Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Liquid-metal experiments on geophysical and astrophysical phenomena

Abstract

Recent decades have seen enormous progress in the experimental investigation of fundamental processes that are relevant to geophysical and astrophysical fluid dynamics. Liquid metals have proven particularly suited for such studies, partly owing to their small Prandtl numbers that are comparable to those in planetary cores and stellar convection zones, partly owing to their high electrical conductivity that allows the study of various magnetohydrodynamic phenomena. After introducing the theoretical basics and the key dimensionless parameters, we discuss some of the most important liquid-metal experiments on Rayleigh–Bénard convection, Alfvén waves, magnetically triggered flow instabilities such as the magnetorotational and Tayler instability, and the dynamo effect. Finally, we summarize what has been learned so far from those recent experiments and what could be expected from future ones.

Key points

  • Geophysical and astrophysical fluid dynamics is concerned with diverse phenomena as convection and magnetic field generation in stellar and planetary interiors or accretion onto protostars and black holes.

  • Liquid-metal experiments are suited for investigating these processes, partly owing to their high electrical conductivity and partly owing to their small Prandtl numbers that are comparable to those in planetary cores and stellar convection zones.

  • Apart from heat transport scalings, liquid-metal convection experiments have explored a wide variety of flow structures that occur in dependence on the geometric aspect ratio and the presence of magnetic fields.

  • Exposing liquid rubidium to a high-pulsed magnetic field has allowed to equalize the speeds of Alfvén waves and sound waves and to study their mutual transformation that is a key ingredient for heating the solar corona.

  • The past decades have seen enormous progress in the experimental realization of the hydromagnetic dynamo effect and of various forms of the magnetorotational instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Our Sun: a laboratory for astrophysical (magneto)hydrodynamics.
Fig. 2: Recent convection experiments.
Fig. 3: Experiments on Alfvén waves.
Fig. 4: Experiments in cylindrical geometry on various variants of MRI.
Fig. 5: Experiments in spherical geometry on magnetically triggered flow instabilities.
Fig. 6: Dynamo experiments.
Fig. 7: DRESDYN precession dynamo experiment.

Similar content being viewed by others

References

  1. Schumacher, J. & Sreenivasan, K. R. Colloquium: unusual dynamics of convection in the Sun. Rev. Mod. Phys. 92, 041001 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  2. Harlander, U. et al. New laboratory experiments to study the large-scale circulation and climate dynamics. Atmosphere 14, 836 (2023).

    Article  ADS  Google Scholar 

  3. Gekelman, W. Review of laboratory experiments on Alfvén waves and their relationship to space observations. J. Geophys. Res. 104, 14417 (1999).

    Article  ADS  Google Scholar 

  4. Le Bars, M. et al. Fluid dynamics experiments for planetary interiors. Surv. Geophys. 43, 229–261 (2022).

    Article  ADS  Google Scholar 

  5. Le Bars, M., Cébron, D. & Le Gal, P. Flows driven by libration, precession, and tides. Ann. Rev. Fluid Mech. 47, 163–193 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  6. Rüdiger, G., Hollerbach, R. & Kitchatinov, L. L. Magnetic Processes in Astrophysics: Theory, Simulations, Experiments (Wiley-VCH, 2013).

  7. Rüdiger, G., Gellert, M., Hollerbach, R., Schultz, M. & Stefani, F. Stability and instability of hydromagnetic Taylor–Couette flows. Phys. Rep. 741, 1–89 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  8. Ji, H. & Goodman, J. Taylor-Couette flow for astrophysical purposes. Phil. Trans. R. Soc. A 381, 20220119 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  9. Rincon, F. Dynamo theories. J. Plasma Phys. 85, 205850401 (2019).

    Article  Google Scholar 

  10. Tobias, S. The turbulent dynamo. J. Fluid Mech. 912, P1 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  11. Brandenburg, A., Elstner, D., Masada, Y. & Pipin, V. Turbulent processes and mean-field dynamo. Space Sci. Rev. 219, 55 (2023).

    Article  ADS  Google Scholar 

  12. Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G. & Stefani, F. Laboratory experiments on hydromagnetic dynamos. Rev. Mod. Phys. 74, 973–990 (2002).

    Article  ADS  Google Scholar 

  13. Stefani, F., Gailitis, A. & Gerbeth, G. Magnetohydrodynamic experiments on cosmic magnetic fields. Zeitschr. Angew. Math. Mech. 88, 930–954 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  14. Stefani, F., Giesecke, A. & Gerbeth, G. Numerical simulations of liquid metal experiments on cosmic magnetic fields. Theor. Comp. Fluid Dyn. 23, 405–429 (2009).

    Article  Google Scholar 

  15. Verhille, G., Plihon, N., Bourgoin, M., Odier, P. & Pinton, J.-F. Laboratory dynamo experiments. Space Sci. Rev. 152, 543–564 (2010).

    Article  ADS  Google Scholar 

  16. Pandey, A., Scheel, J. D. & Schumacher, J. Turbulent superstructures in Rayleigh-Bénard convection. Nat. Commun. 9, 2118 (2018).

    Article  ADS  Google Scholar 

  17. Grant, S. D. T. et al. Alfvén wave dissipation in the solar chromosphere. Nat. Phys. 14, 480–483 (2018).

    Article  Google Scholar 

  18. Hazra, G., Nandy, D., Kitchatinov, L. & Choudhuri, A. R. Mean field models of flux transport dynamo and meridional circulation in the Sun and stars. Space Sci. Rev. 219, 39 (2023).

    Article  ADS  Google Scholar 

  19. Matilsky, L. I., Hindman, B. W., Featherstone, N. A., Blume, C. & Toomre, J. Confinement of the solar tachocline by dynamo action in the radiative interior. Astrophys. J. Lett. 940, L50 (2022).

    Article  ADS  Google Scholar 

  20. Eggenberger, P., Moyano, F. D. & den Hartogh, J. W. Rotation in stellar interiors: general formulation and an asteroseismic-calibrated transport by the Tayler instability. Astron. Astrophys. 6, 788–795 (2022).

    Google Scholar 

  21. Eggenberger, P. et al. The internal rotation of the Sun and its link to the solar Li and He surface abundances. Nat. Astron. 6, 788–795 (2022).

    Article  ADS  Google Scholar 

  22. Goedbloed, H., Keppens, R. & Poedts, S. Magnetohydrodynamics of Laboratory and Astrophysical Plasmas (Cambridge Univ. Press, 2019).

  23. Cowling, T. G. The magnetic field of sunspots. Mon. Not. Roy. Astr. Soc. 140, 39–48 (1934).

    Google Scholar 

  24. Kaiser, R. The non-radial velocity theorem revisited. Geophys. Astrophys. Fluid Dyn. 101, 185–197 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  25. Schaeffer, N., Jault, D., Nataf, H.-C. & Fournier, A. Turbulent geodynamo simulations: a leap towards Earth’s core. Geophys. J. Int. 211, 1–29 (2017).

    Article  ADS  Google Scholar 

  26. Lehnert, B. in MagnetohydrodynamicsModern Evolution and Trends 27–36 (Springer, 2007).

  27. Raja, K. K. A study on sodium — the fast breeder reactor coolant. IOP Conf. Ser. Mater. Sci. Eng. 1045, 012013 (2021).

    Article  Google Scholar 

  28. An, D., Sunderland, P. B. & Lathrop, D. P. Suppression of sodium fires with liquid nitrogen. Fire Saf. J. 58, 204–207 (2013).

    Article  Google Scholar 

  29. Stefani, F., Forbriger, J., Gundrum, T. H., Herrmannsdörfer, T. & Wosnitza, J. Mode conversion and period doubling in a liquid rubidium Alfvén-wave experiment with coinciding sound and Alfvén speeds. Phys. Rev. Lett. 127, 275001 (2021).

    Article  Google Scholar 

  30. Morley, N. B., Burris, J., Cadwallader, L. C. & Nornberg, M. D. GaInSn usage in the research laboratory. Rev. Sci. Instrum. 79, 056107 (2008).

    Article  ADS  Google Scholar 

  31. Plevachuk, Y. U., Sklyarchuk, V., Eckert, S., Gerbeth, G. & Novakovic, R. Thermophysical properties of the liquid Ga-In-Sn eutectic alloy. J. Chem. Eng. Data 59, 757–763 (2014).

    Article  Google Scholar 

  32. Alemany, A., Moreau, R., Sulem, P. L. & Frisch, U. Influence of an external magnetic field on homogeneous MHD turbulence. J. de Mec. 18, 277–313 (1979).

    ADS  Google Scholar 

  33. Sukoriansky, S., Zilberman, I. & Branover, H. Experimental studies of turbulence in mercury flows with transverse magnetic fields. Exp. Fluids 4, 11–16 (1986).

    Article  Google Scholar 

  34. Cioni, S., Ciliberto, S. & Sommeria, J. Strongly turbulent Rayleigh-Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111–140 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  35. Zherlitsyn, S., Wustmann, B., Herrmannsdörfer, T. & Wosnitza, J. Status of the pulsed-magnet-development program at the Dresden High Magnetic Field Laboratory. IEEE Trans. Appl. Supercond. 22, 4300603 (2012).

    Article  Google Scholar 

  36. Béard, F. & Debray, F. The French high magnetic field facility. J. Low Temp. Phys. 170, 541–552 (2012).

    Article  ADS  Google Scholar 

  37. Wijnen, F. J. P. et al. Design of the resistive insert for the Nijmegen 45 T hybrid magnet. IEEE Trans. Appl. Supercond. 30, 4300204 (2020).

    Article  Google Scholar 

  38. Nguyen, D. N., Michel, J. & Mielke, C. H. Status and development of pulsed magnets at the NHMFL pulsed field facility. IEEE Trans. Appl. Supercond. 26, 4300905 (2016).

    Article  Google Scholar 

  39. King, E. M. & Aurnou, J. M. Turbulent convection in liquid metal with and without rotation. Proc. Natl Acad. Sci. USA 110, 6688–6693 (2013).

    Article  ADS  Google Scholar 

  40. Ren, L. et al. Flow states and heat transport in liquid metal convection. J. Fluid Mech. 951, R1 (2022).

    Article  Google Scholar 

  41. Zürner, T., Schindler, F., Vogt, T., Eckert, S. & Schumacher, J. Combined measurement of velocity and temperature in liquid metal convection. J. Fluid Mech. 876, 1108–1128 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  42. Takeda, Y. Measurement of velocity profile of mercury flow by ultrasound Doppler shift method. Nucl. Techn. 79, 120–124 (1987).

    Article  ADS  Google Scholar 

  43. Brito, D., Nataf, H.-C., Cardin, P., Aubert, J. & Masson, J.-P. Ultrasonic Doppler velocimetry in liquid gallium. Exp. Fluids 31, 653–663 (2001).

    Article  Google Scholar 

  44. Eckert, S. & Gerbeth, G. Velocity measurements in liquid sodium by means of ultrasound Doppler velocimetry. Exp. Fluids 32, 542–546 (2002).

    Article  Google Scholar 

  45. Eckert, S., Buchenau, D., Gerbeth, G., Stefani, F. & Weiss, F.-P. Some recent developments in the field of measuring techniques and instrumentation for liquid metal flows. J. Nucl. Sci. Techn. 48, 490–498 (2011).

    Article  Google Scholar 

  46. Eckert, S., Gerbeth, G. & Melnikov, V. I. Velocity measurements at high temperatures by ultrasound Doppler velocimetry using an acoustic wave guide. Exp. Fluids 35, 381–388 (2003).

    Article  Google Scholar 

  47. Mäder, K. et al. Phased-array ultrasound system for planar flow mapping in liquid metals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 69, 1327–1335 (2017).

    Article  Google Scholar 

  48. Schmitt, D. et al. Rotating spherical Couette flow in a dipolar magnetic field. J. Fluid Mech. 604, 175–197 (2008).

    Article  ADS  Google Scholar 

  49. Ricou, R. & Vives, C. Local velocity and mass transfer measurements in molten metals using an incorporated probe. Int. J. Heat Mass Transf. 25, 1579–1588 (1982).

    Article  ADS  Google Scholar 

  50. Cramer, A., Varshney, K., Gundrum, T. & Gerbeth, G. Experimental study on the sensitivity and accuracy of electric potential local flow measurements. Flow. Meas. Instrum. 17, 1–11 (2006).

    Article  Google Scholar 

  51. Stefani, F. & Gerbeth, G. A contactless method for velocity reconstruction in electrically conducting fluids. Meas. Sci. Techn. 11, 758–765 (2000).

    Article  ADS  Google Scholar 

  52. Stefani, F., Gundrum, T. H. & Gerbeth, G. Contactless inductive flow tomography. Phys. Rev. E 70, 056306 (2004).

    Article  ADS  Google Scholar 

  53. Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J. & Lounasmaa, O. V. Magnetoencephalography: theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497 (1993).

    Article  ADS  Google Scholar 

  54. Vogt, T., Horn, S., Grannan, A. M. & Aurnou, J. M. Jump rope vortex in liquid metal convection. Proc. Natl Acad. Sci. USA. 115, 12674–12679 (2018).

    Article  ADS  Google Scholar 

  55. Akashi, M. et al. Transition from convection rolls to large-scale cellular structures in turbulent Rayleigh-Bénard convection in a liquid metal layer. Phys. Rev. Fluids 4, 033501 (2019).

    Article  ADS  Google Scholar 

  56. Grossmann, S. & Lohse, D. Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 27–56 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  57. Takeshita, T., Segawa, T., Glazier, J. A. & Sano, A. Thermal turbulence in mercury. Phys. Rev. Lett. 76, 1465–1468 (1996).

    Article  ADS  Google Scholar 

  58. Glazier, J. A., Segawa, T., Naert, A. & Sano, M. Evidence against “ultrahard” thermal turbulence at very high Rayleigh numbers. Nature 398, 307–310 (1999).

    Article  ADS  Google Scholar 

  59. Tsuji, Y., Mizuno, T., Mashiko, T. & Sano, M. Mean wind in convective turbulence of mercury. Phys. Rev. Lett. 94, 034501 (2005).

    Article  ADS  Google Scholar 

  60. Khalilov, R. et al. Thermal convection of liquid sodium in inclined cylinders. Phys. Rev. Fluids 3, 043503 (2018).

    Article  ADS  Google Scholar 

  61. Schindler, F., Eckert, S., Zürner, F., Schumacher, J. & Vogt, T. Collapse of coherent large scale flow in strongly turbulent liquid metal convection. Phys. Rev. Lett. 128, 164501 (2022).

    Article  ADS  Google Scholar 

  62. Schindler, F., Eckert, S., Zürner, F., Schumacher, J. & Vogt, T. Collapse of coherent large scale flow in strongly turbulent liquid metal convection. Phys. Rev. Lett. 128, 164501 (2022); erratum 131, 159901 (2023).

    Article  ADS  Google Scholar 

  63. Verzicco, R. & Camussi, R. Transitional regimes of low-Prandtl thermal convection in a cylindrical cell. Phys. Fluids 9, 1287–1295 (2010).

    Article  ADS  Google Scholar 

  64. Wondrak, T., Pal, J., Stefani, F., Galindo, V. & Eckert, S. Visualization of the global flow structure in a modified Rayleigh-Bénard setup using contactless inductive flow tomography. Flow Meas. Instrum. 62, 269–280 (2018).

    Article  Google Scholar 

  65. Wondrak, T. et al. Three-dimensional flow structures in turbulent Rayleigh-Bénard convection at low Prandtl number Pr = 0.03. J. Fluid Mech. 974, A48 (2023).

    Article  MathSciNet  Google Scholar 

  66. Cioni, S., Chaumat, S. & Sommeria, J. Effect of a vertical magnetic field on turbulent Rayleigh-Bénard convection. Phys. Rev. E 62, R4520–R4523 (2000).

    Article  ADS  Google Scholar 

  67. Aurnou, J. M. & Olsen, P. M. Experiments on Rayleigh-Bénard convection, magnetoconvection and rotating magnetoconvection in liquid gallium. J. Fluid Mech. 430, 283–307 (2001).

    Article  ADS  Google Scholar 

  68. Burr, U. & Müller, U. Rayleigh-Bénard convection in liquid metal layers under the influence of a vertical magnetic field. Phys. Fluids 13, 3247–3257 (2001).

    Article  ADS  Google Scholar 

  69. Zürner, T., Schindler, F., Vogt, T., Eckert, S. & Schumacher, J. Flow regimes of Rayleigh-Bénard convection in a vertical magnetic field. J. Fluid Mech. 894, A21 (2020).

    Article  ADS  Google Scholar 

  70. Vogt, T., Yang, J.-C., Schindler, F. & Eckert, S. Free-fall velocities and heat transport enhancement in liquid metal magneto-convection. J. Fluid Mech. 915, A68 (2021).

    Article  MathSciNet  Google Scholar 

  71. Zürner, T. Refined mean field model of heat and momentum transfer in magnetoconvection. Phys. Fluids 32, 107101 (2020).

    Article  ADS  Google Scholar 

  72. Grannan, A. M. et al. Experimental pub crawl from Rayleigh-Bénard to magnetostrophic convection. J. Fluid Mech. 939, R1 (2022).

    Article  MathSciNet  Google Scholar 

  73. Schumacher, J. The various facets of liquid metal convection. J. Fluid Mech. 946, F1 (2022).

    Article  MathSciNet  Google Scholar 

  74. Xu, Y., Horn, S. & Aurnou, J. M. Thermoelectric precession in turbulent magnetoconvection. J. Fluid Mech. 930, A8 (2020).

    Article  MathSciNet  Google Scholar 

  75. Horn, S. & Aurnou, J. The Elbert range of magnetostrophic convection. I. Linear theory. Proc. R. Soc. A 478, 20220313 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  76. Alfvén, H. Existence of electromagnetic-hydrodynamic waves. Nature 150, 405–406 (1942).

    Article  ADS  Google Scholar 

  77. Lundquist, S. Experimental demonstration of magneto-hydrodynamic waves. Nature 164, 145–146 (1949).

    Article  ADS  Google Scholar 

  78. Lehnert, B. Magneto-hydrodynamic waves in liquid sodium. Phys. Rev. 94, 815–824 (1954).

    Article  ADS  MathSciNet  Google Scholar 

  79. Jameson, A. A demonstration of Alfvén waves part 1. Generation of standing waves. J. Fluid Mech. 19, 513–527 (1964).

    Article  ADS  Google Scholar 

  80. Iwai, K., Shinya, K., Takashi, K. & Moreau, R. Pressure change accompanying Alfvén waves in a liquid metal. Magnetohydrodynamics 39, 245–249 (2003).

    Article  ADS  Google Scholar 

  81. Alboussière, T. et al. Experimental evidence of Alfvén wave propagation in a gallium alloy. Phys. Fluids 23, 096601 (2011).

    Article  ADS  Google Scholar 

  82. Zaqarashvili, T. V. & Roberts, B. Two-wave interaction in ideal magnetohydrodynamics. Astron. Astrophys. 452, 1053–1058 (2006).

    Article  ADS  Google Scholar 

  83. Tomczyk, S. et al. Alfvén waves in the solar corona. Science 317, 1192–1196 (2007).

    Article  ADS  Google Scholar 

  84. Srivastava, A. K. et al. High-frequency torsional Alfvén waves as an energy source for coronal heating. Sci. Rep. 7, 43147 (2017).

    Article  ADS  Google Scholar 

  85. Gundrum, T. et al. Alfvén wave experiments with liquid rubidium in a pulsed magnetic field. Magnetohydrodynamics 58, 389–396 (2022).

    Article  Google Scholar 

  86. Velikhov, E. P. Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 36, 995–998 (1959).

    ADS  MathSciNet  Google Scholar 

  87. Balbus, S. A. & Hawley, J. F. A powerful local shear instability in weakly magnetized disks. 1. Linear analysis. Astrophys. J. 376, 214–221 (1991).

    Article  ADS  Google Scholar 

  88. Ji, H. & Balbus, S. Angular momentum transport in astrophysics and in the lab. Phys. Today 66, 27–33 (2013).

    Article  Google Scholar 

  89. Rüdiger, G. & Schultz, M. The gap-size influence on the excitation of magnetorotational instability in cylindric Taylor-Couette flows. J. Plasma Phys. 90, 905900105 (2024).

    Article  Google Scholar 

  90. Ji, H., Burin, M., Schartman, E. & Goodman, J. Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444, 343–346 (2006).

    Article  ADS  Google Scholar 

  91. Nornberg, M. D., Ji, H., Schartman, E., Roach, A. & Goodman, J. Observation of magnetocoriolis waves in a liquid metal Taylor-Couette experiment. Phys. Rev. Lett. 104, 074501 (2010).

    Article  ADS  Google Scholar 

  92. Wang, Y., Gilson, E. P., Ebrahimi, F., Goodman, J. & Ji, H. Observation of axisymmetric standard magnetorotational instability in the laboratory. Phys. Rev. Lett. 129, 115001 (2022).

    Article  ADS  Google Scholar 

  93. Wang, Y. et al. Identification of a non-axisymmetric mode in laboratory experiments searching for standard magnetorotational instability. Nat. Comm. 13, 4679 (2022).

    Article  ADS  Google Scholar 

  94. Kirillov, O. N. & Stefani, F. On the relation of standard and helical magnetorotational instability. Astrophys. J. 712, 52–68 (2010).

    Article  ADS  Google Scholar 

  95. Hollerbach, R. & Rüdiger, G. New type of magnetorotational instability in cylindrical Taylor-Couette flow. Phys. Rev. Lett. 95, 124501 (2005).

    Article  ADS  Google Scholar 

  96. Hollerbach, R., Teeluck, V. & Rüdiger, G. Nonaxisymmetric magnetorotational instabilities in cylindrical Taylor-Couette flow. Phys. Rev. Lett. 104, 044502 (2010).

    Article  ADS  Google Scholar 

  97. Kirillov, O. N., Stefani, F. & Fukumoto, Y. A unifying picture of helical and azimuthal magnetorotational instability, and the universal significance of the Liu limit. Astrophys. J. 756, 83 (2012).

    Article  ADS  Google Scholar 

  98. Stefani, F. et al. Experimental evidence for magnetorotational instability in a Taylor-Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97, 184502 (2006).

    Article  ADS  Google Scholar 

  99. Stefani, F. et al. Experiments on the magnetorotational instability in helical magnetic fields. New J. Phys. 9, 295 (2007).

    Article  ADS  Google Scholar 

  100. Stefani, F. et al. Helical magnetorotational instability in a Taylor-Couette flow with strongly reduced Ekman pumping. Phys. Rev. E 80, 066303 (2009).

    Article  ADS  Google Scholar 

  101. Seilmayer, M. et al. Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field. Phys. Rev. Lett. 113, 024505 (2014).

    Article  ADS  Google Scholar 

  102. Stefani, F. et al. The DRESDYN project: liquid metal experiments on dynamo action and magnetorotational instability. Geophys. Astrophys. Fluid Dyn. 113, 51–70 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  103. Tayler, R. J. Adiabatic stability of stars containing magnetic fields. 1. Toroidal fields. Mon. Not. R. Astron. Soc. 161, 365–380. (1973).

    Article  Google Scholar 

  104. Seilmayer, M. et al. Experimental evidence for a transient Tayler instability in a cylindrical liquid-metal column. Phys. Rev. Lett. 108, 244501 (2012).

    Article  ADS  Google Scholar 

  105. Mishra, A., Mamatsashvili, G. & Stefani, F. From helical to standard magnetorotational instability: predictions for upcoming liquid sodium experiments. Phys. Rev. Fluids 7, 064802 (2022).

    Article  ADS  Google Scholar 

  106. Mishra, A., Mamatsashvili, G. & Stefani, G. Nonlinear evolution of magnetorotational instability in a magnetized Taylor–Couette flow: scaling properties and relation to upcoming DRESDYN-MRI experiment. Phys. Rev. Fluids 8, 083902 (2023).

    Article  ADS  Google Scholar 

  107. Mishra, A., Mamatsashvili, G. & Stefani, G. Nonaxisymmetric modes of magnetorotational and possible hydrodynamical instabilities in the upcoming DRESDYN-MRI experiments: linear and nonlinear dynamics. Phys. Rev. Fluids 9, 033904 (2024).

    Article  ADS  Google Scholar 

  108. Mamatsashvili, G., Stefani, F., Hollerbach, R. & Rüdiger, G. Two types of axisymmetric helical magnetorotational instability in rotating flows with positive shear. Phys. Rev. Fluids 4, 103905 (2019).

    Article  ADS  Google Scholar 

  109. Vernet, M., Pereira, M., Fauve, S. & Gissinger, C. Turbulence in electromagnetically driven Keplerian flows. J. Fluid Mech. 924, A29 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  110. Vernet, M., Fauve, S. & Gissinger, C. Angular momentum transport by Keplerian turbulence in liquid metals. Phys. Rev. Lett. 129, 074501 (2022).

    Article  ADS  Google Scholar 

  111. He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. Transition to the ultimate state of turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 108, 024502 (2012).

    Article  ADS  Google Scholar 

  112. Huisman, S. G., van Gils, D. P. M., Grossmann, S. & Lohse, D. Ultimate turbulent Taylor-Couette flow. Phys. Rev. Lett. 108, 024501 (2012).

    Article  ADS  Google Scholar 

  113. Busse, F. H. The twins of turbulence research. Physics 5, 4 (2012).

    Article  Google Scholar 

  114. Stelzer, Z. et al. Experimental and numerical study of electrically driven magnetohydrodynamic flow in a modified cylindrical annulus. I. Base flow. Phys. Fluids 27, 077101 (2015).

    Article  ADS  Google Scholar 

  115. Stelzer, Z. et al. Experimental and numerical study of electrically driven magnetohydrodynamic flow in a modified cylindrical annulus. II. Instabilities. Phys. Fluids 27, 084108 (2015).

    Article  ADS  Google Scholar 

  116. Baylis, J. A. & Hunt, J. C. R. MHD flow in an annular channel; theory and experiment. J. Fluid Mech. 48, 423–428 (1971).

    Article  ADS  Google Scholar 

  117. Moresco, P. & Alboussière, T. Experimental study of the instability of the Hartmann layer. J. Fluid Mech. 504, 167–181 (2004).

    Article  ADS  Google Scholar 

  118. Boisson, J., Klochko, A., Daviaud, F., Padilla, V. & Aumaître, S. Travelling waves in a cylindrical magnetohydrodynamically forced flow. Phys. Fluids 24, 044101 (2012).

    Article  ADS  Google Scholar 

  119. Boisson, J., Monchaux, R. & Aumaître, S. Inertial regimes in a curved electromagnetically forced flow. J. Fluid Mech. 813, 860–881 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  120. Khalzov, I. V., Smolyakov, A. I. & Ilgisonis, V. I. Equilibrium magnetohydrodynamic flows of liquid metals in magnetorotational instability experiments. J. Fluid Mech. 644, 257–280 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  121. Poyé, A. et al. Scaling laws in axisymmetric magnetohydrodynamic duct flows. Phys. Rev. Fluids 5, 043701 (2020).

    Article  ADS  Google Scholar 

  122. Hollerbach, R., Wei, X., Noir, J. & Jackson, A. Electromagnetically driven zonal flows in a rapidly rotating spherical shell. J. Fluid Mech. 725, 428–445 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  123. Jackson, A. & Noir, J. Sodium experiments. ETH Zürich https://epm.ethz.ch/mfece/research/experiments/sodium-experiments.html (2024).

  124. Shew, W. L., Sisan, D. R. & Lathrop, D. P. Mechanically forced and thermally driven flows in liquid sodium. Magnetohydrodynamics 38, 121–127 (2001).

    ADS  Google Scholar 

  125. Lathrop, D. P., Shew, W. L. & Sisan, D. R. Laboratory experiments on the transition to MHD dynamos. Plasma Phys. Contr. Fusion 43, A151 (2001).

    Article  ADS  Google Scholar 

  126. Sisan, D. R. et al. Experimental observation and characterization of the magnetorotational instability. Phys. Rev. Lett. 93, 114502 (2004).

    Article  ADS  Google Scholar 

  127. Lathrop, D. P. & Forest, C. B. Magnetic dynamos in the lab. Phys. Today 64, 40–45 (2011).

    Article  Google Scholar 

  128. Zimmermann, D. S. et al. Characterization of the magnetorotational instability from a turbulent background state. AIP Conf. Proc. 733, 13–20 (2004).

    Article  ADS  Google Scholar 

  129. Gissinger, C., Ji, H. & Goodman, J. Instabilities in magnetized spherical Couette flow. Phys. Rev. E 84, 026308 (2011).

    Article  ADS  Google Scholar 

  130. Cardin, P., Brito, D., Jault, D., Nataf, H.-C. & Masson, J.-P. Towards a rapidly rotating liquid sodium dynamo experiment. Magnetohydrodynamics 38, 177–189 (2002).

    Article  ADS  Google Scholar 

  131. Nataf, H.-C. et al. Experimental study of super-rotation in a magnetostrophic spherical Couette flow. Geophys. Astrophys. Dyn. 100, 281–298 (2006).

    Article  ADS  Google Scholar 

  132. Dormy, E., Cardin, P. & Jault, D. MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field. Earth Planet. Sci. Lett. 160, 15–30 (1998).

    Article  ADS  Google Scholar 

  133. Schmitt, D. et al. Magneto-Coriolis waves in a spherical Couette flow experiment. Eur. J. Mech. B/Fluids 37, 10–22 (2013).

    Article  MathSciNet  Google Scholar 

  134. Tigrine, Z., Nataf, H.-C., Schaeffer, N., Cardin, P. & Plunian, F. Torsional Alfvén waves in a dipolar magnetic field: experiments and simulations. Geophys. J. Int. 219, S83–S100 (2019).

    Article  Google Scholar 

  135. Gillet, N., Jault, D., Canet, E. & Fournier, A. Fast torsional waves and strong magnetic field within the Earth’s core. Nature 465, 74–77 (2010).

    Article  ADS  Google Scholar 

  136. Kasprzyk, C., Kaplan, E., Seilmayer, M. & Stefani, F. Transitions in a magnetized quasi-laminar spherical Couette flow. Magnetohydrodynamics 53, 393–402 (2017).

    Article  Google Scholar 

  137. Ogbonna, J., Garcia, F., Gundrum, T. H., Seilmayer, M. & Stefani, F. Experimental investigation of the return flow instability in magnetized spherical Couette flows. Phys. Fluids 32, 124119 (2020).

    Article  ADS  Google Scholar 

  138. Hollerbach, R. Non-axisymmetric instabilities in magnetic spherical Couette flow. Proc. Math. Phys. Eng. Sci. 465, 2003–2013 (2009).

    MathSciNet  Google Scholar 

  139. Travnikov, V., Eckert, K. & Odenbach, S. Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths. Acta Mech. 219, 255–268 (2011).

    Article  Google Scholar 

  140. Garcia, F., Seilmayer, M., Giesecke, A. & Stefani, F. Modulated rotating waves in the magnetised spherical Couette system. J. Nonl. Sci. 29, 2735–2759 (2019).

    Article  MathSciNet  Google Scholar 

  141. Garcia, F., Seilmayer, M., Giesecke, A. & Stefani, F. Four-frequency solution in a magnetohydrodynamic Couette flow as a consequence of azimuthal symmetry breaking. Phys. Rev. Lett. 125, 264501 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  142. Steenbeck, M. et al. Der experimentelle Nachweis einer elektromotorischen Kraft längs eines äußeren Magnetfeldes, induziert durch eine Strömung flüssigen Metalls (α-effekt). Mber. Dtsch. Akad. Wiss. Berl. 9, 714–719 (1967).

    Google Scholar 

  143. Gans, R. F. On hydromagnetic precession in a cylinder. J. Fluid Mech. 45, 111–130 (1970).

    Article  ADS  Google Scholar 

  144. Lowes, F. J. & Wilkinson, I. Geomagnetic dynamo — a laboratory model. Nature 198, 1158–1160 (1963).

    Article  ADS  Google Scholar 

  145. Lowes, F. J. & Wilkinson, I. Geomagnetic dynamo — an improved laboratory model. Nature 219, 717–718 (1968).

    Article  ADS  Google Scholar 

  146. Wilkinson, I. The contribution of laboratory dynamo experiments to our understanding of the mechanism of generation of planetary magnetic fields. Geophys. Surv. 7, 107–122 (1984).

    Article  ADS  Google Scholar 

  147. Alboussière, T., Plunian, F. & Moulin, M. Fury: an experimental dynamo with anisotropic electrical conductivity. Proc. R. Soc. A 478, 20220374 (2022).

    Article  ADS  Google Scholar 

  148. Avalos-Zuñiga, R. & Priede, J. Realization of Bullard’s disk dynamo. Proc. R. Soc. A 479, 20220740 (2023).

    Article  ADS  Google Scholar 

  149. Krause, F. & Rädler, K.-H. Mean-Field Magnetohydrodynamics and Dynamo Theory (Akademie, 1980).

  150. Alboussière, T., Drif, K. & Plunian, F. Dynamo action in sliding plates of anisotropic electrical conductivity. Phys. Rev. E 101, 033108 (2020).

    Article  ADS  Google Scholar 

  151. Plunian, F. & Alboussière, T. Axisymmetric dynamo action is possible with anisotropic conductivity. Phys. Rev. Res. 2, 013321 (2020).

    Article  Google Scholar 

  152. Plunian, F. & Alboussière, T. Axisymmetric dynamo action produced by differential rotation, with anisotropic electrical conductivity and anisotropic magnetic permeability. J. Plasma Phys. 97, 905870110 (2021).

    Article  Google Scholar 

  153. Priede, J. & Avalos-Zũniga, R. Feasible homopolar dynamo with sliding liquid-metal contacts. Phys. Lett. A 377, 2093–2096 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  154. Priede, J. & Avalos-Zũniga, R. Optimizing disc dynamo. Magnetohydrodynamics 59, 65–72 (2023).

    Article  Google Scholar 

  155. Bullard, E. C. The stability of a homopolar disc dynamo. Proc. Camb. Phil. Soc. 51, 744–760 (1955).

    Article  ADS  Google Scholar 

  156. Siemens, C. W. On the conversion of dynamical into electrical force without the aid of permanent magnetism. Proc. R. Soc. Lond. 15, 367–369 (1867).

    Article  Google Scholar 

  157. Wheatstone, C. On the augmentation of the power of a magnet by the reaction thereon of currents induced by the magnet itself. Proc. R. Soc. Lond. 15, 369–372 (1867).

    Article  Google Scholar 

  158. Larmor, J. How could a rotating body such as the Sun become a magnet? Rep. Brit. Assoc. Adv. Sci. https://doi.org/10.4159/harvard.9780674366688.c20 (1919).

  159. Olson, P. Experimental dynamos and the dynamics of planetary cores. Annu. Rev. Earth Pl. Sc. 41, 153–181 (2013).

    Article  ADS  Google Scholar 

  160. Ponomarenko, Y. B. On the theory of hydromagnetic dynamos. Zh. Prikl. Mekh. Tekh. Fiz. (USSR) 6, 47–51 (1973).

    Google Scholar 

  161. Gailitis, A. & Freibergs, Y. A. Theory of a helical MHD dynamo. Magnetohydrodynamics 12, 127–129 (1976).

    Google Scholar 

  162. Gailitis, A. & Freibergs, Y. A. Nonuniform model of a helical dynamo. Magnetohydrodynamics 16, 116–121 (1980).

    Google Scholar 

  163. Gailitis, A. et al. Experiment with a liquid-metal model of an MHD dynamo. Magnetohydrodynamics 23, 349–353 (1987).

    Google Scholar 

  164. Gailitis, A. Design of a liquid sodium MHD dynamo experiment. Magnetohydrodynamics 32, 68–62 (1996).

    Google Scholar 

  165. Stefani, F., Gerbeth, G. & Gailitis, A. in Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows (eds Alemany, A. et al.) 31–44 (Springer, 1999).

  166. Gailitis, A. et al. Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility. Phys. Rev. Lett. 84, 4365–4368 (2000).

    Article  ADS  Google Scholar 

  167. Gailitis, A. et al. Magnetic field saturation in the Riga dynamo experiment. Phys. Rev. Lett. 86, 3024–3027 (2001).

    Article  ADS  Google Scholar 

  168. Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G. & Stefani, F. The Riga dynamo experiment. Surv. Geophys. 24, 247–267 (2003).

    Article  ADS  Google Scholar 

  169. Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G. & Stefani, F. Riga dynamo experiment and its theoretical background. Phys. Plasmas 11, 2838–2843 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  170. Gailitis, A. & Lipsbergs, G. 2016 year experiments at Riga dynamo facility. Magnetohydrodynamics 53, 349–356 (2017).

    Article  Google Scholar 

  171. Lipsbergs, G. & Gailitis, A. 2022 year experiments at the Riga dynamo facility. Magnetohydrodynamics 58, 417–424 (2022).

    Article  Google Scholar 

  172. Gailitis, A. et al. Self-excitation in a helical liquid metal flow: the Riga dynamo experiments. J. Plasma Phys. 84, 73584030 (2018).

    Article  Google Scholar 

  173. Gailitis, A. Self-excitation conditions for a laboratory model of a geomagnetic dynamo. Magnetohydrodynamics 3, 23–29 (1967).

    Google Scholar 

  174. Busse, F. H. A model of the geodynamo. Geophys. J. R. Astr. Soc. 42, 437–459 (1975).

    Article  ADS  Google Scholar 

  175. Roberts, G. O. Dynamo action of fluid motions with two-dimensional periodicity. Philos. Trans. R. Soc. Lond. A271, 411–454 (1972).

    ADS  Google Scholar 

  176. Rädler, K.-H., Rheinhardt, M., Apstein, E. & Fuchs, H. On the mean-field theory of the Karlsruhe dynamo experiment. Nonlin. Proc. Geophys. 9, 171–187 (2002).

    Article  ADS  Google Scholar 

  177. Müller, U. & Stieglitz, R. The Karlsruhe dynamo experiment. Nonl. Proc. Geophys. 9, 165–170 (2002).

    Article  ADS  Google Scholar 

  178. Müller, U. & Stieglitz, R. A two-scale hydromagnetic dynamo experiment. J. Fluid Mech. 498, 31–71 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  179. Müller, U. & Stieglitz, R. Experiments at a two-scale dynamo test facility. J. Fluid Mech. 552, 419–440 (2006).

    Article  ADS  Google Scholar 

  180. Müller, U. & Stieglitz, R. The response of a two-scale kinematic dynamo to periodic flow forcing. Phys. Fluids 21, 034108 (2009).

    Article  ADS  Google Scholar 

  181. Tilgner, A. Predictions on the behaviour of the Karlsruhe dynamo. Acta Astron. Geophys. Univ. Comen. 19, 51–62 (1997).

    Google Scholar 

  182. Tilgner, A. Numerical simulation of the onset of dynamo action in an experimental two-scale dynamo. Phys. Fluids 14, 4092–4094 (2002).

    Article  ADS  Google Scholar 

  183. Christensen, U. R. & Tilgner, A. Power requirement of the geodynamo from ohmic losses in numerical numerical and laboratory dynamos. Nature 429, 169–171 (2004).

    Article  ADS  Google Scholar 

  184. Avalos-Zuñiga, R., Xu, M., Stefani, F., Gerbeth, G. & Plunian, F. Cylindrical anisotropic α2 dynamo. Geophys. Astrophys. Fluid Dyn. 101, 389–404 (2007).

    Article  ADS  Google Scholar 

  185. Dudley, M. L. & James, R. W. Time-dependent kinematic dynamos with stationary flows. Proc. R. Soc. A 425, 407–429 (1989).

    ADS  MathSciNet  Google Scholar 

  186. Xu, M., Stefani, F. & Gerbeth, G. The integral equation approach to kinematic dynamo theory and its application to dynamo experiments in cylindrical geometry. J. Comp. Phys. 227, 8130–8144 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  187. Monchaux, R. et al. Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Phys. Rev. Lett. 98, 044502 (2007).

    Article  ADS  Google Scholar 

  188. Berhanu, M. et al. Magnetic field reversals in an experimental turbulent dynamo. Europhys. Lett. 77, 59001 (2007).

    Article  ADS  Google Scholar 

  189. Ravelet, F. et al. Chaotic dynamos generated by a turbulent flow of liquid sodium. Phys. Rev. Lett. 101, 074502 (2008).

    Article  ADS  Google Scholar 

  190. Monchaux, R. et al. The von Kármán sodium experiment: turbulent dynamical dynamos. Phys. Fluids 21, 035108 (2009).

    Article  ADS  Google Scholar 

  191. Gallet, B. et al. Experimental observation of spatially localized dynamo magnetic fields. Phys. Rev. Lett. 108, 144501 (2012).

    Article  ADS  Google Scholar 

  192. Miralles, S. et al. Dynamo efficiency controlled by hydrodynamic bistability. Phys. Rev. E 89, 063023 (2014).

    Article  ADS  Google Scholar 

  193. Pétrélis, F., Fauve, S., Dormy, E. & Valet, J.-P. Simple mechanism for reversals of Earth’s magnetic field. Phys. Rev. Lett. 102, 144503 (2009).

    Article  ADS  Google Scholar 

  194. Pétrélis, F. & Fauve, S. Mechanism for magnetic field reversals. Phil. Trans. R. Soc. A 368, 1595–1605 (2010).

    Article  ADS  Google Scholar 

  195. Stefani, F., Gerbeth, G., Günther, U. & Xu, M. Why dynamos are prone to reversals. Earth Planet. Sci. Lett. 243, 828–840 (2006).

    Article  ADS  Google Scholar 

  196. Ravelet, F., Chiffaudel, A., Daviaud, F. & Léorat, J. Toward an experimental von Kármán dynamo: numerical studies for an optimized design. Phys. Fluids 17, 117104 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  197. Stefani, F. et al. Ambivalent effects of added layers on steady kinematic dynamos in cylindrical geometry: application to the VKS experiment. Eur. J. Mech. B/Fluids 25, 894–908 (2006).

    Article  ADS  Google Scholar 

  198. Verhille, G. et al. Induction in a von Kármán flow driven by ferromagnetic impellers. New J. Phys. 12, 033006 (2010).

    Article  ADS  Google Scholar 

  199. Giesecke, A., Stefani, F. & Gerbeth, G. Role of soft-iron impellers on the mode selection in the von-Kármán-sodium dynamo experiment. Phys. Rev. Lett. 104, 044503 (2010).

    Article  ADS  Google Scholar 

  200. Giesecke, A., Stefani, F. & Gerbeth, G. Influence of high-permeability discs in an axisymmetric model of the Cadarache dynamo experiment. New J. Phys. 14, 053005 (2012).

    Article  ADS  Google Scholar 

  201. Nore, C., Léorat, J., Guermond, J.-L. & Giesecke, A. Mean-field model of the von Kármán sodium dynamo experiment using soft iron impellers. Phys. Rev. E 91, 013008 (2015).

    Article  ADS  Google Scholar 

  202. Kreuzahler, S., Ponty, Y., Plihon, N., Homann, H. & Grauer, R. Dynamo enhancement and mode selection triggered by high magnetic permeability. Phys. Rev. Lett. 119, 234501 (2017).

    Article  ADS  Google Scholar 

  203. Miralles, S. et al. Dynamo threshold detection in the von Kármán sodium experiment. Phys. Rev. E 88, 013002 (2013).

    Article  ADS  Google Scholar 

  204. Forest, C. B. et al. Hydrodynamic and numerical modeling of a spherical homogeneous dynamo experiment. Magnetohydrodynamics 38, 107–120 (2002).

    Article  ADS  Google Scholar 

  205. Spence, E. J. et al. Observation of a turbulence-induced large scale magnetic field. Phys. Rev. Lett. 96, 055002 (2006).

    Article  ADS  Google Scholar 

  206. Nornberg, M. D. et al. Intermittent magnetic field excitation by a turbulent flow of liquid sodium. Phys. Rev. Lett. 97, 044503 (2006).

    Article  ADS  Google Scholar 

  207. Nornberg, M. D., Spence, E. J., Kendrick, R. D., Jacobson, C. M. & Forest, C. B. Measurements of the magnetic field induced by a turbulent flow of liquid metal. Phys. Plasmas 13, 055901 (2006).

    Article  ADS  Google Scholar 

  208. Spence, E. J. et al. Turbulent diamagnetism in flowing liquid sodium. Phys. Rev. Lett. 98, 164503 (2007).

    Article  ADS  Google Scholar 

  209. Rahbarnia, K. et al. Direct observation of the turbulent emf and transport of magnetic field in a liquid sodium experiment. Astrophys. J. 759, 80 (2012).

    Article  ADS  Google Scholar 

  210. Nornberg, M. D., Clark, M. M., Forest, C. B. & Plihon, N. Soft-iron impellers in the Madison sodium dynamo experiment. APS Div. Plasma Phys. Meet. Abstr. 2014, CM10.005 (2014).

    Google Scholar 

  211. Zimmerman, D. S., Triana, S. A. & Lathrop, D. P. Bi-stability in turbulent, rotating spherical Couette flow. Phys. Fluids 23, 065104 (2011).

    Article  ADS  Google Scholar 

  212. Rieutord, M., Triana, S. A., Zimmerman, D. S. & Lathrop, D. P. Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86, 026304 (2012).

    Article  ADS  Google Scholar 

  213. Triana, S. A., Zimmerman, D. S. & Lathrop, D. P. Precessional states in a laboratory model of the Earth’s core. J. Geophys. Res. 117, B04103 (2012).

    Article  ADS  Google Scholar 

  214. Adams, M. M., Stone, D. R., Zimmerman, D. S. & Lathrop, D. P. Liquid sodium models of the Earth’s core. Prog. Earth Planet. Sci. 2, 29 (2015).

    Article  ADS  Google Scholar 

  215. Jaross, E., Wang, S., Perevalov, A. B., Rojas, R. E. & Lathrop, D. P. Progress on three meter spherical Couette experiment and implementation of TEM method. Bull. A. Phys. Soc. X27.00003 (2023).

  216. Rojas, R. E., Perevalov, A., Zürner, T. & Lathrop, D. P. Experimental study of rough spherical Couette flows: increasing helicity toward a dynamo state. Phys. Rev. Fluids 6, 033801 (2021).

    Article  ADS  Google Scholar 

  217. Frick, P. et al. Non-stationary screw flow in a toroidal channel: way to a laboratory dynamo experiment. Magnetohydrodynamics 38, 143–161 (2002).

    Article  ADS  Google Scholar 

  218. Denisov, S. A., Noskov, V. I., Stepanov, R. A. & Frick, P. G. Measurements of turbulent magnetic diffusivity in a liquid-gallium flow. JTP Lett. 88, 167–171 (2008).

    Article  ADS  Google Scholar 

  219. Frick, P. et al. Direct measurement of effective magnetic diffusivity in turbulent flow of liquid sodium. Phys. Rev. Lett. 105, 184502 (2010).

    Article  ADS  Google Scholar 

  220. Colgate, S. A. et al. The New Mexico α − ω dynamo experiment: modelling astrophysical dynamos. Magnetohydrodynamics 38, 129–142 (2002).

    Article  ADS  Google Scholar 

  221. Colgate, S. A. et al. High magnetic shear gain in a liquid sodium stable Couette flow experiment: a prelude to an α − Ω dynamo. Phys. Rev. Lett. 106, 175003 (2011).

    Article  ADS  Google Scholar 

  222. Si, J. et al. Suppression of turbulent resistivity in turbulent Couette flow. Phys. Plasmas 22, 072304 (2015).

    Article  ADS  Google Scholar 

  223. Seilmayer, M., Ogbonna, J. & Stefani, F. Convection-caused symmetry breaking of azimuthal magnetorotational instability in a liquid metal Taylor–Couette flow. Magnetohydrodynamics 56, 225–236 (2020).

    Article  Google Scholar 

  224. Mishra, A., Mamatsashvili, G., Galindo, V. & Stefani, F. Convective, absolute and global azimuthal magnetorotational instabilities. J. Fluid Mech. 922, R4 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  225. Horn, S. & Aurnou, J. Tornado-like vortices in the quasi-cyclostrophic regime of Coriolis-centrifugal convection. J. Turbul. 22, 1–28 (2021).

    Article  MathSciNet  Google Scholar 

  226. Grants, I., Zhang, C., Eckert, S. & Gerbeth, G. Experimental observation of swirl accumulation in a magnetically driven flow. J. Fluid Mech. 616, 135–152 (2008).

    Article  ADS  Google Scholar 

  227. Vogt, T., Grants, I., Eckert, S. & Gerbeth, G. Spin-up of a magnetically driven tornado-like vortex. J. Fluid Mech. 736, 641–662 (2013).

    Article  ADS  Google Scholar 

  228. Jüstel, P. et al. Synchronizing the helicity of Rayleigh-Bénard convection by a tide-like electromagnetic forcing. Phys. Fluids 34, 104115 (2022).

    Article  ADS  Google Scholar 

  229. Stefani, F., Giesecke, A., Weber, N. & Weier, T. Synchronized helicity oscillations: a link between planetary tides and the solar cycle? Sol. Phys. 291, 2197–2212 (2016).

    Article  ADS  Google Scholar 

  230. Stefani, F., Giesecke, A. & Weier, T. A model of a tidally synchronized solar dynamo. Sol. Phys. 294, 60 (2019).

    Article  ADS  Google Scholar 

  231. Stefani, F., Stepanov, R. & Weier, T. Shaken and stirred: when Bond meets Suess-de Vries and Gnevyshev-Ohl. Sol. Phys. 296, 88 (2021).

    Article  ADS  Google Scholar 

  232. Klevs, M., Stefani, F. & Jouve, L. A synchronized two-dimensional α − Ω model of the solar dynamo. Sol. Phys. 298, 90 (2023).

    Article  ADS  Google Scholar 

  233. Stefani, F., Horstmann, G. M., Klevs, M., Mamatsashvili, G. & Weier, T. Rieger, Schwabe, Suess-de Vries: the sunny beats of resonance. Sol. Phys. 299, 51 (2024).

    Article  ADS  Google Scholar 

  234. Léorat, J., Rigaud, F., Vitry, R. & Herpe, G. Dissipation in a flow driven by precession and application to the design of a MHD wind tunnel. Magnetohydrodynamics 39, 321–326 (2003).

    Article  ADS  Google Scholar 

  235. Léorat, J. Large scales features of a flow driven by precession. Magnetohydrodynamics 42, 143–151 (2006).

    Article  ADS  Google Scholar 

  236. Mouhali, W., Lehner, T., Léorat, J. & Vitry, R. Evidence for a cyclonic regime in a precessing cylindrical container. Exp. Fluids 53, 1693–1700 (2012).

    Article  Google Scholar 

  237. Tilgner, A. Precession driven dynamos. Phys. Fluids 17, 034104 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  238. Stefani, F. et al. DRESDYN — a new facility for MHD experiments with liquid sodium. Magnetohydrodynamics 48, 103–114 (2012).

    Article  Google Scholar 

  239. Giesecke, A., Vogt, T., Gundrum, T. & Stefani, F. Nonlinear large scale flow in a precessing cylinder and its ability to drive dynamo action. Phys. Rev. Lett. 120, 024502 (2018).

    Article  ADS  Google Scholar 

  240. Giesecke, A., Vogt, T., Gundrum, T. & Stefani, F. Kinematic dynamo action of a precession-driven flow based on the results of water experiments and hydrodynamic simulations. Geophys. Astrophys. Fluid Dyn. 113, 235–255 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  241. Pizzi, F., Giesecke, A., Simkanin, J. & Stefani, F. Prograde and retrograde precession of a fluid-filled cylinder. New J. Phys. 23, 123016 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  242. Kumar, V. et al. The effect of nutation angle on the flow inside a precessing cylinder and its dynamo action. Phys. Fluids 35, 014114 (2023).

    Article  ADS  Google Scholar 

  243. Aujogue, K., Pothérat, A., Bates, I., Debray, F. & Sreenivasan, B. Little Earth Experiment: an instrument to model planetary cores. Rev. Sci. Instr. 87, 084502 (2016).

    Article  ADS  Google Scholar 

  244. Tzeferacos, P. et al. Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma. Nat. Commun. 9, 591 (2018).

    Article  ADS  Google Scholar 

  245. Bott, A. F. A. et al. Inefficient magnetic-field amplification in supersonic laser-plasma turbulence. Phys. Rev. Lett. 127, 175002 (2021).

    Article  ADS  Google Scholar 

  246. Forest, C. B. The Wisconsin plasma astrophysics laboratory. J. Plasma Phys. 81, 345810501 (2015).

    Article  Google Scholar 

  247. Weisberg, D. B. et al. Driving large magnetic Reynolds number flow in highly ionized, unmagnetized plasmas. Phys. Plasmas 24, 056502 (2017).

    Article  ADS  Google Scholar 

  248. Collins, C. et al. Stirring unmagnetized plasma. Phys. Rev. Lett. 108, 115001 (2012).

    Article  ADS  Google Scholar 

  249. Valenzuela-Villaseca, V. et al. Characterization of quasi-Keplerian, differentially rotating, free-boundary laboratory plasmas. Phys. Rev. Lett. 130, 195101 (2023).

    Article  ADS  Google Scholar 

  250. Guseva, A., Hollerbach, R., Willis, A. P. & Avila, M. Dynamo action in a quasi-Keplerian Taylor-Couette flow. Phys. Rev. Lett. 119, 164501 (2017).

    Article  ADS  Google Scholar 

  251. Petitdemange, L., Marcotte, F. & Gissinger, C. Spin-down by dynamo action in simulated radiative stellar layers. Science 379, 300–303 (2023).

    Article  ADS  Google Scholar 

  252. Yamada, M., Kulsrud, R. & Ji, H. Magnetic reconnection. Rev. Mod. Phys. 82, 603–663 (2010).

    Article  ADS  Google Scholar 

  253. Pontin, D. I. & Priest, E. R. Magnetic reconnection: MHD theory and modelling. Living Rev. Sol. Phys. 19, 1 (2022).

    Article  ADS  Google Scholar 

  254. Horstmann, G. M., Mamatsashvili, G., Giesecke, A., Zaqarashvili, T. & Stefani, F. Tidally forced planetary waves in the tachocline of solar-like stars. Astrophys. J. 944, 48 (2023).

    Article  ADS  Google Scholar 

  255. Hoff, M., Harlander, U. & Egbers, C. Experimental survey of linear and nonlinear inertial waves and wave instabilities in a spherical shell. J. Fluid Mech. 789, 589–616 (2016).

    Article  ADS  Google Scholar 

  256. Günther, U., Stefani, F. & Znojil, M. MHD α2-dynamo, Squire equation and PT-symmetric interpolation between square well and harmonic oscillator. J. Math. Phys. 46, 063504 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  257. Monteiro, G., Guerrero, G., Del Sordo, F., Bonanno, A. & Smolarkiewicz, P. K. Global simulations of Tayler instability in stellar interiors: a long-time multistage evolution of the magnetic field. Mon. Not. R. Astron. Soc. 521, 1415–1428 (2023).

    Article  ADS  Google Scholar 

  258. Weber, N., Galindo, V., Stefani, F. & Weier, T. The Tayler instability at low magnetic Prandtl numbers: between chiral symmetry breaking and helicity oscillations. New J. Phys. 17, 113013 (2015).

    Article  ADS  Google Scholar 

  259. Mamatsashvili, G. & Stefani, F. Linking dissipation-induced instabilities with nonmodal growth: the case of helical magnetorotational instability. Phys. Rev. E 94, 051203 (2017).

    Article  ADS  Google Scholar 

  260. Rincon, F. & Rieutord, M. The Sun’s supergranulation. Living Rev. Sol. Phys. 15, 6 (2018).

    Article  ADS  Google Scholar 

  261. Charbonneau, P. Dynamo models of the solar cycle. Living Rev. Sol. Phys. 17, 4 (2020).

    Article  ADS  Google Scholar 

  262. Goodman, J. & Ji, H. Magnetorotational instability of dissipative Couette flow. J. Fluid Mech. 462, 365–382 (2002).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Funding from the European Research Council (ERC) under the Horizon 2020 research and innovation programme of the European Union (grant agreement number 787544) is gratefully acknowledged. The author is deeply indebted to A. Gailitis (Riga) for his leadership in the joint work on the Riga dynamo experiment, as well as to G. Rüdiger (Potsdam) and R. Hollerbach (Leeds) for the long-term collaboration on the magnetorotational and Tayler instability. Cordial thanks go to the current and former students and colleagues of the author at Helmholtz-Zentrum Dresden-Rossendorf, in particular to T. Albrecht, R. Avalos-Zuñiga, C. Kasprzyk, S. Eckert, M. Fischer, J. Forbriger, V. Galindo, F. Garcia, G. Gerbeth, A. Giesecke, T. Gundrum, U. Günther, J. Herault, G. Horstmann, P. Jüstel, E. Kaplan, M. Klevs, N. Krauter, O. Kirillov, V. Kumar, K. Liu, G. Mamatsashvili, A. Mishra, J. Ogbonna, M. Ratajczak, S. Röhrborn, J. Szklarski, M. Seilmayer, J. Šimkanin, T. Vogt, T. Weier, N. Weber, T. Wondrak and M. Xu, for all their help in solving a wide variety of problems in basic and applied magnetohydrodynamics. G. Gerbeth is also thanked for the constructive comments on the draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Stefani.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Cary Forest, Nicolas Plihon and Santiago Triana for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefani, F. Liquid-metal experiments on geophysical and astrophysical phenomena. Nat Rev Phys 6, 409–425 (2024). https://doi.org/10.1038/s42254-024-00724-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00724-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing