Abstract
In the past decade, dipolar many-body complexes have been observed in 2D van der Waals heterobilayers. These complexes show compelling dipolar characteristics such as long-range and anisotropic interactions among dipoles, and their high tunability and long coherence time make them promising for applications in quantum information processing and optoelectronic devices. The presence of powerful dipole–dipole interactions among long-lived interlayer excitons can cause the system to enter unique classical and quantum phases with multiparticle correlations, which can host rich many-body physics such as dipolar liquids, dipolar crystals and superfluids. The strong binding energy of interlayer excitons in 2D heterobilayers enhances the critical temperature of these exotic phenomena. In this Review, we discuss recent work on dipolar complexes and many-body effects in transition metal dichalcogenide double layers and present potential opportunities in the field.
Key points
-
Stacked 2D heterobilayers host many-body excitonic states with strong dipole–dipole interactions, enabling the investigation of multiparticle correlations and novel quantum physics.
-
The physics of dipole–dipole interactions in 2D heterobilayers is at the origin of several important phenomena, including Bose–Einstein condensation, superfluidity and supersolids.
-
2D heterobilayers, with their long-range dipolar interactions, offer a promising platform characterized by distinctive tunability across various parameters, including interlayer distance, excitation densities, external fields, environmental stimuli and moiré superlattice structure.
-
The strong binding energy of dipolar complexes in 2D stacked heterobilayers allows for the pursuit of room-temperature condensation and superfluidity.
-
The impact of dipolar many-body complexes extends beyond excitonic physics discoveries and forms the basis of several key concepts, including Wigner crystallization, tunable quantum light emitters and scalable quantum devices.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kruckenhauser, A. et al. Quantum many-body physics with ultracold polar molecules: nanostructured potential barriers and interactions. Phys. Rev. A 102, 023320 (2020).
Baranov, M. A. Theoretical progress in many-body physics with ultracold dipolar gases. Phys. Rep. 464, 71–111 (2008).
Yao, N. Y. et al. Many-body localization in dipolar systems. Phys. Rev. Lett. 113, 243002 (2014).
Chuang, C. & Cao, J. Universal scalings in two-dimensional anisotropic dipolar excitonic systems. Phys. Rev. Lett. 127, 047402 (2021).
Özçelik, V. O., Azadani, J. G., Yang, C., Koester, S. J. & Low, T. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 94, 035125 (2016).
Chiu, M.-H. et al. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 6, 7666 (2015).
Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).
Zhang, C. et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in van der Waals heterostructures. 2D Mater. 4, 015026 (2016).
Merkl, P. et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater. 18, 691–696 (2019).
Schmitt, D. et al. Formation of moiré interlayer excitons in space and time. Nature 608, 499–503 (2022).
Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 18, 395–400 (2022).
Turunen, M. et al. Quantum photonics with layered 2D materials. Nat. Rev. Phys. 4, 219–236 (2022).
Yi, Y., Chen, Z., Yu, X. F., Zhou, Z. K. & Li, J. Recent advances in quantum effects of 2D materials. Adv. Quantum Technol. 2, 1800111 (2019).
Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).
Davis, E. J. et al. Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023).
Montblanch, A. R.-P., Barbone, M., Aharonovich, I., Atatüre, M. & Ferrari, A. C. Layered materials as a platform for quantum technologies. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01354-x (2023).
Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).
Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).
Jiang, C. et al. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nat. Commun. 9, 753 (2018).
Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).
Montblanch, A. R.-P. et al. Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures. Commun. Phys. 4, 119 (2021).
Bondarev, I. V. & Vladimirova, M. R. Complexes of dipolar excitons in layered quasi-two-dimensional nanostructures. Phys. Rev. B 97, 165419 (2018).
Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).
Sigl, L. et al. Signatures of a degenerate many-body state of interlayer excitons in a van der Waals heterostack. Phys. Rev. Res. 2, 042044 (2020).
Keldysh, L. V. & Kozlov, A. N. Collective properties of excitons in semiconductors. Sov. J. Exp. Theor. Phys. 27, 521 (1968).
Zhu, X., Littlewood, P., Hybertsen, M. S. & Rice, T. Exciton condensate in semiconductor quantum well structures. Phys. Rev. Lett. 74, 1633 (1995).
Lozovik, Y. E. & Berman, O. Phase transitions in a system of two coupled quantum wells. J. Exp. Theor. Phys. Lett. 64, 573–579 (1996).
Laikhtman, B. & Rapaport, R. Exciton correlations in coupled quantum wells and their luminescence blue shift. Phys. Rev. B 80, 195313 (2009).
Comte, C. & Nozières, P. Exciton Bose condensation: the ground state of an electron–hole gas - I. Mean field description of a simplified model. J. Phys. Fr. 43, 1069–1081 (1982).
Butov, L. Condensation and pattern formation in cold exciton gases in coupled quantum wells. J. Phys. Condens. Matter 16, R1577 (2004).
Combescot, M., Combescot, R. & Dubin, F. Bose–Einstein condensation and indirect excitons: a review. Rep. Prog. Phys. 80, 066501 (2017).
Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).
Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).
Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater. 19, 617–623 (2020).
Fogler, M., Butov, L. & Novoselov, K. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).
Conti, S., Neilson, D., Peeters, F. M. & Perali, A. Transition metal dichalcogenides as strategy for high temperature electron–hole superfluidity. Condens. Matter 5, 22 (2020).
Zhu, Q., Tu, M. W.-Y., Tong, Q. & Yao, W. Gate tuning from exciton superfluid to quantum anomalous Hall in van der Waals heterobilayer. Sci. Adv. 5, eaau6120 (2019).
Guo, H., Zhang, X. & Lu, G. Tuning moiré excitons in Janus heterobilayers for high-temperature Bose–Einstein condensation. Sci. Adv. 8, eabp9757 (2022).
Xie, Y.-M., Zhang, C.-P., Hu, J.-X., Mak, K. F. & Law, K. T. Valley-polarized quantum anomalous hall state in moiré MoTe2/WSe2 heterobilayers. Phys. Rev. Lett. 128, 026402 (2022).
Bondarev, I. V., Berman, O. L., Kezerashvili, R. Y. & Lozovik, Y. E. Crystal phases of charged interlayer excitons in van der Waals heterostructures. Commun. Phys. 4, 134 (2021).
Slagle, K. & Fu, L. Charge transfer excitations, pair density waves, and superconductivity in moiré materials. Phys. Rev. B 102, 235423 (2020).
Hubert, C. et al. Attractive dipolar coupling between stacked exciton fluids. Phys. Rev. X 9, 021026 (2019).
Wang, X. et al. Moiré trions in MoSe2/WSe2 heterobilayers. Nat. Nanotechnol. 16, 1208–1213 (2021).
Calman, E. et al. Indirect excitons and trions in MoSe2/WSe2 van der Waals heterostructures. Nano Lett. 20, 1869–1875 (2020).
Kremser, M. et al. Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface. npj 2D Mater. Appl. 4, 8 (2020).
Sun, X. et al. Enhanced interactions of interlayer excitons in free-standing heterobilayers. Nature 610, 478–484 (2022).
Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).
Jiang, Y., Chen, S., Zheng, W., Zheng, B. & Pan, A. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light Sci. Appl. 10, 72 (2021).
Regan, E. C. et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 7, 778–795 (2022).
Lin, Z. et al. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 3, 022002 (2016).
Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).
Duong, D. L., Yun, S. J. & Lee, Y. H. van der Waals layered materials: opportunities and challenges. ACS Nano 11, 11803–11830 (2017).
Novoselov, K. S., Mishchenko, A., Carvalho, O. A. & Castro Neto, A. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).
Geim, A. K. & Grigorieva, I. V. van der Waals heterostructures. Nature 499, 419–425 (2013).
Koma, A. & Yoshimura, K. Ultrasharp interfaces grown with van der Waals epitaxy. Surf. Sci. 174, 556–560 (1986).
Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).
Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88, 045318 (2013).
Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).
Paik, E. Y. et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 576, 80–84 (2019).
Jin, C. et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994–1003 (2018).
Liu, J., Li, Z., Zhang, X. & Lu, G. Unraveling energy and charge transfer in type-II van der Waals heterostructures. npj Comput. Mater. 7, 191 (2021).
Yu, H. & Yao, W. Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor moiré superlattices. Phys. Rev. X 11, 021042 (2021).
Tagarelli, F. et al. Electrical control of hybrid exciton transport in a van der Waals heterostructure. Nat. Photon. 17, 615–621 (2023).
Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).
Ruiz-Tijerina, D. A. & Fal’ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 99, 125424 (2019).
Deilmann, T. & Thygesen, K. S. Interlayer trions in the MoS2/WS2 van der Waals heterostructure. Nano Lett. 18, 1460–1465 (2018).
Jones, A. M. et al. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 10, 130–134 (2014).
Zhang, L. et al. Discovery of type II interlayer trions. Adv. Mater. 35, 2206212 (2023).
Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).
Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Tang, K. & Qi, W. Moiré‐pattern‐tuned electronic structures of van der Waals heterostructures. Adv. Funct. Mater. 30, 2002672 (2020).
Zhang, W. et al. One‐interlayer‐twisted multilayer MoS2 moiré superlattices. Adv. Funct. Mater. 32, 2111529 (2022).
Brem, S., Linderälv, C., Erhart, P. & Malic, E. Tunable phases of moiré excitons in van der Waals heterostructures. Nano Lett. 20, 8534–8540 (2020).
Bloch, I. Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23–30 (2005).
Förg, M. et al. Moiré excitons in MoSe2–WSe2 heterobilayers and heterotrilayers. Nat. Commun. 12, 1656 (2021).
Choi, J. et al. Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv. 6, eaba8866 (2020).
Zhao, S. et al. Excitons in mesoscopically reconstructed moiré heterostructures. Nat. Nanotechnol. 18, 572–579 (2023).
Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020).
Nagler, P. et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 4, 025112 (2017).
Lin, K.-Q. A roadmap for interlayer excitons. Light Sci. Appl. 10, 99 (2021).
Sun, Z. et al. Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure. Nat. Photon. 16, 79–85 (2022).
Erkensten, D., Brem, S. & Malic, E. Exciton–exciton interaction in transition metal dichalcogenide monolayers and van der Waals heterostructures. Phys. Rev. B 103, 045426 (2021).
Chen, Y. et al. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano 14, 10258–10264 (2020).
Yao, W. et al. Layer-number engineered momentum-indirect interlayer excitons with large spectral tunability. Nano Lett. 22, 7230–7237 (2022).
Lee, R., Drummond, N. & Needs, R. Exciton–exciton interaction and biexciton formation in bilayer systems. Phys. Rev. B 79, 125308 (2009).
Erkensten, D., Brem, S., Perea-Causín, R. & Malic, E. Microscopic origin of anomalous interlayer exciton transport in van der Waals heterostructures. Phys. Rev. Mater. 6, 094006 (2022).
Zimmerman, M., Rapaport, R. & Gazit, S. Collective interlayer pairing and pair superfluidity in vertically stacked layers of dipolar excitons. Proc. Natl Acad. Sci. USA 119, e2205845119 (2022).
Butov, L. Exciton condensation in coupled quantum wells. Solid State Commun. 127, 89–98 (2003).
Butov, L., Gossard, A. & Chemla, D. Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002).
High, A. A. et al. Spontaneous coherence in a cold exciton gas. Nature 483, 584–588 (2012).
Shilo, Y. et al. Particle correlations and evidence for dark state condensation in a cold dipolar exciton fluid. Nat. Commun. 4, 2335 (2013).
Stern, M., Umansky, V. & Bar-Joseph, I. Exciton liquid in coupled quantum wells. Science 343, 55–57 (2014).
Schindler, C. & Zimmermann, R. Analysis of the exciton–exciton interaction in semiconductor quantum wells. Phys. Rev. B 78, 045313 (2008).
Meyertholen, A. & Fogler, M. Biexcitons in two-dimensional systems with spatially separated electrons and holes. Phys. Rev. B 78, 235307 (2008).
Choksy, D. et al. Attractive and repulsive dipolar interaction in bilayers of indirect excitons. Phys. Rev. B 103, 045126 (2021).
Olivares-Robles, M. & Ulloa, S. Interaction potential between dynamic dipoles: polarized excitons in strong magnetic fields. Phys. Rev. B 64, 115302 (2001).
Chen, M., Chen, F., Cheng, B., Liang, S. J. & Miao, F. Moiré heterostructures: highly tunable platforms for quantum simulation and future computing. J. Semicond. 44, 010301 (2023).
Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).
Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).
Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).
Zhang, L., Ni, R. & Zhou, Y. Controlling quantum phases of electrons and excitons in moiré superlattices. J. Appl. Phys. 133, 080901 (2023).
Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).
Calman, E. V. et al. Indirect excitons in van der Waals heterostructures at room temperature. Nat. Commun. 9, 1895 (2018).
Shanks, D. N. et al. Interlayer exciton diode and transistor. Nano Lett. 22, 6599–6605 (2022).
Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).
Vörös, Z., Balili, R., Snoke, D., Pfeiffer, L. & West, K. Long-distance diffusion of excitons in double quantum well structures. Phys. Rev. Lett. 94, 226401 (2005).
Rapaport, R., Chen, G. & Simon, S. H. Nonlinear dynamics of a dense two-dimensional dipolar exciton gas. Phys. Rev. B 73, 033319 (2006).
Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).
Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 16, 52–57 (2021).
Erkensten, D. et al. Electrically tunable dipolar interactions between layer-hybridized excitons. Nanoscale, 15, 11064–11071 (2023).
Mahdikhanysarvejahany, F. et al. Localized interlayer excitons in MoSe2–WSe2 heterostructures without a moiré potential. Nat. Commun. 13, 5354 (2022).
Wang, W. & Ma, X. Strain-induced trapping of indirect excitons in MoSe2/WSe2 heterostructures. ACS Photon. 7, 2460–2467 (2020).
Jin, C. et al. Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons. Nat. Phys. 15, 1140–1144 (2019).
Yu, H., Liu, G.-B. & Yao, W. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater. 5, 035021 (2018).
He, F. et al. Moiré patterns in 2D materials: a review. ACS Nano 15, 5944–5958 (2021).
Uddin, S. Z. et al. Neutral exciton diffusion in monolayer MoS2. ACS Nano 14, 13433–13440 (2020).
Li, Z. et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano 15, 1539–1547 (2021).
Brem, S. & Malic, E. Bosonic delocalization of dipolar Moiré excitons. Nano Lett. 23, 4627–4633 (2023).
Witham, O., Hunt, R. J. & Drummond, N. D. Stability of trions in coupled quantum wells modeled by two-dimensional bilayers. Phys. Rev. B 97, 075424 (2018).
Liu, E. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 594, 46–50 (2021).
Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).
Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).
Sidler, M. et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2017).
Schmidt, R., Enss, T., Pietilä, V. & Demler, E. Fermi polarons in two dimensions. Phys. Rev. A 85, 021602 (2012).
Siviniant, J., Scalbert, D., Kavokin, A., Coquillat, D. & Lascaray, J. Chemical equilibrium between excitons, electrons, and negatively charged excitons in semiconductor quantum wells. Phys. Rev. B 59, 1602 (1999).
Ciarrocchi, A. et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photon. 13, 131–136 (2019).
Perea-Causin, R. et al. Exciton optics, dynamics, and transport in atomically thin semiconductors. APL Mater. 10, 100701 (2022).
Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).
Baek, H. et al. Optical read-out of Coulomb staircases in a moiré superlattice via trapped interlayer trions. Nat. Nanotechnol. 16, 1237–1243 (2021).
Pei, J., Yang, J., Yildirim, T., Zhang, H. & Lu, Y. Many‐body complexes in 2D semiconductors. Adv. Mater. 31, 1706945 (2019).
Hao, K. et al. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat. Commun. 8, 15552 (2017).
Tan, M., Drummond, N. & Needs, R. Exciton and biexciton energies in bilayer systems. Phys. Rev. B 71, 033303 (2005).
Zhang, L. et al. Modulated interlayer charge transfer dynamics in a monolayer TMD/metal junction. Nanoscale 11, 418–425 (2019).
Tongay, S. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 14, 3185–3190 (2014).
Yuan, L. et al. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures. Sci. Adv. 4, e1700324 (2018).
He, Y.-M. et al. Cascaded emission of single photons from the biexciton in monolayered WSe2. Nat. Commun. 7, 13409 (2016).
Li, Z. et al. Revealing the biexciton and trion–exciton complexes in BN encapsulated WSe2. Nat. Commun. 9, 3719 (2018).
Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).
Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999).
Penrose, O. & Onsager, L. Bose–Einstein condensation and liquid helium. Phys. Rev. 104, 576 (1956).
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).
Yanagisawa, T. Mechanism of high-temperature superconductivity in correlated-electron systems. Condens. Matter 4, 57 (2019).
Zhang, C. et al. Bipolaronic high-temperature superconductivity. Phys. Rev. X 13, 011010 (2023).
Butov, L., Lai, C., Ivanov, A., Gossard, A. & Chemla, D. Towards Bose–Einstein condensation of excitons in potential traps. Nature 417, 47–52 (2002).
Nozieres, P. & Saint James, D. Particle vs. pair condensation in attractive Bose liquids. J. Phys. 43, 1133–1148 (1982).
Büchler, H. P. et al. Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007).
Astrakharchik, G., Boronat, J., Kurbakov, I. & Lozovik, Y. E. Quantum phase transition in a two-dimensional system of dipoles. Phys. Rev. Lett. 98, 060405 (2007).
Sellin, K. & Babaev, E. Superfluid drag in the two-component Bose–Hubbard model. Phys. Rev. B 97, 094517 (2018).
Trefzger, C., Menotti, C. & Lewenstein, M. Pair-supersolid phase in a bilayer system of dipolar lattice bosons. Phys. Rev. Lett. 103, 035304 (2009).
Gupta, S., Kutana, A. & Yakobson, B. I. Heterobilayers of 2D materials as a platform for excitonic superfluidity. Nat. Commun. 11, 2989 (2020).
Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).
Bianco, R., Calandra, M. & Mauri, F. Electronic and vibrational properties of TiSe2 in the charge-density-wave phase from first principles. Phys. Rev. B 92, 094107 (2015).
Pasquier, D. & Yazyev, O. V. Excitonic effects in two-dimensional TiSe2 from hybrid density functional theory. Phys. Rev. B 98, 235106 (2018).
Wu, F.-C., Xue, F. & MacDonald, A. Theory of two-dimensional spatially indirect equilibrium exciton condensates. Phys. Rev. B 92, 165121 (2015).
Berman, O. L. & Kezerashvili, R. Y. High-temperature superfluidity of the two-component Bose gas in a transition metal dichalcogenide bilayer. Phys. Rev. B 93, 245410 (2016).
Sun, Z. et al. Charged bosons made of fermions in bilayer structures with strong metallic screening. Nano Lett. 21, 7669–7675 (2021).
Sun, Z. et al. Charged bosons made of fermions in a solid state system without Cooper pairing. Preprint at https://arxiv.org/abs/2003.05850 (2021).
Kornilovitch, P. Stable pair liquid phase in fermionic systems. Phys. Rev. B 107, 115135 (2023).
Altland, A. & Simons, B. D. Condensed Matter Field Theory (Cambridge Univ. Press, 2010).
Götting, N., Lohof, F. & Gies, C. Moiré-Bose–Hubbard model for interlayer excitons in twisted transition metal dichalcogenide heterostructures. Phys. Rev. B 105, 165419 (2022).
Rosati, R. et al. Interface engineering of charge-transfer excitons in 2D lateral heterostructures. Nat. Commun. 14, 2438 (2023).
Yuan, L. et al. Strong dipolar repulsion of one-dimensional interfacial excitons in monolayer lateral heterojunctions. ACS Nano 17, 15379–15387 (2023).
Najafidehaghani, E. et al. 1D p–n junction electronic and optoelectronic devices from transition metal dichalcogenide lateral heterostructures grown by one-pot chemical vapor deposition synthesis. Adv. Funct. Mater. 31, 2101086 (2021).
Boening, J., Filinov, A. & Bonitz, M. Crystallization of an exciton superfluid. Phys. Rev. B 84, 075130 (2011).
Bondarev, I. V. & Lozovik, Y. E. Magnetic-field-induced Wigner crystallization of charged interlayer excitons in van der Waals heterostructures. Commun. Phys. 5, 315 (2022).
Lozovik, Y. E. & Yudson, V. Crystallization of a two-dimensional electron gas in a magnetic field. ZhETF Pisma Redaktsiiu 22, 26 (1975).
Ma, M. K. et al. Thermal and quantum melting phase diagrams for a magnetic-field-induced Wigner solid. Phys. Rev. Lett. 125, 036601 (2020).
Pan, J.-W., Simon, C., Brukner, Č. & Zeilinger, A. Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001).
Vajner, D. A., Rickert, L., Gao, T., Kaymazlar, K. & Heindel, T. Quantum communication using semiconductor quantum dots. Adv. Quantum Technol. 5, 2100116 (2022).
Peng, C.-Z. et al. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94, 150501 (2005).
Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).
Ihara, T. Biexciton cascade emission reveals absolute absorption cross section of single semiconductor nanocrystals. Phys. Rev. B 93, 235442 (2016).
Huber, D. et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett. 121, 033902 (2018).
Mannix, A. J. et al. Robotic four-dimensional pixel assembly of van der Waals solids. Nat. Nanotechnol. 17, 361–366 (2022).
Hu, Z. et al. Research progress of low dielectric constant polymer materials. J. Polym. Eng. 42, 677–687 (2022).
Volksen, W., Miller, R. D. & Dubois, G. Low dielectric constant materials. Chem. Rev. 110, 56–110 (2010).
Luo, Y. et al. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137–1142 (2018).
Cai, T. et al. Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nanopillars. ACS Photon. 5, 3466–3471 (2018).
Peyskens, F., Chakraborty, C., Muneeb, M., Van Thourhout, D. & Englund, D. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019).
Bao, X. et al. Giant out-of-plane exciton emission enhancement in two-dimensional indium selenide via a plasmonic nanocavity. Nano Lett. 23, 3716–3723 (2023).
Park, K.-D., Jiang, T., Clark, G., Xu, X. & Raschke, M. B. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect. Nat. Nanotechnol. 13, 59–64 (2018).
Li, G.-C., Zhang, Q., Maier, S. A. & Lei, D. Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics 7, 1865–1889 (2018).
Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).
Datta, B. et al. Highly nonlinear dipolar exciton–polaritons in bilayer MoS2. Nat. Commun. 13, 6341 (2022).
Louca, C. et al. Nonlinear interactions of dipolar excitons and polaritons in MoS2 bilayers. Nat. Commun. 4, 3818 (2023).
König, J. K., Fitzgerald, J. M., Hagel, J., Erkensten, D. & Malic, E. Interlayer exciton polaritons in homobilayers of transition metal dichalcogenides. 2D Mater. 10, 025019 (2023).
Zhang, S. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8, 9590–9596 (2014).
Pei, J. et al. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7, 10450 (2016).
Liu, J. et al. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano 10, 3536–3542 (2016).
Yang, J. et al. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl. 4, e312 (2015).
Zhang, L. et al. Efficient and layer‐dependent exciton pumping across atomically thin organic–inorganic type‐I heterostructures. Adv. Mater. 30, 1803986 (2018).
Zhang, Y. et al. Wavelength‐tunable mid‐infrared lasing from black phosphorus nanosheets. Adv. Mater. 32, 1808319 (2020).
Heo, H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 6, 7372 (2015).
Nayak, P. K. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 11, 4041–4050 (2017).
Alexeev, E. M. et al. Imaging of interlayer coupling in van der Waals heterostructures using a bright-field optical microscope. Nano Lett. 17, 5342–5349 (2017).
Ji, Z. et al. Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano 11, 12020–12026 (2017).
Miller, B. et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229–5237 (2017).
Ye, T., Li, J. & Li, D. Charge‐accumulation effect in transition metal dichalcogenide heterobilayers. Small 15, 1902424 (2019).
Ovesen, S. et al. Interlayer exciton dynamics in van der Waals heterostructures. Commun. Phys. 2, 23 (2019).
Rasmussen, F. A. & Thygesen, K. S. Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119, 13169–13183 (2015).
Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).
Shi, H., Pan, H., Zhang, Y.-W. & Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2and WS2. Phys. Rev. B 87, 155304 (2013).
Plechinger, G. et al. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi Rapid Res. Lett. 9, 457–461 (2015).
Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 634–638 (2013).
You, Y. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015).
Pei, J. et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano 11, 7468–7475 (2017).
Kamban, H. C. & Pedersen, T. G. Interlayer excitons in van der Waals heterostructures: binding energy, stark shift, and field-induced dissociation. Sci. Rep. 10, 5537 (2020).
Guo, H., Zhang, X. & Lu, G. Shedding light on moiré excitons: a first-principles perspective. Sci. Adv. 6, eabc5638 (2020).
Mahdikhanysarvejahany, F. et al. Temperature dependent moiré trapping of interlayer excitons in MoSe2-WSe2 heterostructures. npj 2D Mater. Appl. 5, 67 (2021).
Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).
Acknowledgements
The authors acknowledge funding support from the ANU PhD student scholarship, Australian Research Council (grant nos: DP240101011, DP220102219, DP180103238), ARC Centre of Excellence in Quantum Computation and Communication Technology (project number CE170100012) and the National Health and Medical Research Council (NHMRC; ID: GA275784).
Author information
Authors and Affiliations
Contributions
Y.L. and X.S. conceived the study. All authors contributed to the writing and all aspects of the manuscript and were supervised by Y.L.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Hui Zhao, Qiannan Cui and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sun, X., Malic, E. & Lu, Y. Dipolar many-body complexes and their interactions in stacked 2D heterobilayers. Nat Rev Phys 6, 439–454 (2024). https://doi.org/10.1038/s42254-024-00721-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-024-00721-4