Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Orbital angular momentum lasers

Abstract

Light can be tailored to carry angular momentum well beyond the restriction of its two spin states, left- and right-circularly polarized light, by imbuing it with orbital angular momentum (OAM). OAM is controlled by imparting finer and finer azimuthal phase gradients, twisting the wavefront ever tighter in one of two helicities, clockwise or anticlockwise. This can be done directly within a laser — OAM lasers — by imprinting an intracavity twist on the circulating light, but it requires judicious laser cavity design to break nature’s angular momentum degeneracy. Without this, the laser produces equal measures of both helicities, for no net OAM. We review the physics of OAM lasers, covering diverse symmetry-breaking approaches such as gain or loss control, asymmetric cavity geometries and geometric phase control. Structured matter allows this symmetry breaking to be done at the microscale and nanoscale, for OAM lasers based on topological matter, photonic crystals and optical breaking of chiral symmetry in microring cavities, as well as leveraging non-Hermitian photonic design at exceptional points. The exciting prospect of using structured matter to engineer twisted light is discussed along with the opportunities and challenges ahead.

Key points

  • Light can carry orbital angular momentum (OAM) if its phase is given an azimuthal twist in one of two helicities, clockwise or anticlockwise, any integer number of times for an infinitely large OAM alphabet.

  • In OAM lasers, the OAM is imprinted on the light directly within the cavity during the resonant process, with the requirement of chiral symmetry breaking and the subsequent removal of helicity degeneracy within the laser.

  • OAM lasers come in all shapes and sizes, from bulky solid-state devices for high power, to microsized on-chip solutions for easy integration into electro-optical systems.

  • Advanced quantum symmetry and topology concepts offer new opportunities for asymmetric light control, enabling precise and arbitrary phase-front engineering.

  • Integration of OAM lasers into practical systems remains largely unexplored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visualizing the angular momentum of light.
Fig. 2: An example of orbital angular momentum degeneracy.
Fig. 3: Symmetry-breaking approaches in bulk orbital angular momentum lasers.
Fig. 4: Symmetry-breaking approaches in on-chip orbital angular momentum lasers.

Similar content being viewed by others

References

  1. Watson, B. Light: A Radiant History from Creation to the Quantum Age (Bloomsbury, 2016).

  2. Poynting, J. H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A 82, 560–567 (1909).

    Article  ADS  Google Scholar 

  3. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115 (1936).

    Article  ADS  Google Scholar 

  4. Allen, L., Beijersbergen, M. W., Spreeuw, R. & Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992).

    Article  ADS  Google Scholar 

  5. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    Article  ADS  Google Scholar 

  6. He, H., Friese, M. E. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum of absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995).

    Article  ADS  Google Scholar 

  7. Simpson, N., Dholakia, K., Allen, L. & Padgett, M. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 22, 52–54 (1997).

    Article  ADS  Google Scholar 

  8. Stilgoe, A. B., Nieminen, T. A. & Rubinsztein-Dunlop, H. Controlled transfer of transverse orbital angular momentum to optically trapped birefringent microparticles. Nat. Photon. 16, 346–351 (2022).

    Article  ADS  Google Scholar 

  9. Yao, E., Franke-Arnold, S., Courtial, J., Barnett, S. & Padgett, M. Fourier relationship between angular position and optical orbital angular momentum. Opt. Express 14, 9071–9076 (2006).

    Article  ADS  Google Scholar 

  10. Leach, J. et al. Quantum correlations in optical angle–orbital angular momentum variables. Science 329, 662–665 (2010).

    Article  ADS  Google Scholar 

  11. Jack, B., Padgett, M. J. & Franke-Arnold, S. Angular diffraction. New J. Phys. 10, 103013 (2008).

    Article  ADS  Google Scholar 

  12. Lavery, M. P., Speirits, F. C., Barnett, S. M. & Padgett, M. J. Detection of a spinning object using light’s orbital angular momentum. Science 341, 537–540 (2013).

    Article  ADS  Google Scholar 

  13. Rosales-Guzmán, C., Hermosa, N., Belmonte, A. & Torres, J. P. Experimental detection of transverse particle movement with structured light. Sci. Rep. 3, 1–5 (2013).

    Article  Google Scholar 

  14. Fang, L., Wan, Z., Forbes, A. & Wang, J. Vectorial Doppler metrology. Nat. Commun. 12, 1–10 (2021).

    Article  Google Scholar 

  15. Maurer, C., Jesacher, A., Bernet, S. & Ritsch-Marte, M. What spatial light modulators can do for optical microscopy. Laser Photon. Rev. 5, 81–101 (2011).

    Article  ADS  Google Scholar 

  16. Jack, B. et al. Holographic ghost imaging and the violation of a Bell inequality. Phys. Rev. Lett. 103, 083602 (2009).

    Article  ADS  Google Scholar 

  17. Lee, J. H., Foo, G., Johnson, E. G. & Swartzlander Jr, G. A. Experimental verification of an optical vortex coronagraph. Phys. Rev. Lett. 97, 053901 (2006).

    Article  ADS  Google Scholar 

  18. Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488 (2012).

    Article  ADS  Google Scholar 

  19. Bozinivic, N. et al. Terabit- scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).

    Article  ADS  Google Scholar 

  20. Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017).

    Article  ADS  Google Scholar 

  21. Cozzolino, D. et al. Air-core fiber distribution of hybrid vector vortex-polarization entangled states. Adv. Photonics 1, 046005 (2019).

    Article  ADS  Google Scholar 

  22. Schmiegelow, C. T. et al. Transfer of optical orbital angular momentum to a bound electron. Nat. Commun. 7, 12998 (2016).

    Article  ADS  Google Scholar 

  23. Ji, Z. et al. Photocurrent detection of the orbital angular momentum of light. Science 368, 763–767 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  24. Sederberg, S. et al. Vectorized optoelectronic control and metrology in a semiconductor. Nat. Photon. 14, 680–685 (2020).

    Article  ADS  Google Scholar 

  25. Fang, Y. et al. Photoelectronic mapping of the spin–orbit interaction of intense light fields. Nat. Photon. 15, 115–120 (2021).

    Article  ADS  Google Scholar 

  26. Jana, K. et al. Reconfigurable electronic circuits for magnetic fields controlled by structured light. Nat. Photon. 15, 622–626 (2021).

    Article  ADS  Google Scholar 

  27. Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photon. 15, 253–262 (2021).

    Article  ADS  Google Scholar 

  28. Shen, Y., Martínez, E. C. & Rosales-Guzmán, C. Generation of optical skyrmions with tunable topological textures. ACS Photonics 9, 296–303 (2022).

    Article  Google Scholar 

  29. Sugic, D. et al. Particle-like topologies in light. Nat. Commun. 12, 6785 (2021).

    Article  ADS  Google Scholar 

  30. Eismann, J. et al. Transverse spinning of unpolarized light. Nat. Photon. 15, 156–161 (2021).

    Article  ADS  Google Scholar 

  31. Chong, A., Wan, C., Chen, J. & Zhan, Q. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photon. 14, 350–354 (2020).

    Article  ADS  Google Scholar 

  32. Wan, C., Cao, Q., Chen, J., Chong, A. & Zhan, Q. Toroidal vortices of light. Nat. Photon. 16, 519–522 (2022).

    Article  ADS  Google Scholar 

  33. Zdagkas, A. et al. Observation of toroidal pulses of light. Nat. Photon. 16, 523–528 (2022).

    Article  ADS  Google Scholar 

  34. Rego, L. et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 364, eaaw9486 (2019).

    Article  ADS  Google Scholar 

  35. Franke-Arnold, S. 30 years of orbital angular momentum of light. Nat. Rev. Phys. 4, 361–361 (2022).

    Article  Google Scholar 

  36. Franke-Arnold, S. & Radwell, N. Light served with a twist. Opt. Photonics News 28, 28–35 (2017).

    Article  ADS  Google Scholar 

  37. Padgett, M. J. Orbital angular momentum 25 years on. Opt. Express 25, 11265–11274 (2017).

    Article  ADS  Google Scholar 

  38. Shen, Y. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 90 (2019).

    Article  ADS  Google Scholar 

  39. Krenn, M., Malik, M., Erhard, M. & Zeilinger, A. Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes. Phil. Trans. A 375, 20150442 (2017).

    ADS  MathSciNet  Google Scholar 

  40. He, C., Shen, Y. & Forbes, A. Towards higher-dimensional structured light. Light Sci. Appl. 11, 205 (2022).

    Article  ADS  Google Scholar 

  41. Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17111–17146 (2018).

    Google Scholar 

  42. Forbes, K. A. Nonlinear chiral molecular photonics using twisted light: hyper-Rayleigh and hyper-Raman optical activity. J. Opt. 22, 095401 (2020).

    Article  ADS  Google Scholar 

  43. Beijersbergen, M., Coerwinkel, R., Kristensen, M. & Woerdman, J. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 112, 321–327 (1994).

    Article  ADS  Google Scholar 

  44. Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

    Article  ADS  Google Scholar 

  45. Nassiri, M. G. & Brasselet, E. Multispectral management of the photon orbital angular momentum. Phys. Rev. Lett. 121, 213901 (2018).

    Article  ADS  Google Scholar 

  46. Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896–901 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  47. Mirhosseini, M. et al. Rapid generation of light beams carrying orbital angular momentum. Opt. Express 21, 30196–30203 (2013).

    Article  ADS  Google Scholar 

  48. Forbes, A. Structured light from lasers. Laser Photon. Rev. 13, 1900140 (2019).

    Article  ADS  Google Scholar 

  49. Forbes, A. Controlling light’s helicity at the source: orbital angular momentum states from lasers. Phil. Trans. R. Soc. A 375, 20150436 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  50. Omatsu, T., Miyamoto, K. & Lee, A. J. Wavelength-versatile optical vortex lasers. J. Opt. 19, 123002 (2017).

    Article  ADS  Google Scholar 

  51. Mao, D. et al. Generation of polarization and phase singular beams in fibers and fiber lasers. Adv. Photonics 3, 014002–014002 (2021).

    Article  ADS  Google Scholar 

  52. Litchinitser, N. M. Structured light meets structured matter. Science 337, 1054–1055 (2012).

    Article  ADS  Google Scholar 

  53. Hentschel, M., Schäferling, M., Duan, X., Giessen, H. & Liu, N. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017).

    Article  ADS  Google Scholar 

  54. Chen, Y. et al. Multidimensional nanoscopic chiroptics. Nat. Rev. Phys. 4, 113–124 (2022).

    Article  Google Scholar 

  55. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article  ADS  Google Scholar 

  56. Zhang, X., Liu, Y., Han, J., Kivshar, Y. & Song, Q. Chiral emission from resonant metasurfaces. Science 377, 1215–1218 (2022).

    Article  ADS  Google Scholar 

  57. Litvin, I. A., Ngcobo, S., Naidoo, D., Ait-Ameur, K. & Forbes, A. Doughnut laser beam as an incoherent superposition of two petal beams. Opt. Lett. 39, 704–707 (2014).

    Article  ADS  Google Scholar 

  58. Tamm, C. Frequency locking of two transverse optical modes of a laser. Phys. Rev. A 38, 5960 (1988).

    Article  ADS  Google Scholar 

  59. Oron, R., Davidson, N., Friesem, A. A. & Hasman, E. Efficient formation of pure helical laser beams. Opt. Commun. 182, 205–208 (2000).

    Article  ADS  Google Scholar 

  60. Pan, J. et al. Index-tunable structured-light beams from a laser with an intracavity astigmatic mode converter. Phys. Rev. Appl. 14, 044048 (2020).

    Article  ADS  Google Scholar 

  61. Ito, A., Kozawa, Y. & Sato, S. Generation of hollow scalar and vector beams using a spot-defect mirror. JOSA A 27, 2072–2077 (2010).

    Article  ADS  Google Scholar 

  62. Kano, K., Kozawa, Y. & Sato, S. Generation of a purely single transverse mode vortex beam from a He–Ne laser cavity with a spot-defect mirror. Int. J. Opt. 2012, 1–6 (2012).

    Article  Google Scholar 

  63. Kim, D. & Kim, J. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser. Opt. Lett. 40, 399–402 (2015).

    Article  ADS  Google Scholar 

  64. Wang, S., Zhao, Z., Ito, I. & Kobayashi, Y. Direct generation of femtosecond vortex beam from a Yb:KYW oscillator featuring a defect-spot mirror. OSA Contin. 2, 523–530 (2019).

    Article  Google Scholar 

  65. Lin, D., Daniel, J. & Clarkson, W. Controlling the handedness of directly excited Laguerre–Gaussian modes in a solid-state laser. Opt. Lett. 39, 3903–3906 (2014).

    Article  ADS  Google Scholar 

  66. Chen, Y.-F. & Lan, Y.-P. Dynamics of the Laguerre–Gaussian TEM*0,l mode in a solid-state laser. Phys. Rev. A 63, 063807 (2001).

    Article  ADS  Google Scholar 

  67. Bisson, J., Senatsky, Y. & Ueda, K.-I. Generation of Laguerre–Gaussian modes in Nd:YAG laser using diffractive optical pumping. Laser Phys. Lett. 2, 327 (2005).

    Article  ADS  Google Scholar 

  68. Zhao, Y., Liu, Q., Zhou, W. & Shen, D. ~1 mJ pulsed vortex laser at 1645 nm with well-defined helicity. Opt. Express 24, 15596–15602 (2016).

    Article  ADS  Google Scholar 

  69. Okida, M., Omatsu, T., Itoh, M. & Yatagai, T. Direct generation of high power Laguerre–Gaussian output from a diode-pumped Nd:YVO4 1.3-μm bounce laser. Opt. Express 15, 7616–7622 (2007).

    Article  ADS  Google Scholar 

  70. Okida, M., Hayashi, Y., Omatsu, T., Hamazaki, J. & Morita, R. Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator. Appl. Phys. B 95, 69–73 (2009).

    Article  ADS  Google Scholar 

  71. Lu, T.-H. & Wu, Y. Observation and analysis of single and multiple high-order Laguerre–Gaussian beams generated from a hemi-cylindrical cavity with general astigmatism. Opt. Express 21, 28496–28506 (2013).

    Article  ADS  Google Scholar 

  72. Wang, S. et al. Direct generation of vortex beams from a double-end polarized pumped Yb:KYW laser. Opt. Express 26, 26925–26932 (2018).

    Article  ADS  Google Scholar 

  73. Kerridge-Johns, W., Geberbauer, J. & Damzen, M. Vortex laser by transforming Gaussian mode with an interferometric output coupler. Opt. Express 27, 11642–11650 (2019).

    Article  ADS  Google Scholar 

  74. Smith, A. V. & Armstrong, D. J. Generation of vortex beams by an image-rotating optical parametric oscillator. Opt. Express 11, 868–873 (2003).

    Article  ADS  Google Scholar 

  75. Zhou, N., Liu, J. & Wang, J. Reconfigurable and tunable twisted light laser. Sci. Rep. 8, 11394 (2018).

    Article  ADS  Google Scholar 

  76. Ramachandran, S. & Kristensen, P. Optical vortices in fiber. Nanophotonics 2, 455–474 (2013).

    Article  ADS  Google Scholar 

  77. Bozinovic, N., Golowich, S., Kristensen, P. & Ramachandran, S. Control of orbital angular momentum of light with optical fibers. Opt. Lett. 37, 2451–2453 (2012).

    Article  ADS  Google Scholar 

  78. Ngcobo, S., Litvin, I., Burger, L. & Forbes, A. A digital laser for on-demand laser modes. Nat. Commun. 4, 2289 (2013).

    Article  ADS  Google Scholar 

  79. Naidoo, D. et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photon. 10, 327 (2016).

    Article  ADS  Google Scholar 

  80. Marrucci, L. et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 13, 064001 (2011).

    Article  ADS  Google Scholar 

  81. Maguid, E. et al. Topologically controlled intracavity laser modes based on Pancharatnam–Berry phase. ACS Photonics 5, 1817–1821 (2018).

    Article  Google Scholar 

  82. Sroor, H. et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photon. 14, 498–503 (2020).

    Article  ADS  Google Scholar 

  83. Piccardo, M. et al. Vortex laser arrays with topological charge control and self-healing of defects. Nat. Photon. 16, 359–365 (2022).

    Article  ADS  Google Scholar 

  84. Sheng, Q. et al. Ultra-high-order Laguerre–Gaussian field generated directly from a laser cavity with spherical aberration. Nat. Photon. 17, 2300369 (2023).

    Google Scholar 

  85. Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

    Article  ADS  Google Scholar 

  86. Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752 (2017).

    Article  ADS  Google Scholar 

  87. Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    Article  ADS  Google Scholar 

  88. Longhi, S. & Feng, L. Unidirectional lasing in semiconductor microring lasers at an exceptional point. Photonics Res. 5, B1–B6 (2017).

    Article  Google Scholar 

  89. Feng, L. et al. Nonreciprocal light propagation in a silicon photonic circuit. Science 333, 729–733 (2011).

    Article  ADS  Google Scholar 

  90. Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).

    Article  ADS  Google Scholar 

  91. Zhang, Z. et al. Elimination of spatial hole burning in microlasers for stability and efficiency enhancement. ACS Photonics 5, 3016–3022 (2018).

    Article  Google Scholar 

  92. Hayenga, W. E. et al. Direct generation of tunable orbital angular momentum beams in microring lasers with broadband exceptional points. ACS Photonics 6, 1895–1901 (2019).

    Article  Google Scholar 

  93. Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).

    Article  ADS  Google Scholar 

  94. Gao, Z. et al. Two-dimensional reconfigurable non-Hermitian gauged laser array. Phys. Rev. Lett. 130, 263801 (2023).

    Article  ADS  Google Scholar 

  95. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    Article  ADS  Google Scholar 

  96. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article  ADS  Google Scholar 

  97. Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photon. 11, 763–773 (2017).

    Article  ADS  Google Scholar 

  98. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  Google Scholar 

  99. Bahari, B. et al. Photonic quantum Hall effect and multiplexed light sources of large orbital angular momenta. Nat. Phys. 17, 700–703 (2021).

    Article  Google Scholar 

  100. Dufferwiel, S. et al. Spin textures of exciton-polaritons in a tunable microcavity with large TE–TM splitting. Phys. Rev. Lett. 115, 246401 (2015).

    Article  ADS  Google Scholar 

  101. Sala, V. et al. Spin–orbit coupling for photons and polaritons in microstructures. Phys. Rev. X 5, 011034 (2015).

    Google Scholar 

  102. Shao, Z., Zhu, J., Chen, Y., Zhang, Y. & Yu, S. Spin–orbit interaction of light induced by transverse spin angular momentum engineering. Nat. Commun. 9, 926 (2018).

    Article  ADS  Google Scholar 

  103. Carlon Zambon, N. et al. Optically controlling the emission chirality of microlasers. Nat. Photon. 13, 283–288 (2019).

    Article  ADS  Google Scholar 

  104. Qiao, X. et al. Higher-dimensional supersymmetric microlaser arrays. Science 372, 403–408 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  105. Zhang, Z. et al. Spin–orbit microlaser emitting in a four-dimensional Hilbert space. Nature 612, 246–251 (2022).

    Article  ADS  Google Scholar 

  106. Zhen, B., Hsu, C. W., Lu, L., Stone, A. D. & Soljačić, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014).

    Article  ADS  Google Scholar 

  107. Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020).

    Article  ADS  Google Scholar 

  108. Wang, B. et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photon. 14, 623–628 (2020).

    Article  ADS  Google Scholar 

  109. Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon. 8, 406–411 (2014).

    Article  ADS  Google Scholar 

  110. Yoshida, M. et al. High-brightness scalable continuous-wave single-mode photonic-crystal laser. Nature 618, 727–732 (2023).

    Article  ADS  Google Scholar 

  111. Zhang, Z. et al. Ultrafast control of fractional orbital angular momentum of microlaser emissions. Light Sci. Appl. 9, 179 (2020).

    Article  ADS  Google Scholar 

  112. Chen, B. et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).

    Article  ADS  Google Scholar 

  113. Wu, C. et al. Room-temperature on-chip orbital angular momentum single-photon sources. Sci. Adv. 8, eabk3075 (2022).

    Article  ADS  Google Scholar 

  114. Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146–17146 (2018).

    Article  Google Scholar 

  115. Barreiro, J. T., Langford, N. K., Peters, N. A. & Kwiat, P. G. Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005).

    Article  ADS  Google Scholar 

  116. Barreiro, J. T., Wei, T.-C. & Kwiat, P. G. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282 (2008).

    Article  Google Scholar 

  117. Forbes, A. & Nape, I. Quantum mechanics with patterns of light: progress in high dimensional and multidimensional entanglement with structured light. AVS Quantum Sci. 1, 011701 (2019).

    Article  ADS  Google Scholar 

  118. Shen, Y., Yang, X., Naidoo, D., Fu, X. & Forbes, A. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica 7, 820–831 (2020).

    Article  ADS  Google Scholar 

  119. Shen, Y. et al. Creation and control of high-dimensional multi-partite classically entangled light. Light Sci. Appl. 10, 50 (2021).

    Article  ADS  Google Scholar 

  120. Hai, L. et al. Intra-cavity laser manipulation of high-dimensional non-separable states. Laser Photonics Rev. https://doi.org/10.1002/lpor.202300593 (2023).

  121. Qiao, Z. et al. Tunable optical vortex from a nanogroove-structured optofluidic microlaser. Nano Lett. 22, 1425–1432 (2021).

    Article  ADS  Google Scholar 

  122. Stellinga, D. et al. An organic vortex laser. ACS Nano 12, 2389–2394 (2018).

    Article  Google Scholar 

  123. Sun, W. et al. Lead halide perovskite vortex microlasers. Nat. Commun. 11, 4862 (2020).

    Article  ADS  Google Scholar 

  124. Xie, Y.-Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125–130 (2020).

    Article  ADS  Google Scholar 

  125. Ma, Z., Kristensen, P. & Ramachandran, S. Scaling information pathways in optical fibers by topological confinement. Science 380, 278–282 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  126. Buono, W. T. & Forbes, A. Nonlinear optics with structured light. Opto-Electron. Adv. 5, 210174–1 (2022).

    Article  Google Scholar 

  127. Sephton, B. et al. Quantum transport of high-dimensional spatial information with a nonlinear detector. Nat. Commun. 14, 8243 (2023).

    Article  ADS  Google Scholar 

  128. Qiu, X., Guo, H. & Chen, L. Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion. Nat. Commun. 14, 8244 (2023).

    Article  ADS  Google Scholar 

  129. Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161–204 (2011).

    Article  ADS  Google Scholar 

  130. Barnett, S. M. & Allen, L. Orbital angular momentum and nonparaxial light beams. Opt. Commun. 110, 670–678 (1994).

    Article  ADS  Google Scholar 

  131. Bliokh, K. Y., Rodríguez-Fortuño, F., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    Article  ADS  Google Scholar 

  132. Aiello, A., Banzer, P., Neugebauer, M. & Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photon. 9, 789 (2015).

    Article  ADS  Google Scholar 

  133. Bliokh, K. Y. Spatiotemporal vortex pulses: angular momenta and spin–orbit interaction. Phys. Rev. Lett 126, 243601 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  134. Jhajj, N. et al. Spatiotemporal optical vortices. Phys. Rev. X 6, 031037 (2016).

    Google Scholar 

  135. Berry, M. V. The singularities of light: intensity, phase, polarisation. Light Sci. Appl. 12, 238 (2023).

    Article  ADS  Google Scholar 

  136. Berry, M. & Liu, W. No general relation between phase vortices and orbital angular momentum. J. Phys. A 55, 374001 (2022).

    Article  MathSciNet  Google Scholar 

  137. Baumann, S., Kalb, D., MacMillan, L. & Galvez, E. Propagation dynamics of optical vortices due to Gouy phase. Opt. Express 17, 9818–9827 (2009).

    Article  ADS  Google Scholar 

  138. Courtial, J., Dholakia, K., Allen, L. & Padgett, M. Gaussian beams with very high orbital angular momentum. Opt. Commun. 144, 210–213 (1997).

    Article  ADS  Google Scholar 

  139. Milione, G., Sztul, H., Nolan, D. & Alfano, R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 053601 (2011).

    Article  ADS  Google Scholar 

  140. Padgett, M. & Allen, L. The Poynting vector in Laguerre–Gaussian laser modes. Opt. Commun. 121, 36–40 (1995).

    Article  ADS  Google Scholar 

  141. Speirits, F. C. & Barnett, S. M. Do waves carrying orbital angular momentum possess azimuthal linear momentum? Phys. Rev. Lett. 111, 103602 (2013).

    Article  ADS  Google Scholar 

  142. O’neil, A., MacVicar, I., Allen, L. & Padgett, M. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002).

    Article  ADS  Google Scholar 

  143. Fickler, R., Campbell, G., Buchler, B., Lam, P. K. & Zeilinger, A. Quantum entanglement of angular momentum states with quantum numbers up to 10,010. Proc. Natl Acad. Sci. USA 113, 13642–13647 (2016).

    Article  ADS  Google Scholar 

  144. Li, R. et al. Generating large topological charge Laguerre–Gaussian beam based on 4K phase-only spatial light modulator. Chin. Opt. Lett. 20, 120501 (2022).

    Article  ADS  Google Scholar 

  145. Dorney, K. M. et al. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation. Nat. Photon. 13, 123–130 (2019).

    Article  ADS  Google Scholar 

  146. Qiao, Z. et al. Generating high-charge optical vortices directly from laser up to 288th order. Laser Photonics Rev. 12, 1800019 (2018).

    Article  ADS  Google Scholar 

  147. Wang, S. et al. Generation of wavelength- and OAM-tunable vortex beam at low threshold. Opt. Express 26, 18164–18170 (2018).

    Article  ADS  Google Scholar 

  148. Rao, A. S., Miamoto, K. & Omatsu, T. Ultraviolet intracavity frequency-doubled Pr3+:LiYF4 orbital Poincaré laser. Opt. Express 28, 37397–37405 (2020).

    Article  ADS  Google Scholar 

  149. Uesugi, Y., Kozawa, Y. & Sato, S. Direct generation of the lowest-order vortex beam using a spot defect mirror in the ultraviolet region. Opt. Lett. 45, 2115–2118 (2020).

    Article  ADS  Google Scholar 

  150. Hu, H., Chen, Z., Cao, Q. & Zhan, Q. Wavelength-tunable and OAM-switchable ultrafast fiber laser enabled by intracavity polarization control. IEEE Photonics J. 15, 1–4 (2023).

    ADS  Google Scholar 

  151. Hwang, M.-S. et al. Vortex nanolaser based on a photonic disclination cavity. Nat. Photon. 18, 286–293 (2024).

    Article  Google Scholar 

  152. Chard, S., Shardlow, P. & Damzen, M. High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design. Appl. Phys. B 97, 275–280 (2009).

    Article  ADS  Google Scholar 

  153. Negel, J.-P. et al. Thin-disk multipass amplifier for fs pulses delivering 400 W of average and 2.0 GW of peak power for linear polarization as well as 235 W and 1.2 GW for radial polarization. Appl. Phys. B 123, 156 (2017).

    Article  ADS  Google Scholar 

  154. Lin, D., Feng, Y., Ren, Z. & Richardson, D. J. The generation of femtosecond optical vortex beams with megawatt powers directly from a fiber based Mamyshev oscillator. Nanophotonics 11, 847–854 (2021).

    Article  Google Scholar 

  155. Ahmed, M. A. et al. Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror. Opt. Lett. 32, 1824–1826 (2007).

    Article  ADS  Google Scholar 

  156. Moshe, I., Jackel, S., Meir, A., Lumer, Y. & Leibush, E. 2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers. Opt. Lett. 32, 47–49 (2007).

    Article  ADS  Google Scholar 

  157. Hao, J. et al. High-power vortex beams generated from a Yb:YAG thin-disk laser with spot-defect mirrors. Opt. Laser Technol. 169, 110112 (2024).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Andrew Forbes or Liang Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Filippo Cardano, Takashige Omatsu and Laura Rego for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forbes, A., Mkhumbuza, L. & Feng, L. Orbital angular momentum lasers. Nat Rev Phys 6, 352–364 (2024). https://doi.org/10.1038/s42254-024-00715-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00715-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing