. et al. Optical vortex metrology for nanometric speckle displacement measurement. Opt. Express 14, 120ā€“127 (2006).

    ADSĀ  Google ScholarĀ 

  14. Wang, W., Ishii, N., Hanson, S. G., Miyamoto, Y. & Takeda, M. Phase singularities in analytic signal of white-light speckle pattern with application to micro-displacement measurement. Opt. Commun. 248, 59ā€“68 (2005).

    ADSĀ  Google ScholarĀ 

  15. Chakrabarti, M., Jakobsen, M. L. & Hanson, S. G. Speckle-based spectrometer. Opt. Lett. 40, 3264ā€“3267 (2015).

    ADSĀ  Google ScholarĀ 

  16. Hanson, S. G., Jakobsen, M. L. & Chakrabarti, M. The dynamic speckle-based wavemeter. In Speckle 2018: VII International Conference on Speckle Metrology Vol. 10834, 620ā€“625 (SPIE, 2018).

  17. Mazilu, M., Mourka, A., Vettenburg, T., Wright, E. M. & Dholakia, K. Simultaneous determination of the constituent azimuthal and radial mode indices for light fields possessing orbital angular momentum. Appl. Phys. Lett. 100, 231115 (2012).

    ADSĀ  Google ScholarĀ 

  18. Sun, Y., Ni, F., Huang, Y., Liu, H. & Chen, X. Near-infrared speckle wavemeter based on nonlinear frequency conversion. Opt. Lett. 48, 4049ā€“4052 (2023).

    ADSĀ  Google ScholarĀ 

  19. Wan, Y., Wang, S., Fan, X., Zhang, Z. & He, Z. High-resolution wavemeter using Rayleigh speckle obtained by optical time domain reflectometry. Opt. Lett. 45, 799ā€“802 (2020).

    ADSĀ  Google ScholarĀ 

  20. Redding, B. & Cao, H. Using a multimode fiber as a high-resolution, low-loss spectrometer. Opt. Lett. 37, 3384ā€“3386 (2012).

    ADSĀ  Google ScholarĀ 

  21. Redding, B., Liew, S. F., Sarma, R. & Cao, H. Compact spectrometer based on a disordered photonic chip. Nat. Photon. 7, 746ā€“751 (2013).

    ADSĀ  Google ScholarĀ 

  22. Redding, B., Popoff, S. M. & Cao, H. All-fiber spectrometer based on speckle pattern reconstruction. Opt. Express 21, 6584ā€“6600 (2013).

    ADSĀ  Google ScholarĀ 

  23. Redding, B., Popoff, S. M., Bromberg, Y., Choma, M. A. & Cao, H. Noise analysis of spectrometers based on speckle pattern reconstruction. Appl. Opt. 53, 410ā€“417 (2014).

    ADSĀ  Google ScholarĀ 

  24. Coluccelli, N. et al. The optical frequency comb fibre spectrometer. Nat. Commun. 7, 12995 (2016).

    ADSĀ  Google ScholarĀ 

  25. Cao, H. Perspective on speckle spectrometers. J. Opt. 19, 060402 (2017).

    ADSĀ  Google ScholarĀ 

  26. Wan, Y., Fan, X. & He, Z. Review on speckle-based spectrum analyzer. Photonic Sens. 11, 187ā€“202 (2021).

    ADSĀ  Google ScholarĀ 

  27. Inalegwu, O. C., Gerald II, R. E. & Huang, J. A machine learning specklegram wavemeter (MaSWave) based on a short section of multimode fiber as the dispersive element. Sensors 23, 4574 (2023).

    ADSĀ  Google ScholarĀ 

  28. KĆ¼rĆ¼m, U., Wiecha, P. R., French, R. & Muskens, O. L. Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array. Opt. Express 27, 20965ā€“20979 (2019).

    ADSĀ  Google ScholarĀ 

  29. Guo, C. et al. Measuring refractive index of glass by using speckle. Appl. Opt. 57, E205ā€“E217 (2018).

    Google ScholarĀ 

  30. Luo, J. et al. Refractive index measurement of uniform liquid using an improved laser speckle method. Opt. Eng. 62, 044107 (2023).

    ADSĀ  Google ScholarĀ 

  31. Trivedi, V. et al. 3D printed hand-held refractometer based on laser speckle correlation. Opt. Lasers Eng. 118, 7ā€“13 (2019).

    Google ScholarĀ 

  32. Facchin, M., Bruce, G. D. & Dholakia, K. Speckle-based determination of the polarisation state of single and multiple laser beams. OSA Contin. 3, 1302ā€“1313 (2020).

    Google ScholarĀ 

  33. Kohlgraf-Owens, T. & Dogariu, A. Spatially resolved scattering polarimeter. Opt. Lett. 34, 1321ā€“1323 (2009).

    ADSĀ  Google ScholarĀ 

  34. Murray, M. J., Davis, A., Kirkendall, C. & Redding, B. Speckle-based strain sensing in multimode fiber. Opt. Express 27, 28494ā€“28506 (2019).

    ADSĀ  Google ScholarĀ 

  35. Graciani, G., Filoche, M. & Amblard, F. 3D stochastic interferometer detects picometer deformations and minute dielectric fluctuations of its optical volume. Commun. Phys. 5, 239 (2022).

    Google ScholarĀ 

  36. Warren-Smith, S. C., Kilpatrick, A. D., Wisal, K. & Nguyen, L. V. Multimode optical fiber specklegram smart bed sensor array. J. Biomed. Opt. 27, 067002 (2022).

    ADSĀ  Google ScholarĀ 

  37. Bianchi, S. Vibration detection by observation of speckle patterns. Appl. Opt. 53, 931ā€“936 (2014).

    ADSĀ  Google ScholarĀ 

  38. Zalevsky, Z. et al. Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern. Opt. Express 17, 21566ā€“21580 (2009).

    ADSĀ  Google ScholarĀ 

  39. Anand, A. et al. Speckle-based optical sensor for low field Faraday rotation measurement. IEEE Sens. J. 13, 723ā€“727 (2012).

    ADSĀ  Google ScholarĀ 

  40. Wang, J.-J., Yan, S.-C., Ruan, Y.-P., Xu, F. & Lu, Y.-Q. Fiber-optic point-based sensor using specklegram measurement. Sensors 17, 2429 (2017).

    ADSĀ  Google ScholarĀ 

  41. Trivedi, V. et al. Optical temperature sensor using speckle field. Sens. Actuators A Phys. 216, 312ā€“317 (2014).

    ADSĀ  Google ScholarĀ 

  42. Kim, K., Yu, H., Lee, K. & Park, Y. Universal sensitivity of speckle intensity correlations to wavefront change in light diffusers. Sci. Rep. 7, 44435 (2017).

    ADSĀ  Google ScholarĀ 

  43. Gautam, A., Arora, G., Senthilkumaran, P. & Singh, R. K. Detecting topological index of randomly scattered V-point singularities using Stokes correlations. J. Opt. Soc. Am. A 41, 95ā€“103 (2024).

    ADSĀ  Google ScholarĀ 

  44. Berk, J. & Foreman, M. R. Role of multiple scattering in single particle perturbations in absorbing random media. Phys. Rev. Res. 3, 033111 (2021).

    Google ScholarĀ 

  45. Van Der Kooij, H. M., Fokkink, R., Van Der Gucht, J. & Sprakel, J. Quantitative imaging of heterogeneous dynamics in drying and aging paints. Sci. Rep. 6, 34383 (2016).

    ADSĀ  Google ScholarĀ 

  46. Bruce, G. D., Oā€™Donnell, L., Chen, M., Facchin, M. & Dholakia, K. Femtometer-resolved simultaneous measurement of multiple laser wavelengths in a speckle wavemeter. Opt. Lett. 45, 1926ā€“1929 (2020).

    ADSĀ  Google ScholarĀ 

  47. Kohlgraf-Owens, T. W. & Dogariu, A. Transmission matrices of random media: means for spectral polarimetric measurements. Opt. Lett. 35, 2236ā€“2238 (2010).

    ADSĀ  Google ScholarĀ 

  48. Facchin, M., Dholakia, K. & Bruce, G. D. Wavelength sensitivity of the speckle patterns produced by an integrating sphere. J. Phys. Photonics 3, 035005 (2021).

    ADSĀ  Google ScholarĀ 

  49. Sun, Q. et al. Compact nano-void spectrometer based on a stable engineered scattering system. Photon. Res. 10, 2328ā€“2336 (2022).

    Google ScholarĀ 

  50. Cai, R. et al. Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning. Opt. Lett. 48, 3961ā€“3964 (2023).

    ADSĀ  Google ScholarĀ 

  51. Bruce, G. D., Oā€™Donnell, L., Chen, M. & Dholakia, K. Overcoming the speckle correlation limit to achieve a fiber wavemeter with attometer resolution. Opt. Lett. 44, 1367ā€“1370 (2019).

    ADSĀ  Google ScholarĀ 

  52. Kelley, M. J., Shaw, T. J. & Valley, G. C. High-speed signal reconstruction for an RF spectrometer based on laser speckle imaging. In Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XVI Vol. 12420, 110ā€“118 (SPIE, 2023).

  53. Murray, M. J., Murray, J. B., Schermer, R. T., McKinney, J. D. & Redding, B. High-speed RF spectral analysis using a Rayleigh backscattering speckle spectrometer. Opt. Express 31, 20651ā€“20664 (2023).

    ADSĀ  Google ScholarĀ 

  54. Tan, H., Li, B. & Crozier, K. B. Optical fiber speckle spectrometer based on reversed-lens smartphone microscope. Sci. Rep. 13, 12958 (2023).

    ADSĀ  Google ScholarĀ 

  55. Mazilu, M., Vettenburg, T., Di Falco, A. & Dholakia, K. Random super-prism wavelength meter. Opt. Lett. 39, 96ā€“99 (2014).

    ADSĀ  Google ScholarĀ 

  56. Malone, J. D., Aggarwal, N., Waller, L. & Bowden, A. K. DiffuserSpec: spectroscopy with Scotch tape. Opt. Lett. 48, 323ā€“326 (2023).

    ADSĀ  Google ScholarĀ 

  57. Metzger, N. K. et al. Harnessing speckle for a sub-femtometre resolved broadband wavemeter and laser stabilization. Nat. Commun. 8, 15610 (2017).

    ADSĀ  Google ScholarĀ 

  58. Gupta, R. K., Bruce, G. D., Powis, S. J. & Dholakia, K. Deep learning enabled laser speckle wavemeter with a high dynamic range. Laser Photon. Rev. 14, 2000120 (2020).

    ADSĀ  Google ScholarĀ 

  59. Kurekci, S., Kahraman, S. S. & Yuce, E. Single-pixel multimode fiber spectrometer via wavefront shaping. ACS Photonics 10, 2488ā€“2493 (2023).

    Google ScholarĀ 

  60. Xu, H., Qin, Y., Hu, G. & Tsang, H. K. Cavity-enhanced scalable integrated temporal random-speckle spectrometry. Optica 10, 1177ā€“1188 (2023).

    ADSĀ  Google ScholarĀ 

  61. Tran, V., Sahoo, S. K., Wang, D. & Dang, C. Utilizing multiple scattering effect for highly sensitive optical refractive index sensing. Sens. Actuators A Phys. 301, 111776 (2020).

    Google ScholarĀ 

  62. DƔvila, A. & Rayas, J. Single-shot phase detection in a speckle wavemeter for the measurement of femtometric wavelength change. Opt. Lasers Eng. 125, 105856 (2020).

    Google ScholarĀ 

  63. Redding, B., Alam, M., Seifert, M. & Cao, H. High-resolution and broadband all-fiber spectrometers. Optica 1, 175ā€“180 (2014).

    ADSĀ  Google ScholarĀ 

  64. Wan, N. H. et al. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre. Nat. Commun. 6, 7762 (2015).

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  65. Liew, S. F., Redding, B., Choma, M. A., Tagare, H. D. & Cao, H. Broadband multimode fiber spectrometer. Opt. Lett. 41, 2029ā€“2032 (2016).

    ADSĀ  Google ScholarĀ 

  66. Facchin, M., Bruce, G. D. & Dholakia, K. Measurement of variations in gas refractive index with 10āˆ’9 resolution using laser speckle. ACS Photonics 9, 830ā€“836 (2022).

    Google ScholarĀ 

  67. Facchin, M., Bruce, G. D. & Dholakia, K. Measuring picometre-level displacements using speckle patterns produced by an integrating sphere. Sci. Rep. 13, 14607 (2023).

    ADSĀ  Google ScholarĀ 

  68. Trivedi, V. et al. Opto-mechanical magnetometer based on laser speckle correlation. Measurement 189, 110490 (2022).

    Google ScholarĀ 

  69. Fujiwara, E., Ri, Y., Wu, Y. T., Fujimoto, H. & Suzuki, C. K. Evaluation of image matching techniques for optical fiber specklegram sensor analysis. Appl. Opt. 57, 9845ā€“9854 (2018).

    ADSĀ  Google ScholarĀ 

  70. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642ā€“1645 (2006).

    ADSĀ  Google ScholarĀ 

  71. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793ā€“796 (2006).

    Google ScholarĀ 

  72. Goodman, J. W. Speckle Phenomena in Optics (Roberts, 2007).

  73. MatthĆØs, M. W., Del Hougne, P., De Rosny, J., Lerosey, G. & Popoff, S. M. Optical complex media as universal reconfigurable linear operators. Optica 6, 465ā€“472 (2019).

    ADSĀ  Google ScholarĀ 

  74. Popoff, S. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    ADSĀ  Google ScholarĀ 

  75. Facchin, M. On Speckle Patterns: Integrating Spheres, Metrology, and Beyond. PhD thesis, The Univ. of St Andrews (2023).

  76. Carpenter, J., Eggleton, B. J. & Schrƶder, J. Observation of Eisenbudā€“Wignerā€“Smith states as principal modes in multimode fibre. Nat. Photon. 9, 751ā€“757 (2015).

    ADSĀ  Google ScholarĀ 

  77. MatthĆØs, M. W., Bromberg, Y., de Rosny, J. & Popoff, S. M. Learning and avoiding disorder in multimode fibers. Phys. Rev. X 11, 021060 (2021).

    Google ScholarĀ 

  78. Ambichl, P. et al. Super- and anti-principal-modes in multimode waveguides. Phys. Rev. X 7, 041053 (2017).

    Google ScholarĀ 

  79. Han, S., Bender, N. & Cao, H. Tailoring 3D speckle statistics. Phys. Rev. Lett. 130, 093802 (2023).

    ADSĀ  Google ScholarĀ 

  80. Bender, N., Haig, H., Christodoulides, D. N. & Wise, F. W. Spectral speckle customization. Optica 10, 1260ā€“1268 (2023).

    ADSĀ  Google ScholarĀ 

  81. Bouchet, D., Rotter, S. & Mosk, A. P. Maximum information states for coherent scattering measurements. Nat. Phys. 17, 564ā€“568 (2021).

    Google ScholarĀ 

  82. Bender, N. et al. Coherent enhancement of optical remission in diffusive media. Proc. Natl Acad. Sci. USA 119, e2207089119 (2022).

    Google ScholarĀ 

  83. Boreman, G. D., Sun, Y. & James, A. B. Generation of laser speckle with an integrating sphere. Opt. Eng. 29, 339ā€“342 (1990).

    Google ScholarĀ 

  84. Rawson, E. G., Goodman, J. W. & Norton, R. E. Frequency dependence of modal noise in multimode optical fibers. J. Opt. Soc. Am. 70, 968ā€“976 (1980).

    ADSĀ  Google ScholarĀ 

  85. Narasimha, A. et al. A fully integrated 4ā€‰Ć—ā€‰10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13Ī¼m CMOS SOI technology. IEEE J. Solid-State Circuits 42, 2736ā€“2744 (2007).

    ADSĀ  Google ScholarĀ 

Download references

Acknowledgements

This work was supported by funding from the Leverhulme Trust (RPG-2017-197), the UK Engineering and Physical Sciences Research Council (EP/P030017/1,EP/R004854/1) and the Australian Research Council (FL210100099). The authors acknowledge useful discussions with N. Dubost, P. Hawthorne and T. Bhide. The authors also appreciate discussions with Professor Hui Cao on the subtleties of the comparison between spectral correlation function and similarity metrics.

Author information

Authors and Affiliations

Authors

Contributions

This article was jointly conceived and written by all authors. M.F. developed the model. M.F. and S.N.K. collected experimental data. M.F., S.N.K. and G.D.B. analysed the data.

Corresponding author

Correspondence to Graham D. Bruce.

Ethics declarations

Competing interests

K.D. holds patents which are granted or under examination in 17 territories entitled ā€œDisordered Photonic Chip Spectrometerā€ or ā€œRandom Wavelength Meterā€. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Maruthi Manoj Brundavanam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Facchin, M., Khan, S.N., Dholakia, K. et al. Determining intrinsic sensitivity and the role of multiple scattering in speckle metrology. Nat Rev Phys 6, 500ā€“508 (2024). https://doi.org/10.1038/s42254-024-00735-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00735-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter ā€” what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing