Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anomalies in particle physics and their implications for physics beyond the standard model

Abstract

The standard model (SM) of particle physics is the mathematical description of the fundamental constituents and interactions of matter. Its last missing particle, the Higgs boson, was observed in 2012. However, there are several phenomena that the SM cannot account for (such as dark-matter particles, or non-vanishing neutrino masses), neither does it describe gravity. There must be more to discover, to extend the SM into a full description of nature. Here we review the hints of new physics, called anomalies, that are seen for various interactions as discrepancies between standard-model predictions and experimental measurements. We consider both direct high-energy searches for new particles at the Large Hadron Collider at CERN and indirect low-energy precision experiments. These anomalies span an energy scale of more than four orders of magnitude: from the mass of the proton, to the electroweak scale (approximately the mass of the Higgs boson), to the teraelectronvolt scale, which is the highest scale directly accessible at the Large Hadron Collider. We discuss the experimental and theoretical status of various anomalies and summarize possible explanations in terms of new particles and new interactions as well as discovery prospects. We suggest, in particular, that new additional Higgs bosons and so-called leptoquarks are promising candidates for extending the standard model.

Key points

  • The standard model (SM) of particle physics describes the fundamental constituents of matter and their interactions and was completed with the discovery of the Higgs particle at the Large Hadron Collider (LHC) at CERN in 2012.

  • The SM cannot account for the existence of dark matter or for non-vanishing neutrino masses and must therefore be extended, but there is a plethora of viable options for this extension.

  • In experiments, several interesting deviations from the standard-model predictions have been found. These anomalies appear both in high-energy searches at the LHC and in low-energy precision observables: ranging from precision measurements of properties of the muon, to hints for new scalar bosons at the electroweak scale, to the existence of heavy teraelectronvolt-scale resonances.

  • The anomalies can be explained by supplementing the SM with new particles and new interactions — in particular, additional Higgs bosons, new fermions and new strongly interacting particles.

  • Data accumulating from the third run of the LHC could establish the existence of some of these new particles, if one or more of the anomalies are indeed driven by new physics. The high-luminosity upgrade of the LHC, future linear or circular colliders and new precision experiments will be needed for a comprehensive study of the properties of particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Feynman diagrams showing some of the processes in which anomalies are observed.
Fig. 2: Compilation of various anomalies ordered according to the energy scale at which they appear.
Fig. 3: Implications of anomalies for extending the standard model with new particles.

Similar content being viewed by others

References

  1. Higgs, P. W. Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132–133 (1964).

    Article  ADS  Google Scholar 

  2. Englert, F. & Brout, R. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  3. Aad, G. et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012).

    Article  ADS  Google Scholar 

  4. Chatrchyan, S. et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012).

    Article  ADS  Google Scholar 

  5. Aalbers, J. et al. First dark matter search results from the LUX-ZEPLIN (LZ) experiment. Phys. Rev. Lett. 131, 041002 (2023).

    Article  ADS  Google Scholar 

  6. Workman, R. L. et al. Review of particle physics. PTEP 2022, 083C01 (2022).

    Google Scholar 

  7. Schwinger, J. S. On quantum electrodynamics and the magnetic moment of the electron. Phys. Rev. 73, 416–417 (1948).

    Article  ADS  Google Scholar 

  8. Bennett, G. W. et al. Final report of the muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006).

    Article  ADS  Google Scholar 

  9. Abi, B. et al. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys. Rev. Lett. 126, 141801 (2021).

    Article  ADS  Google Scholar 

  10. Aguillard, D. P. et al. Measurement of the positive muon anomalous magnetic moment to 0.20 ppm. Phys. Rev. Lett. 131, 161802 (2023).

    Article  ADS  Google Scholar 

  11. Aoyama, T., Kinoshita, T. & Nio, M. Theory of the anomalous magnetic moment of the electron. Atoms 7, 28 (2019).

    Article  ADS  Google Scholar 

  12. Colangelo, G., Hoferichter, M. & Stoffer, P. Two-pion contribution to hadronic vacuum polarization. J. High Energy Phys. 02, 006 (2019).

    Article  ADS  Google Scholar 

  13. Davier, M., Hoecker, A., Malaescu, B. & Zhang, Z. A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to \(\alpha ({m}_{Z}^{2})\). Eur. Phys. J. C 80, 241 (2020) (Erratum: Eur. Phys. J. C 80, 410 (2020)).

    Article  ADS  Google Scholar 

  14. Keshavarzi, A., Nomura, D. & Teubner, T. g − 2 of charged leptons, \(\alpha ({M}_{Z}^{2})\), and the hyperfine splitting of muonium. Phys. Rev. D 101, 014029 (2020).

    Article  ADS  Google Scholar 

  15. Borsanyi, S. et al. Leading hadronic contribution to the muon magnetic moment from lattice QCD. Nature 593, 51–55 (2021).

    Article  ADS  Google Scholar 

  16. Ignatov, F. V. et al. Measurement of the e+e → π+π cross-section from threshold to 1.2 GeV with the CMD-3 detector. Preprint at https://arxiv.org/abs/2302.08834 (2023).

  17. Stoffer, P., Colangelo, G. & Hoferichter, M. Puzzles in the hadronic contributions to the muon anomalous magnetic moment. J. Instrum. 18, C10021 (2023).

    Article  Google Scholar 

  18. Hanneke, D., Fogwell, S. & Gabrielse, G. New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008).

    Article  ADS  Google Scholar 

  19. Aoyama, T., Kinoshita, T. & Nio, M. Revised and improved value of the QED tenth-order electron anomalous magnetic moment. Phys. Rev. D 97, 036001 (2018).

    Article  ADS  Google Scholar 

  20. Laporta, S. High-precision calculation of the 4-loop contribution to the electron g − 2 in QED. Phys. Lett. B 772, 232–238 (2017).

    Article  ADS  Google Scholar 

  21. Crivellin, A., Hoferichter, M. & Schmidt-Wellenburg, P. Combined explanations of (g−2)μ,e and implications for a large muon EDM. Phys. Rev. D 98, 113002 (2018).

    Article  ADS  Google Scholar 

  22. Athron, P. et al. New physics explanations of aμ in light of the FNAL muon g − 2 measurement. J. High Energy Phys. 09, 080 (2021).

    Article  ADS  Google Scholar 

  23. Ma, E., Roy, D. P. & Roy, S. Gauged Lμ − Lτ with large muon anomalous magnetic moment and the bimaximal mixing of neutrinos. Phys. Lett. B 525, 101–106 (2002).

    Article  ADS  Google Scholar 

  24. Baek, S., Deshpande, N. G., He, X. G. & Ko, P. Muon anomalous g − 2 and gauged Lμ − Lτ models. Phys. Rev. D 64, 055006 (2001).

    Article  ADS  Google Scholar 

  25. Lees, J. P. et al. Search for a muonic dark force at BABAR. Phys. Rev. D 94, 011102 (2016).

    Article  ADS  Google Scholar 

  26. Czank, T. et al. Search for \({Z}^{{\prime} }\to {\mu }^{+}{\mu }^{-}\) in the Lμ − Lτ gauge-symmetric model at Belle. Phys. Rev. D 106, 012003 (2022).

    Article  ADS  Google Scholar 

  27. Everett, L. L., Kane, G. L., Rigolin, S. & Wang, L.-T. Implications of muon g − 2 for supersymmetry and for discovering superpartners directly. Phys. Rev. Lett. 86, 3484–3487 (2001).

    Article  ADS  Google Scholar 

  28. Feng, J. L. & Matchev, K. T. Supersymmetry and the anomalous magnetic moment of the muon. Phys. Rev. Lett. 86, 3480–3483 (2001).

    Article  ADS  Google Scholar 

  29. Czarnecki, A. & Marciano, W. J. The muon anomalous magnetic moment: a Harbinger for ‘new physics’. Phys. Rev. D 64, 013014 (2001).

    Article  ADS  Google Scholar 

  30. Kannike, K., Raidal, M., Straub, D. M. & Strumia, A. Anthropic solution to the magnetic muon anomaly: the charged see-saw. J. High Energy Phys. 02, 106 (2012) (Erratum: J. High Energy Phys. 10, 136 (2012)).

    Article  ADS  Google Scholar 

  31. Kowalska, K. & Sessolo, E. M. Expectations for the muon g − 2 in simplified models with dark matter. J. High Energy Phys. 09, 112 (2017).

    Article  ADS  Google Scholar 

  32. Crivellin, A. & Hoferichter, M. Consequences of chirally enhanced explanations of (g−2)μ for h → μμ and Z → μμ. J. High Energy Phys. 07, 135 (2021) (Erratum: J. High Energy Phys. 10, 030 (2022)).

    Article  ADS  Google Scholar 

  33. Djouadi, A., Kohler, T., Spira, M. & Tutas, J. (e b), (e t) type leptoquarks at e p colliders. Z. Phys. C 46, 679–686 (1990).

    Article  ADS  Google Scholar 

  34. Bauer, M. & Neubert, M. Minimal leptoquark explanation for the \({R}_{{D}^{(* )}}\), RK, and (g−2)μ anomalies. Phys. Rev. Lett. 116, 141802 (2016).

    Article  ADS  Google Scholar 

  35. Crivellin, A., Mueller, D. & Saturnino, F. Correlating h → μμ to the anomalous magnetic moment of the muon via leptoquarks. Phys. Rev. Lett. 127, 021801 (2021).

    Article  ADS  Google Scholar 

  36. Coluccio Leskow, E., D’Ambrosio, G., Crivellin, A. & Müller, D. (g − 2)μ, lepton flavor violation, and Z decays with leptoquarks: correlations and future prospects. Phys. Rev. D 95, 055018 (2017).

    Article  ADS  Google Scholar 

  37. Altmannshofer, W. et al. The Belle II physics book. PTEP 2019, 123C01 (2019). (Erratum: PTEP 2020, 029201 (2020)).

    Google Scholar 

  38. Abbiendi, G. et al. Measuring the leading hadronic contribution to the muon g − 2 via μe scattering. Eur. Phys. J. C 77, 139 (2017).

    Article  ADS  Google Scholar 

  39. Aad, G. et al. Observation of the γγ → ττ process in Pb+Pb collisions and constraints on the τ-lepton anomalous magnetic moment with the ATLAS detector. Phys. Rev. Lett. 131, 151802 (2023).

    Article  ADS  Google Scholar 

  40. Haisch, U., Schnell, L. & Weiss, J. LHC tau-pair production constraints on aτ and dτ. SciPost Phys. 16, 048 (2024).

    Article  Google Scholar 

  41. Crivellin, A., Hoferichter, M. & Roney, J. M. Toward testing the magnetic moment of the tau at one part per million. Phys. Rev. D 106, 093007 (2022).

    Article  ADS  Google Scholar 

  42. Krasznahorkay, A. J. et al. Observation of anomalous internal pair creation in Be8 : a possible indication of a light, neutral boson. Phys. Rev. Lett. 116, 042501 (2016).

    Article  ADS  Google Scholar 

  43. Krasznahorkay, A. J. et al. New anomaly observed in He4 supports the existence of the hypothetical X17 particle. Phys. Rev. C 104, 044003 (2021).

    Article  ADS  Google Scholar 

  44. Krasznahorkay, A. J. et al. New anomaly observed in C12 supports the existence and the vector character of the hypothetical X17 boson. Phys. Rev. C 106, L061601 (2022).

    Article  ADS  Google Scholar 

  45. de Boer, F. W. N. et al. A deviation in internal pair conversion. Phys. Lett. B 388, 235–240 (1996).

    Article  ADS  Google Scholar 

  46. de Boer, F. W. N. et al. Further search for a neutral boson with a mass around 9-MeV/c2. J. Phys. G 27, L29 (2001).

    Article  Google Scholar 

  47. Aleksejevs, A., Barkanova, S., Kolomensky, Y. G. & Sheff, B. A standard model explanation for the ‘ATOMKI Anomaly’. Preprint at https://arxiv.org/abs/2102.01127 (2021).

  48. Alves, D. S. M. et al. Shedding light on X17: community report. Eur. Phys. J. C 83, 230 (2023).

    Article  ADS  Google Scholar 

  49. Nomura, T. & Sanyal, P. Explaining Atomki anomaly and muon g − 2 in U(1)X extended flavour violating two Higgs doublet model. J. High Energy Phys. 05, 232 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  50. Tien Du, P., Ai Viet, N. & Van Dat, N. Decay of neutron with participation of the light vector boson X17. J. Phys. Conf. Ser. 1506, 012004 (2020).

    Article  Google Scholar 

  51. Darmé, L., Mancini, M., Nardi, E. & Raggi, M. Resonant search for the X17 boson at PADME. Phys. Rev. D 106, 115036 (2022).

    Article  ADS  Google Scholar 

  52. Echenard, B., Essig, R. & Zhong, Y.-M. Projections for dark photon searches at Mu3e. J. High Energy Phys. 01, 113 (2015).

    Article  ADS  Google Scholar 

  53. Bastin, B. et al. Investigation of a light dark boson existence: the new JEDI project. EPJ Web Conf. 275, 01012 (2023).

    Article  Google Scholar 

  54. Aguilar, A. et al. Evidence for neutrino oscillations from the observation of \({\bar{\nu }}_{e}\) appearance in a \({\bar{\nu }}_{e}\) beam. Phys. Rev. D 64, 112007 (2001).

    Article  ADS  Google Scholar 

  55. Aguilar-Arevalo, A. A. et al. Significant excess of electron-like events in the MiniBooNE short-baseline neutrino experiment. Phys. Rev. Lett. 121, 221801 (2018).

    Article  ADS  Google Scholar 

  56. Aguilar-Arevalo, A. A. et al. Updated MiniBooNE neutrino oscillation results with increased data and new background studies. Phys. Rev. D 103, 052002 (2021).

    Article  ADS  Google Scholar 

  57. Brdar, V. & Kopp, J. Can standard model and experimental uncertainties resolve the MiniBooNE anomaly? Phys. Rev. D 105, 115024 (2022).

    Article  ADS  Google Scholar 

  58. Acciarri, R. et al. Design and construction of the MicroBooNE detector. J. Instrum. 12, P02017 (2017).

    Article  Google Scholar 

  59. Abratenko, P. et al. Search for an excess of electron neutrino interactions in MicroBooNE using multiple final-state topologies. Phys. Rev. Lett. 128, 241801 (2022).

    Article  ADS  Google Scholar 

  60. Aguilar-Arevalo, A. A. et al. MiniBooNE and MicroBooNE combined fit to a 3+1 sterile neutrino scenario. Phys. Rev. Lett. 129, 201801 (2022).

    Article  ADS  Google Scholar 

  61. Adamson, P. et al. Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit. Phys. Rev. Lett. 122, 091803 (2019).

    Article  ADS  Google Scholar 

  62. Aartsen, M. G. et al. eV-scale sterile neutrino search using eight years of atmospheric muon neutrino data from the IceCube Neutrino Observatory. Phys. Rev. Lett. 125, 141801 (2020).

    Article  ADS  Google Scholar 

  63. Dentler, M. et al. Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos. J. High Energy Phys. 08, 010 (2018).

    Article  ADS  Google Scholar 

  64. Babu, K. S., Brdar, V., de Gouvêa, A. & Machado, P. A. N. Addressing the short-baseline neutrino anomalies with energy-dependent mixing parameters. Phys. Rev. D 107, 015017 (2023).

    Article  ADS  Google Scholar 

  65. Acero, M. A. et al. White paper on light sterile neutrino searches and related phenomenology. Preprint at https://arxiv.org/abs/2203.07323 (2022).

  66. Declais, Y. et al. Search for neutrino oscillations at 15-meters, 40-meters, and 95-meters from a nuclear power reactor at Bugey. Nucl. Phys. B 434, 503–534 (1995).

    Article  ADS  Google Scholar 

  67. Apollonio, M. et al. Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station. Eur. Phys. J. C 27, 331–374 (2003).

    Article  ADS  Google Scholar 

  68. Mention, G. et al. The reactor antineutrino anomaly. Phys. Rev. D 83, 073006 (2011).

    Article  ADS  Google Scholar 

  69. Hampel, W. et al. Final results of the Cr-51 neutrino source experiments in GALLEX. Phys. Lett. B 420, 114–126 (1998).

    Article  ADS  Google Scholar 

  70. Kaether, F., Hampel, W., Heusser, G., Kiko, J. & Kirsten, T. Reanalysis of the GALLEX solar neutrino flux and source experiments. Phys. Lett. B 685, 47–54 (2010).

    Article  ADS  Google Scholar 

  71. Abdurashitov, J. N. et al. Measurement of the solar neutrino capture rate with gallium metal. III: results for the 2002–2007 data-taking period. Phys. Rev. C 80, 015807 (2009).

    Article  ADS  Google Scholar 

  72. Acero, M. A., Giunti, C. & Laveder, M. Limits on nu(e) and anti-nu(e) disappearance from gallium and reactor experiments. Phys. Rev. D 78, 073009 (2008).

    Article  ADS  Google Scholar 

  73. Giunti, C. & Laveder, M. Statistical significance of the gallium anomaly. Phys. Rev. C 83, 065504 (2011).

    Article  ADS  Google Scholar 

  74. Brdar, V., Gehrlein, J. & Kopp, J. Towards resolving the gallium anomaly. J. High Energy Phys. 05, 143 (2023).

    Article  ADS  Google Scholar 

  75. Giunti, C., Li, Y. F., Ternes, C. A. & Xin, Z. Reactor antineutrino anomaly in light of recent flux model refinements. Phys. Lett. B 829, 137054 (2022).

    Article  Google Scholar 

  76. Berryman, J. M., Coloma, P., Huber, P., Schwetz, T. & Zhou, A. Statistical significance of the sterile-neutrino hypothesis in the context of reactor and gallium data. J. High Energy Phys. 02, 055 (2022).

    Article  ADS  Google Scholar 

  77. Losada, M., Nir, Y., Perez, G., Savoray, I. & Shpilman, Y. Parametric resonance in neutrino oscillations induced by ultra-light dark matter and implications for KamLAND and JUNO. J. High Energy Phys. 03, 032 (2023).

    Article  ADS  Google Scholar 

  78. Barinov, V. V. et al. Search for electron-neutrino transitions to sterile states in the BEST experiment. Phys. Rev. C 105, 065502 (2022).

    Article  ADS  Google Scholar 

  79. Acciarri, R. et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): conceptual design report, Vol. 2: the Physics Program for DUNE at LBNF (2015).

  80. Fava, A. FNAL SBL Program Status. PoS NuFACT2018, 011 (2019).

    Google Scholar 

  81. Kobayashi, M. & Maskawa, T. CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973).

    Article  ADS  Google Scholar 

  82. Cabibbo, N. Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963).

    Article  ADS  Google Scholar 

  83. Czarnecki, A., Marciano, W. J. & Sirlin, A. Neutron lifetime and axial coupling connection. Phys. Rev. Lett. 120, 202002 (2018).

    Article  ADS  Google Scholar 

  84. Hardy, J. C. & Towner, I. S. Superallowed 0+ → 0+ nuclear β decays: 2020 critical survey, with implications for Vud and CKM unitarity. Phys. Rev. C 102, 045501 (2020).

    Article  ADS  Google Scholar 

  85. Ambrosino, F. et al. Measurement of the absolute branching ratio for the K+ → μ+ν(γ) decay with the KLOE detector. Phys. Lett. B 632, 76–80 (2006).

    Article  ADS  Google Scholar 

  86. Ambrosino, F. et al. Measurement of the charged kaon lifetime with the KLOE detector. J. High Energy Phys. 01, 073 (2008).

    Google Scholar 

  87. Marciano, W. J. & Sirlin, A. Improved calculation of electroweak radiative corrections and the value of Vud. Phys. Rev. Lett. 96, 032002 (2006).

    Article  ADS  Google Scholar 

  88. Seng, C.-Y., Gorchtein, M., Patel, H. H. & Ramsey-Musolf, M. J. Reduced hadronic uncertainty in the determination of Vud. Phys. Rev. Lett. 121, 241804 (2018).

    Article  ADS  Google Scholar 

  89. Moulson, M. Experimental determination of Vus from kaon decays. PoS CKM2016, 033 (2017).

    Google Scholar 

  90. Seng, C.-Y., Galviz, D., Marciano, W. J. & Meißner, U.-G. Update on Vus and Vus/Vud from semileptonic kaon and pion decays. Phys. Rev. D 105, 013005 (2022).

    Article  ADS  Google Scholar 

  91. Cirigliano, V., Crivellin, A., Hoferichter, M. & Moulson, M. Scrutinizing CKM unitarity with a new measurement of the Kμ3/Kμ2 branching fraction. Phys. Lett. B 838, 137748 (2023).

    Article  Google Scholar 

  92. Amhis, Y. S. et al. Averages of b-hadron, c-hadron, and τ-lepton properties as of 2021. Phys. Rev. D 107, 052008 (2023).

    Article  ADS  Google Scholar 

  93. Crivellin, A., Hoferichter, M. & Manzari, C. A. Fermi constant from muon decay versus electroweak fits and Cabibbo–Kobayashi–Maskawa Unitarity. Phys. Rev. Lett. 127, 071801 (2021).

    Article  ADS  Google Scholar 

  94. Capdevila, B., Crivellin, A., Manzari, C. A. & Montull, M. Explaining b → s+ and the Cabibbo angle anomaly with a vector triplet. Phys. Rev. D 103, 015032 (2021).

    Article  ADS  Google Scholar 

  95. Crivellin, A., Müller, D. & Schnell, L. Combined constraints on first generation leptoquarks. Phys. Rev. D 103, 115023 (2021) (Addendum: Phys. Rev. D 104, 055020 (2021)).

    Article  ADS  Google Scholar 

  96. Crivellin, A., Kirk, F., Manzari, C. A. & Panizzi, L. Searching for lepton flavor universality violation and collider signals from a singly charged scalar singlet. Phys. Rev. D 103, 073002 (2021).

    Article  ADS  Google Scholar 

  97. Buras, A. J., Crivellin, A., Kirk, F., Manzari, C. A. & Montull, M. Global analysis of leptophilic \({Z}^{{\prime} }\) bosons. J. High Energy Phys. 06, 068 (2021).

    Article  ADS  Google Scholar 

  98. Coutinho, A. M., Crivellin, A. & Manzari, C. A. Global fit to modified neutrino couplings and the Cabibbo-angle anomaly. Phys. Rev. Lett. 125, 071802 (2020).

    Article  ADS  Google Scholar 

  99. Kirk, M. Cabibbo anomaly versus electroweak precision tests: an exploration of extensions of the standard model. Phys. Rev. D 103, 035004 (2021).

    Article  ADS  Google Scholar 

  100. Belfatto, B., Beradze, R. & Berezhiani, Z. The CKM unitarity problem: a trace of new physics at the TeV scale? Eur. Phys. J. C 80, 149 (2020).

    Article  ADS  Google Scholar 

  101. Branco, G. C., Penedo, J. T., Pereira, P. M. F., Rebelo, M. N. & Silva-Marcos, J. I. Addressing the CKM unitarity problem with a vector-like up quark. J. High Energy Phys. 07, 099 (2021).

    Article  ADS  Google Scholar 

  102. Belfatto, B. & Berezhiani, Z. Are the CKM anomalies induced by vector-like quarks? Limits from flavor changing and standard model precision tests. J. High Energy Phys. 10, 079 (2021).

    Article  ADS  Google Scholar 

  103. Crivellin, A., Kirk, M., Kitahara, T. & Mescia, F. Global fit of modified quark couplings to EW gauge bosons and vector-like quarks in light of the Cabibbo angle anomaly. J. High Energy Phys. 03, 234 (2023).

    Article  ADS  Google Scholar 

  104. Crivellin, A., Kirk, F., Manzari, C. A. & Montull, M. Global electroweak fit and vector-like leptons in light of the Cabibbo angle anomaly. J. High Energy Phys. 12, 166 (2020).

    Article  ADS  Google Scholar 

  105. Byrne, J. & Dawber, P. G. A revised value for the neutron lifetime measured using a Penning trap. EPL 33, 187 (1996).

    Article  ADS  Google Scholar 

  106. Yue, A. T. et al. Improved determination of the neutron lifetime. Phys. Rev. Lett. 111, 222501 (2013).

    Article  ADS  Google Scholar 

  107. Gonzalez, F. M. et al. Improved neutron lifetime measurement with UCNτ. Phys. Rev. Lett. 127, 162501 (2021).

    Article  ADS  Google Scholar 

  108. Fornal, B. & Grinstein, B. Dark matter interpretation of the neutron decay anomaly. Phys. Rev. Lett. 120, 191801 (2018) (Erratum: Phys. Rev. Lett. 124, 219901 (2020)).

    Article  ADS  Google Scholar 

  109. Berezhiani, Z. Neutron lifetime puzzle and neutron–mirror neutron oscillation. Eur. Phys. J. C 79, 484 (2019).

    Article  ADS  Google Scholar 

  110. Brodeur, M. et al. Nuclear β decay as a probe for physics beyond the standard model. Preprint at https://arxiv.org/abs/2301.03975 (2023).

  111. Altmannshofer, W. et al. PIONEER: studies of rare pion decays. Preprint at https://arxiv.org/abs/2203.01981 (2022).

  112. Ayres, N. J. et al. Improved search for neutron to mirror-neutron oscillations in the presence of mirror magnetic fields with a dedicated apparatus at the PSI UCN source. Symmetry 14, 503 (2022).

    Article  ADS  Google Scholar 

  113. Bordone, M., Gubernari, N., Huber, T., Jung, M. & van Dyk, D. A puzzle in \({\bar{B}}_{(s)}^{0}\to {D}_{(s)}^{(* )+}\{{\pi }^{-},{K}^{-}\}\) decays and extraction of the fs/fd fragmentation fraction. Eur. Phys. J. C 80, 951 (2020).

    Article  ADS  Google Scholar 

  114. Beneke, M., Buchalla, G., Neubert, M. & Sachrajda, C. T. QCD factorization in B → πK, ππ decays and extraction of Wolfenstein parameters. Nucl. Phys. B 606, 245–321 (2001).

    Article  ADS  Google Scholar 

  115. Piscopo, M. L. & Rusov, A. V. Non-factorisable effects in the decays \({\overline{B}}_{s}^{0}\to {D}_{s}^{+}{\pi }^{-}\) and \({\overline{B}}_{s}^{0}\to {D}_{s}^{+}{\pi }^{-}\) from LCSR. J. High Energy Phys. 10, 180 (2023).

    Article  ADS  Google Scholar 

  116. Iguro, S. & Kitahara, T. Implications for new physics from a novel puzzle in \({\bar{B}}_{(s)}^{0}\to {D}_{(s)}^{(* )+}\{{\pi }^{-},{K}^{-}\}\) decays. Phys. Rev. D 102, 071701 (2020).

    Article  ADS  Google Scholar 

  117. Bordone, M., Greljo, A. & Marzocca, D. Exploiting di-jet resonance searches for flavor physics. J. High Energy Phys. 08, 036 (2021).

    Article  ADS  Google Scholar 

  118. Aaij, R. et al. Evidence for CP violation in time-integrated D0 → hh+ decay rates. Phys. Rev. Lett. 108, 111602 (2012).

    Article  ADS  Google Scholar 

  119. Aaij, R. et al. Observation of CP violation in charm decays. Phys. Rev. Lett. 122, 211803 (2019).

    Article  ADS  Google Scholar 

  120. Chala, M., Lenz, A., Rusov, A. V. & Scholtz, J. ΔACP within the standard model and beyond. J. High Energy Phys. 07, 161 (2019).

    Article  ADS  Google Scholar 

  121. Aaij, R. et al. Measurement of the time-integrated CP asymmetry in D0 → KK+ decays. Phys. Rev. Lett. 131, 091802 (2023).

    Article  ADS  Google Scholar 

  122. Bause, R. et al. U-spin-CP anomaly in charm. Phys. Rev. D 108, 035005 (2023).

    Article  ADS  Google Scholar 

  123. Altmannshofer, W., Primulando, R., Yu, C.-T. & Yu, F. New physics models of direct CP violation in charm decays. J. High Energy Phys. 04, 049 (2012).

    Article  ADS  Google Scholar 

  124. Buras, A. J., Fleischer, R., Recksiegel, S. & Schwab, F. B → ππ, new physics in B → πK and implications for rare K and B decays. Phys. Rev. Lett. 92, 101804 (2004).

    Article  ADS  Google Scholar 

  125. Aaij, R. et al. Measurement of CP violation in the decay B+ → K+π0. Phys. Rev. Lett. 126, 091802 (2021).

    Article  ADS  Google Scholar 

  126. Fleischer, R., Jaarsma, R. & Vos, K. K. Towards new frontiers with B → πK decays. Phys. Lett. B 785, 525–529 (2018).

    Article  ADS  Google Scholar 

  127. Aaij, R. et al. Measurement of CP asymmetries in two-body \({B}_{(s)}^{0}\)-meson decays to charged pions and kaons. Phys. Rev. D 98, 032004 (2018).

    Article  ADS  Google Scholar 

  128. Algueró, M., Crivellin, A., Descotes-Genon, S., Matias, J. & Novoa-Brunet, M. A new B-flavour anomaly in \({B}_{d,s}\to {K}^{* 0}{\bar{K}}^{* 0}\): anatomy and interpretation. J. High Energy Phys. 04, 066 (2021).

    Article  ADS  Google Scholar 

  129. Calibbi, L., Crivellin, A., Kirk, F., Manzari, C. A. & Vernazza, L. \({Z}^{{\prime} }\) models with less-minimal flavour violation. Phys. Rev. D 101, 095003 (2020).

    Article  ADS  Google Scholar 

  130. Crivellin, A., Gross, C., Pokorski, S. & Vernazza, L. Correlating \({\epsilon }^{{\prime} }/\epsilon \) to hadronic B decays via U(2)3 flavour symmetry. Phys. Rev. D 101, 015022 (2020).

    Article  ADS  Google Scholar 

  131. Buras, A. J. \({\varepsilon }^{{\prime} }/\varepsilon \) in the standard model and beyond: 2021. In 11th International Workshop on the CKM Unitarity Triangle. Preprint at https://arxiv.org/abs/2203.12632 (2022).

  132. Bhattacharya, B., Kumbhakar, S., London, D. & Payot, N. U-spin puzzle in B decays. Phys. Rev. D 107, L011505 (2023).

    Article  ADS  Google Scholar 

  133. Charles, J. et al. CP violation and the CKM matrix: assessing the impact of the asymmetric B factories. Eur. Phys. J. C 41, 1–131 (2005).

    Article  ADS  Google Scholar 

  134. Bona, M. et al. The 2004 UTfit collaboration report on the status of the unitarity triangle in the standard model. J. High Energy Phys. 07, 028 (2005).

    Article  ADS  Google Scholar 

  135. Gambino, P., Jung, M. & Schacht, S. The Vcb puzzle: an update. Phys. Lett. B 795, 386–390 (2019).

    Article  ADS  Google Scholar 

  136. Crivellin, A. & Pokorski, S. Can the differences in the determinations of Vub and Vcb be explained by new physics? Phys. Rev. Lett. 114, 011802 (2015).

    Article  ADS  Google Scholar 

  137. Lees, J. P. et al. Evidence for an excess of \(\bar{B}\to {D}^{(* )}{\tau }^{-}{\bar{\nu }}_{\tau }\) decays. Phys. Rev. Lett. 109, 101802 (2012).

    Article  ADS  Google Scholar 

  138. Lees, J. P. et al. Measurement of an excess of \(\bar{B}\to {D}^{(* )}{\tau }^{-}{\bar{\nu }}_{\tau }\) decays and implications for charged Higgs bosons. Phys. Rev. D 88, 072012 (2013).

    Article  ADS  Google Scholar 

  139. Huschle, M. et al. Measurement of the branching ratio of \(\bar{B}\to {D}^{(* )}{\tau }^{-}{\bar{\nu }}_{\tau }\) relative to \(\bar{B}\to {D}^{(* )}{\tau }^{-}{\bar{\nu }}_{\tau }\) decays with hadronic tagging at Belle. Phys. Rev. D 92, 072014 (2015).

    Article  ADS  Google Scholar 

  140. Sato, Y. et al. Measurement of the branching ratio of \({\bar{B}}^{0}\to {D}^{* +}{\tau }^{-}{\bar{\nu }}_{\tau }\) relative to \({\bar{B}}^{0}\to {D}^{* +}{\tau }^{-}{\bar{\nu }}_{\tau }\) decays with a semileptonic tagging method. Phys. Rev. D 94, 072007 (2016).

    Article  ADS  Google Scholar 

  141. Hirose, S. et al. Measurement of the τ lepton polarization and R(D*) in the decay \(\bar{B}\to {D}^{* }{\tau }^{-}{\bar{\nu }}_{\tau }\). Phys. Rev. Lett. 118, 211801 (2017).

    Article  ADS  Google Scholar 

  142. Hirose, S. et al. Measurement of the τ lepton polarization and R(D*) in the decay \(\bar{B}\to {D}^{* }{\tau }^{-}{\bar{\nu }}_{\tau }\) with one-prong hadronic τ decays at Belle. Phys. Rev. D 97, 012004 (2018).

    Article  ADS  Google Scholar 

  143. Caria, G. et al. Measurement of \({\mathcal{R}}(D)\) and \({\mathcal{R}}(D)\) with a semileptonic tagging method. Phys. Rev. Lett. 124, 161803 (2020).

    Article  ADS  Google Scholar 

  144. Aaij, R. et al. Measurement of the ratio of branching fractions \({\mathcal{B}}({\bar{B}}^{0}\to {D}^{* +}{\tau }^{-}{\bar{\nu }}_{\tau })/\)\({\mathcal{B}}({\bar{B}}^{0}\to {D}^{* +}{\mu }^{-}{\bar{\nu }}_{\mu })\). Phys. Rev. Lett. 115, 111803 (2015) (Erratum: Phys. Rev. Lett. 115, 159901 (2015)).

    Article  ADS  Google Scholar 

  145. Aaij, R. et al. Measurement of the ratio of the B0 → D*−τ+ντ and B0 → D*−μ+νμ branching fractions using three-prong τ-lepton decays. Phys. Rev. Lett. 120, 171802 (2018).

    Article  ADS  Google Scholar 

  146. Aaij, R. et al. Test of lepton flavor universality by the measurement of the B0 → D*−τ+ντ branching fraction using three-prong τ decays. Phys. Rev. D 97, 072013 (2018).

    Article  ADS  Google Scholar 

  147. Crivellin, A., Greub, C. & Kokulu, A. Explaining B → Dτν, B → D*τν and B → τν in a 2HDM of type III. Phys. Rev. D 86, 054014 (2012).

    Article  ADS  Google Scholar 

  148. Fajfer, S., Kamenik, J. F., Nisandzic, I. & Zupan, J. Implications of lepton flavor universality violations in B decays. Phys. Rev. Lett. 109, 161801 (2012).

    Article  ADS  Google Scholar 

  149. Celis, A., Jung, M., Li, X.-Q. & Pich, A. Sensitivity to charged scalars in B → D(*)τντ and B → τντ decays. J. High Energy Phys. 01, 054 (2013).

    Article  ADS  Google Scholar 

  150. Bhattacharya, B., Datta, A., London, D. & Shivashankara, S. Simultaneous explanation of the RK and R(D(*)) puzzles. Phys. Lett. B 742, 370–374 (2015).

    Article  ADS  Google Scholar 

  151. Sakaki, Y., Tanaka, M., Tayduganov, A. & Watanabe, R. Testing leptoquark models in \(\bar{B}\to {D}^{(* )}\tau \bar{\nu }\). Phys. Rev. D 88, 094012 (2013).

    Article  ADS  Google Scholar 

  152. Freytsis, M., Ligeti, Z. & Ruderman, J. T. Flavor models for \(\bar{B}\to {D}^{(* )}\tau \bar{\nu }\). Phys. Rev. D 92, 054018 (2015).

    Article  ADS  Google Scholar 

  153. Fajfer, S. & Košnik, N. Vector leptoquark resolution of RK and \({R}_{{D}^{(* )}}\) puzzles. Phys. Lett. B 755, 270–274 (2016).

    Article  ADS  Google Scholar 

  154. Iguro, S. Revival of H interpretation of R(D(*)) anomaly and closing low mass window. Phys. Rev. D 105, 095011 (2022).

    Article  ADS  Google Scholar 

  155. Blanke, M., Iguro, S. & Zhang, H. Towards ruling out the charged Higgs interpretation of the \({R}_{{D}^{\left(* \right)}}\) anomaly. J. High Energy Phys. 06, 043 (2022).

    Article  ADS  Google Scholar 

  156. Greljo, A., Isidori, G. & Marzocca, D. On the breaking of lepton flavor universality in B decays. J. High Energy Phys. 07, 142 (2015).

    Article  ADS  Google Scholar 

  157. Calibbi, L., Crivellin, A. & Ota, T. Effective field theory approach to Springer InlineMath and B → D(*)τν with third generation couplings. Phys. Rev. Lett. 115, 181801 (2015).

    Article  ADS  Google Scholar 

  158. Barbieri, R., Murphy, C. W. & Senia, F. β-decay anomalies in a composite leptoquark model. Eur. Phys. J. C 77, 8 (2017).

    Article  ADS  Google Scholar 

  159. Di Luzio, L., Greljo, A. & Nardecchia, M. Gauge leptoquark as the origin of B-physics anomalies. Phys. Rev. D 96, 115011 (2017).

    Article  ADS  Google Scholar 

  160. Calibbi, L., Crivellin, A. & Li, T. Model of vector leptoquarks in view of the B-physics anomalies. Phys. Rev. D 98, 115002 (2018).

    Article  ADS  Google Scholar 

  161. Bordone, M., Cornella, C., Fuentes-Martin, J. & Isidori, G. A three-site gauge model for flavor hierarchies and flavor anomalies. Phys. Lett. B 779, 317–323 (2018).

    Article  ADS  Google Scholar 

  162. Blanke, M. & Crivellin, A. B meson anomalies in a Pati–Salam model within the Randall–Sundrum background. Phys. Rev. Lett. 121, 011801 (2018).

    Article  ADS  Google Scholar 

  163. King, S. F. Twin Pati–Salam theory of flavour with a TeV scale vector leptoquark. J. High Energy Phys. 11, 161 (2021).

    Article  ADS  Google Scholar 

  164. Crivellin, A., Müller, D. & Ota, T. Simultaneous explanation of R(D()) and b → sμ+μ: the last scalar leptoquarks standing. J. High Energy Phys. 09, 040 (2017).

    Article  ADS  Google Scholar 

  165. Crivellin, A., Müller, D. & Saturnino, F. Flavor phenomenology of the leptoquark singlet-triplet model. J. High Energy Phys. 06, 020 (2020).

    Article  ADS  Google Scholar 

  166. Gherardi, V., Marzocca, D. & Venturini, E. Low-energy phenomenology of scalar leptoquarks at one-loop accuracy. J. High Energy Phys. 01, 138 (2021).

    Article  ADS  Google Scholar 

  167. Bainbridge, R. Recording and reconstructing 10 billion unbiased b hadron decays in CMS. EPJ Web Conf. 245, 01025 (2020).

    Article  Google Scholar 

  168. Aaij, R. et al. Tests of lepton universality using \({B}^{0}\to {K}_{S}^{0}{\ell }^{+}{\ell }^{-}\) and B+ → K*++ decays. Phys. Rev. Lett. 128, 191802 (2022).

    Article  ADS  Google Scholar 

  169. Aaij, R. et al. Test of lepton universality in b → s+ decays. Phys. Rev. Lett. 131, 051803 (2023).

    Article  ADS  Google Scholar 

  170. ATLAS, CMS & LHCb Collaborations. Combination of the ATLAS, CMS and LHCb results on the \({B}_{(s)}^{0}\to {\mu }^{+}{\mu }^{-}\) decays. Report No. CMS-PAS-BPH-20-003 (CERN Document Server, 2020).

  171. Tumasyan, A. et al. Measurement of the \({B}_{s}^{0}\to {\mu }^{+}{\mu }^{-}\) decay properties and search for the B0 → μ+μ decay in proton–proton collisions at \({B}_{s}^{0}\to {\mu }^{+}{\mu }^{-}\) = 13 TeV. Phys. Lett. B 842, 137955 (2023).

    Article  Google Scholar 

  172. Hermann, T., Misiak, M. & Steinhauser, M. Three-loop QCD corrections to Bs → μ+μ. J. High Energy Phys. 12, 097 (2013).

    Article  ADS  Google Scholar 

  173. Beneke, M., Bobeth, C. & Szafron, R. Enhanced electromagnetic correction to the rare B-meson decay Bs,d → μ+μ. Phys. Rev. Lett. 120, 011801 (2018).

    Article  ADS  Google Scholar 

  174. Descotes-Genon, S., Matias, J., Ramon, M. & Virto, J. Implications from clean observables for the binned analysis of B → K*μ+μ at large recoil. J. High Energy Phys. 01, 048 (2013).

    Article  ADS  Google Scholar 

  175. Aaij, R. et al. Measurement of CP-averaged observables in the B0 → K*0μ+μ decay. Phys. Rev. Lett. 125, 011802 (2020).

    Article  ADS  Google Scholar 

  176. Aaij, R. et al. Differential branching fractions and isospin asymmetries of B → K(*)μ+μ decays. J. High Energy Phys. 06, 133 (2014).

    Article  ADS  Google Scholar 

  177. Parrott, W. G., Bouchard, C. & Davies, C. T. H. Standard model predictions for \(B\to K{\ell }^{+}{\ell }^{-},B\to K{\ell }_{1}^{-}{\ell }_{2}^{+}\) and B → Kνν using form factors from Nf=2+1+1 lattice QCD. Phys. Rev. D 107, 014511 (2023) (Erratum: Phys. Rev. D 107, 119903 (2023)).

    Article  ADS  Google Scholar 

  178. Aaij, R. et al. Branching fraction measurements of the rare \({B}_{s}^{0}\to \phi {\mu }^{+}{\mu }^{-}\) and \({B}_{s}^{0}\to \phi {\mu }^{+}{\mu }^{-}\)-decays. Phys. Rev. Lett. 127, 151801 (2021).

    Article  ADS  Google Scholar 

  179. Gubernari, N., Reboud, M., van Dyk, D. & Virto, J. Improved theory predictions and global analysis of exclusive b → sμ+μ processes. J. High Energy Phys. 09, 133 (2022).

    Article  ADS  Google Scholar 

  180. Isidori, G., Polonsky, Z. & Tinari, A. Semi-inclusive \(b\to s\bar{\ell }\ell \) transitions at high q2. Phys. Rev. D 108, 093008 (2023).

    Article  ADS  Google Scholar 

  181. Buras, A. J. Standard model predictions for rare K and B decays without new physics infection. Eur. Phys. J. C 83, 66 (2023).

    Article  ADS  Google Scholar 

  182. Ciuchini, M. et al. Constraints on lepton universality violation from rare B decays. Phys. Rev. D 107, 055036 (2023).

    Article  ADS  Google Scholar 

  183. Algueró, M. et al. To (b)e or not to (b)e: no electrons at LHCb. Eur. Phys. J. C 83, 648 (2023).

    Article  ADS  Google Scholar 

  184. Belle II Collaboration. Evidence for \({B}^{+}\to {K}^{+}\nu \bar{\nu }\) decays Preprint at https://arxiv.org/abs/2311.14647 (2023).

  185. Algueró, M., Matias, J., Capdevila, B. & Crivellin, A. Disentangling lepton flavor universal and lepton flavor universality violating effects in b → s+ transitions. Phys. Rev. D 105, 113007 (2022).

    Article  ADS  Google Scholar 

  186. Buras, A. J. & Girrbach, J. Left-handed \({Z}^{{\prime} }\) and Z FCNC quark couplings facing new b → sμ+μ data. J. High Energy Phys. 12, 009 (2013).

    Article  ADS  Google Scholar 

  187. Gauld, R., Goertz, F. & Haisch, U. On minimal \({Z}^{{\prime} }\) explanations of the B → K*μ+μ anomaly. Phys. Rev. D 89, 015005 (2014).

    Article  ADS  Google Scholar 

  188. Di Luzio, L., Kirk, M. & Lenz, A. Updated Bs-mixing constraints on new physics models for b → s+ anomalies. Phys. Rev. D 97, 095035 (2018).

    Article  ADS  Google Scholar 

  189. Allanach, B., Queiroz, F. S., Strumia, A. & Sun, S. \({Z}^{{\prime} }\) models for the LHCb and g − 2 muon anomalies. Phys. Rev. D 93, 055045 (2016) (Erratum: Phys. Rev. D 95, 119902 (2017)).

  190. LEP Collaborations, LEP Electroweak Working Group, SLD Electroweak & Heavy Flavour Groups. A combination of preliminary electroweak measurements and constraints on the standard model. Preprint at https://arxiv.org/abs/hep-ex/0312023 (2004).

  191. Crivellin, A. et al. Lepton-flavour violating B decays in generic \({Z}^{{\prime} }\) models. Phys. Rev. D 92, 054013 (2015).

    Article  ADS  Google Scholar 

  192. Crivellin, A., D’Ambrosio, G. & Heeck, J. Addressing the LHC flavor anomalies with horizontal gauge symmetries. Phys. Rev. D 91, 075006 (2015).

    Article  ADS  Google Scholar 

  193. Bobeth, C., Haisch, U., Lenz, A., Pecjak, B. & Tetlalmatzi-Xolocotzi, G. On new physics in ΔΓd. J. High Energy Phys. 06, 040 (2014).

    Article  ADS  Google Scholar 

  194. Crivellin, A., Fuks, B. & Schnell, L. Explaining the hints for lepton flavour universality violation with three S2 leptoquark generations. J. High Energy Phys. 06, 169 (2022).

    Article  ADS  Google Scholar 

  195. Crivellin, A., Greub, C., Müller, D. & Saturnino, F. Importance of loop effects in explaining the accumulated evidence for new physics in B decays with a vector leptoquark. Phys. Rev. Lett. 122, 011805 (2019).

    Article  ADS  Google Scholar 

  196. Crivellin, A., Kokulu, A. & Greub, C. Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure. Phys. Rev. D 87, 094031 (2013).

    Article  ADS  Google Scholar 

  197. Crivellin, A., Müller, D. & Wiegand, C. b → s+ transitions in two-Higgs-doublet models. J. High Energy Phys. 06, 119 (2019).

    Article  ADS  Google Scholar 

  198. Iguro, S. Conclusive probe of the charged Higgs solution of Springer InlineMath and R(D(*)) discrepancies. Phys. Rev. D 107, 095004 (2023).

    Article  ADS  Google Scholar 

  199. Crivellin, A. & Kirk, M. Diquark explanation of b → s+. Phys. Rev. D 108, L111701 (2023).

    Article  ADS  Google Scholar 

  200. Gubernari, N., Reboud, M., van Dyk, D. & Virto, J. Dispersive analysis of B → K(*) and Bs → ϕ form factors. J. High Energ. Phys. 2023, 153 (2023).

    Article  ADS  Google Scholar 

  201. Aaltonen, T. et al. High-precision measurement of the W boson mass with the CDF II detector. Science 376, 170–176 (2022).

    Article  ADS  Google Scholar 

  202. Aaboud, M. et al. Measurement of the W-boson mass in pp collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. Eur. Phys. J. C 78, 110 (2018). (Erratum: Eur. Phys. J. C 78, 898 (2018)).

    Article  ADS  Google Scholar 

  203. Chatrchyan, S. et al. Measurement of the weak mixing angle with the Drell–Yan process in proton–proton collisions at the LHC. Phys. Rev. D 84, 112002 (2011).

    Article  ADS  Google Scholar 

  204. Aaij, R. et al. Measurement of the forward–backward asymmetry in Z/γ* → μ+μ decays and determination of the effective weak mixing angle. J. High Energy Phys. 11, 190 (2015).

    Article  ADS  Google Scholar 

  205. Aaij, R. et al. Measurement of the W boson mass. J. High Energy Phys. 01, 036 (2022).

    Google Scholar 

  206. Schael, S. et al. Electroweak measurements in electron–positron collisions at W-boson-pair energies at LEP. Phys. Rep. 532, 119–244 (2013).

    Article  Google Scholar 

  207. de Blas, J., Pierini, M., Reina, L. & Silvestrini, L. Impact of the recent measurements of the top-quark and W-boson masses on electroweak precision fits. Phys. Rev. Lett. 129, 271801 (2022).

    Article  Google Scholar 

  208. ATLAS Collaboration. Improved W boson mass measurement using 7 TeV proton–proton collisions with the ATLAS detector. Report No. ATLAS-CONF-2023-004 (CERN Document Server, 2023).

  209. Schael, S. et al. Precision electroweak measurements on the Z resonance. Phys. Rep. 427, 257–454 (2006).

    Article  Google Scholar 

  210. Konetschny, W. & Kummer, W. Nonconservation of total lepton number with scalar bosons. Phys. Lett. B 70, 433–435 (1977).

    Article  ADS  Google Scholar 

  211. Algueró, M., Matias, J., Crivellin, A. & Manzari, C. A. Unified explanation of the anomalies in semileptonic B decays and the W mass. Phys. Rev. D 106, 033005 (2022).

    Article  ADS  Google Scholar 

  212. Crivellin, A., Kirk, M., Kitahara, T. & Mescia, F. Large t → cZ as a sign of vectorlike quarks in light of the W mass. Phys. Rev. D 106, L031704 (2022).

    Article  ADS  Google Scholar 

  213. Crivellin, A., Müller, D. & Saturnino, F. Leptoquarks in oblique corrections and Higgs signal strength: status and prospects. J. High Energy Phys. 11, 094 (2020).

    Article  ADS  Google Scholar 

  214. Strumia, A. Interpreting electroweak precision data including the W-mass CDF anomaly. J. High Energy Phys. 08, 248 (2022).

    Article  ADS  Google Scholar 

  215. Baer, H. et al. The International Linear Collider Technical Design Report — Vol. 2: Physics. Preprint at https://arxiv.org/abs/1306.6352 (2013).

  216. Linssen, L., Miyamoto, A., Stanitzki, M. & Weerts, H. (eds) Physics and Detectors at CLIC: CLIC Conceptual Design Report. CERN Yellow Report CERN-2012-003 (CERN Document Server, 2012).

  217. Charles, T. K. et al. The Compact Linear Collider (CLIC) — 2018 Summary Report 2/2018. Preprint at https://arxiv.org/abs/1812.06018 (2018).

  218. Abada, A. et al. FCC-ee: the lepton collider: future circular collider conceptual design report volume 2. Eur. Phys. J. ST 228, 261–623 (2019).

    Article  Google Scholar 

  219. Abada, A. et al. FCC physics opportunities: future circular collider conceptual design report volume 1. Eur. Phys. J. C 79, 474 (2019).

    Article  ADS  Google Scholar 

  220. Dong, M. et al. CEPC conceptual design report: volume 2 — physics & detector. Preprint at https://arxiv.org/abs/1811.10545 (2018).

  221. An, F. et al. Precision Higgs physics at the CEPC. Chin. Phys. C 43, 043002 (2019).

    Article  ADS  Google Scholar 

  222. Fischer, O. et al. Unveiling hidden physics at the LHC. Eur. Phys. J. C 82, 665 (2022).

    Article  ADS  Google Scholar 

  223. von Buddenbrock, S. et al. Phenomenological signatures of additional scalar bosons at the LHC. Eur. Phys. J. C 76, 580 (2016).

    Article  ADS  Google Scholar 

  224. von Buddenbrock, S. et al. Multi-lepton signatures of additional scalar bosons beyond the standard model at the LHC. J. Phys. G 45, 115003 (2018).

    Article  Google Scholar 

  225. Buddenbrock, S. et al. The emergence of multi-lepton anomalies at the LHC and their compatibility with new physics at the EW scale. J. High Energy Phys. 10, 157 (2019).

    Article  ADS  Google Scholar 

  226. Hernandez, Y. et al. The anomalous production of multi-lepton and its impact on the measurement of Wh production at the LHC. Eur. Phys. J. C 81, 365 (2021).

    Article  ADS  Google Scholar 

  227. von Buddenbrock, S., Ruiz, R. & Mellado, B. Anatomy of inclusive \(t\bar{t}W\) production at hadron colliders. Phys. Lett. B 811, 135964 (2020).

    Article  Google Scholar 

  228. Banik, S., Coloretti, G., Crivellin, A. & Mellado, B. Uncovering new Higgses in the LHC analyses of Differential \(t\bar{t}\) cross sections (2023). Preprint at https://arxiv.org/abs/2308.07953 (2023).

  229. Aad, G. et al. Inclusive and differential cross-sections for dilepton \(t\overline{t}\) production measured in \(t\overline{t}\) = 13 TeV pp collisions with the ATLAS detector. J. High Energy Phys. 07, 141 (2023).

    ADS  Google Scholar 

  230. Czakon, M., Mitov, A. & Poncelet, R. NNLO QCD corrections to leptonic observables in top-quark pair production and decay. J. High Energy Phys. 05, 212 (2021).

    Article  ADS  Google Scholar 

  231. Gehrmann, T. et al. W+W production at hadron colliders in next to next to leading order QCD. Phys. Rev. Lett. 113, 212001 (2014).

    Article  ADS  Google Scholar 

  232. Grazzini, M., Kallweit, S., Pozzorini, S., Rathlev, D. & Wiesemann, M. W+W production at the LHC: fiducial cross sections and distributions in NNLO QCD. J. High Energy Phys. 08, 140 (2016).

    Article  ADS  Google Scholar 

  233. Hamilton, K., Melia, T., Monni, P. F., Re, E. & Zanderighi, G. Merging WW and WW+jet with MINLO. J. High Energy Phys. 09, 057 (2016).

    Article  ADS  Google Scholar 

  234. Re, E., Wiesemann, M. & Zanderighi, G. NNLOPS accurate predictions for W+W production. J. High Energy Phys. 12, 121 (2018).

    Article  ADS  Google Scholar 

  235. Caola, F., Melnikov, K., Röntsch, R. & Tancredi, L. QCD corrections to W+W production through gluon fusion. Phys. Lett. B 754, 275–280 (2016).

    Article  ADS  Google Scholar 

  236. Grazzini, M., Kallweit, S., Rathlev, D. & Wiesemann, M. W±Z production at the LHC: fiducial cross sections and distributions in NNLO QCD. J. High Energy Phys. 05, 139 (2017).

    Article  ADS  Google Scholar 

  237. Brein, O., Djouadi, A. & Harlander, R. NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders. Phys. Lett. B 579, 149–156 (2004).

    Article  ADS  Google Scholar 

  238. Ferrera, G., Grazzini, M. & Tramontano, F. Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO. Phys. Rev. Lett. 107, 152003 (2011).

    Article  ADS  Google Scholar 

  239. Campbell, J. M., Ellis, R. K. & Williams, C. Associated production of a Higgs boson at NNLO. J. High Energy Phys. 06, 179 (2016).

    Article  ADS  Google Scholar 

  240. Buonocore, L. et al. Precise predictions for the associated production of a W boson with a top-antitop quark pair at the LHC. Phys. Rev. Lett. 131, 231901 (2023).

    Article  ADS  Google Scholar 

  241. Ciccolini, M. L., Dittmaier, S. & Kramer, M. Electroweak radiative corrections to associated WH and ZH production at hadron colliders. Phys. Rev. D 68, 073003 (2003).

    Article  ADS  Google Scholar 

  242. Denner, A., Dittmaier, S., Kallweit, S. & Muck, A. Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK. J. High Energy Phys. 03, 075 (2012).

    Article  ADS  Google Scholar 

  243. Denner, A. & Pellen, M. NLO electroweak corrections to off-shell top–antitop production with leptonic decays at the LHC. J. High Energy Phys. 08, 155 (2016).

    Article  ADS  Google Scholar 

  244. Biedermann, B. et al. Next-to-leading-order electroweak corrections to pp → W+W → 4 leptons at the LHC. J. High Energy Phys. 06, 065 (2016).

    Article  ADS  Google Scholar 

  245. Dittmaier, S., Knippen, G. & Schwan, C. Next-to-leading-order QCD and electroweak corrections to triple-W production with leptonic decays at the LHC. J. High Energy Phys. 02, 003 (2020).

    Article  ADS  Google Scholar 

  246. Sirunyan, A. M. et al. Search for heavy Higgs bosons decaying to a top quark pair in proton–proton collisions at \(\sqrt{s}=\) 13 TeV. J. High Energy Phys. 04, 171 (2020) (Erratum: J. High Energy Phys. 03, 187 (2022)).

    ADS  Google Scholar 

  247. Coloretti, G., Crivellin, A., Bhattacharya, S. & Mellado, B. Searching for low-mass resonances decaying into W bosons. Phys. Rev. D 108, 035026 (2023).

    Article  ADS  Google Scholar 

  248. Ježo, T., Lindert, J. M. & Pozzorini, S. Resonance-aware NLOPS matching for off-shell \(t\overline{t}+tW\) production with semileptonic decays. J. High Energy Phys. 10, 008 (2023).

    Article  ADS  Google Scholar 

  249. CMS Collaboration. Search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV in the diphoton final state in proton–proton collisions at \(\sqrt{s}=13\,{\rm{TeV}}\). Report No. CMS-PAS-HIG-20-002 (CERN Document Server, 2023).

  250. ATLAS Collaboration. Search for diphoton resonances in the 66 to 110 GeV mass range using 140 fb−1 of 13 TeV pp collisions collected with the ATLAS detector. Report No. ATLAS-CONF-2023-035 (CERN Document Server, 2023).

  251. Aad, G. et al. Search for dark matter in events with missing transverse momentum and a Higgs boson decaying into two photons in pp collisions at \(\sqrt{s}\) = 13 TeV with the ATLAS detector. J. High Energy Phys. 10, 013 (2021).

    ADS  Google Scholar 

  252. Sirunyan, A. M. et al. Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \(\sqrt{s}=13\) TeV. J. High Energy Phys. 11, 047 (2017).

    ADS  Google Scholar 

  253. Aad, G. et al. Search for resonances decaying into photon pairs in 139 fb−1 of pp collisions at \(\sqrt{s}\)=13 TeV with the ATLAS detector. Phys. Lett. B 822, 136651 (2021).

    Article  Google Scholar 

  254. CMS Collaboration. Searches for additional Higgs bosons and vector leptoquarks in ττ final states in proton–proton collisions at \(\sqrt{s}=13\,{\rm{TeV}}\). J. High Energy Phys. 2023, 73 (2023).

    Article  Google Scholar 

  255. Aad, G. et al. Measurements of Higgs boson production cross-sections in the H → τ+τ decay channel in pp collisions at \(\sqrt{s}\) = 13 TeV with the ATLAS detector. J. High Energy Phys. 08, 175 (2022).

    ADS  Google Scholar 

  256. Barate, R. et al. Search for the standard model Higgs boson at LEP. Phys. Lett. B 565, 61–75 (2003).

    Article  Google Scholar 

  257. Aad, G. et al. Model-independent search for the presence of new physics in events including H → γγ with \(\sqrt{s}\) = 13 TeV pp data recorded by the ATLAS detector at the LHC. J. High Energy Phys. 07, 176 (2023).

    ADS  Google Scholar 

  258. Bhattacharya, S. et al. Growing excesses of new scalars at the electroweak scale. Preprint at https://arxiv.org/abs/2306.17209 (2023).

  259. Crivellin, A. et al. Accumulating evidence for the associated production of a new Higgs boson at the LHC. Phys. Rev. D 108, 115031 (2023).

    Article  ADS  Google Scholar 

  260. Consoli, M., Cosmai, L. & Fabbri, F. Second resonance of the Higgs field: more signals from the LHC experiments. Preprint at https://arxiv.org/abs/2208.00920 (2022).

  261. Aad, G. et al. Search for heavy resonances decaying into a pair of Z bosons in the \({\ell }^{+}{\ell }^{-}{\ell {\prime} }^{+}{\ell {\prime} }^{-}\) and \({\ell }^{+}{\ell }^{-}{\ell {\prime} }^{+}{\ell {\prime} }^{-}\) final states using 139 fb−1 of proton–proton collisions at \({\ell }^{+}{\ell }^{-}{\ell {\prime} }^{+}{\ell {\prime} }^{-}\) TeV with the ATLAS detector. Eur. Phys. J. C 81, 332 (2021).

    Article  ADS  Google Scholar 

  262. CMS Collaboration. Search for a new resonance decaying to two spin-0 bosons in a final state with two photons and two bottom quarks in proton–proton collisions at \(\sqrt{s}=13\,{\rm{TeV}}\). Preprint at https://doi.org/10.48550/arXiv.2310.01643 (2023).

  263. CMS Collaboration. Search for high mass resonances decaying into W+W in the dileptonic final state with 138 fb−1 of proton–proton collisions at \(\sqrt{s}=13\,\,{\rm{TeV}}\). Report No. CMS-PAS-HIG-20-016 (CERN Document Server, 2022).

  264. Tumasyan, A. et al. Search for a heavy Higgs boson decaying into two lighter Higgs bosons in the ττbb final state at 13 TeV. J. High Energy Phys. 11, 057 (2021).

    Google Scholar 

  265. Le Yaouanc, A. & Richard, F. As a consequence of H(650) → W+W/ZZ, one predicts H++ → W+W+ and H+ → ZW+, as indicated by LHC data. In 2nd ECFA Workshop on e+e- Higgs/EW/Top Factories. Preprint at https://arxiv.org/abs/2308.12180 (2023).

  266. Haisch, U. & Malinauskas, A. Let there be light from a second light Higgs doublet. J. High Energy Phys. 03, 135 (2018).

    Article  ADS  Google Scholar 

  267. Ashanujjaman, S. et al. SU(2)L triplet scalar as the origin of the 95 GeV excess? Phys. Rev. D 108, L091704 (2023).

    Article  ADS  Google Scholar 

  268. Biekötter, T., Heinemeyer, S. & Weiglein, G. Excesses in the low-mass Higgs-boson search and the W-boson mass measurement. Eur. Phys. J. C 83, 450 (2023).

    Article  ADS  Google Scholar 

  269. Banik, S., Crivellin, A., Iguro, S. & Kitahara, T. Asymmetric di-Higgs signals of the next-to-minimal 2HDM with a U(1) symmetry. Phys. Rev. D 108, 075011 (2023).

    Article  ADS  Google Scholar 

  270. Georgi, H. & Machacek, M. Doubly charged HIGGS bosons. Nucl. Phys. B 262, 463–477 (1985).

    Article  ADS  Google Scholar 

  271. Kundu, A., Le Yaouanc, A., Mondal, P. & Richard, F. Searches for scalars at LHC and interpretation of the findings. In 2022 ECFA Workshop on e+e- Higgs/EW/Top factories. Preprint at https://arxiv.org/abs/2211.11723 (2022).

  272. Consoli, M. & Cosmai, L. A resonance of the Higgs field at 700 GeV and a new phenomenology. Preprint at https://arxiv.org/abs/2007.10837 (2020).

  273. Cid Vidal, X. et al. Report from Working Group 3: beyond the Standard Model physics at the HL-LHC and HE-LHC. CERN Yellow Rep. Monogr. 7, 585–865 (2019).

    Google Scholar 

  274. Aaboud, M. et al. Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in pp collisions at \(\sqrt{s}=13\) TeV. Phys. Rev. Lett. 121, 081801 (2018).

    Article  ADS  Google Scholar 

  275. Tumasyan, A. et al. Search for resonant and nonresonant production of pairs of dijet resonances in proton–proton collisions at \(\sqrt{s}\) = 13 TeV. J. High Energy Phys. 07, 161 (2023).

    ADS  Google Scholar 

  276. Crivellin, A., Manzari, C. A., Mellado, B. & Dahbi, S.-E. Consistency and interpretation of the LHC dijet excesses. Phys. Rev. D 107, 054045 (2023).

    Article  ADS  Google Scholar 

  277. Aad, G. et al. Pursuit of paired dijet resonances in the Run 2 dataset with ATLAS. Phys. Rev. D 108, 112005 (2023).

    Article  ADS  Google Scholar 

  278. Aad, G. et al. Search for vector–boson resonances decaying into a top quark and a bottom quark using pp collisions at \(\sqrt{s}=13\) TeV with the ATLAS detector. J. High Energ. Phys. 2023, 73 (2023).

    Article  Google Scholar 

  279. Sirunyan, A. M. et al. Search for resonant and nonresonant new phenomena in high-mass dilepton final states at \(\sqrt{s}\) = 13 TeV. J. High Energy Phys. 07, 208 (2021).

    ADS  Google Scholar 

  280. Aad, G. et al. Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector. J. High Energy Phys. 11, 005 (2020) (Erratum: J. High Energy Phys. 04, 142 (2021)).

    ADS  Google Scholar 

  281. Greljo, A. & Marzocca, D. High-pT dilepton tails and flavor physics. Eur. Phys. J. C 77, 548 (2017).

    Article  ADS  Google Scholar 

  282. Crivellin, A., Manzari, C. A. & Montull, M. Correlating nonresonant di-electron searches at the LHC to the Cabibbo-angle anomaly and lepton flavor universality violation. Phys. Rev. D 104, 115016 (2021).

    Article  ADS  Google Scholar 

  283. Crivellin, A., Hoferichter, M., Kirk, M., Manzari, C. A. & Schnell, L. First-generation new physics in simplified models: from low-energy parity violation to the LHC. J. High Energy Phys. 10, 221 (2021).

    Article  ADS  Google Scholar 

  284. Fernández Navarro, M. & King, S. F. B-anomalies in a twin Pati–Salam theory of flavour including the 2022 LHCb \({R}_{{K}^{\left(* \right)}}\) analysis. J. High Energy Phys. 02, 188 (2023).

    Article  ADS  Google Scholar 

  285. Aebischer, J., Isidori, G., Pesut, M., Stefanek, B. A. & Wilsch, F. Confronting the vector leptoquark hypothesis with new low- and high-energy data. Eur. Phys. J. C 83, 153 (2023).

    Article  ADS  Google Scholar 

  286. Aaboud, M. et al. Measurement of fiducial and differential W+W production cross-sections at \(\sqrt{s}=13\) TeV with the ATLAS detector. Eur. Phys. J. C 79, 884 (2019).

    Article  ADS  Google Scholar 

  287. Aad, G. et al. Observation of four-top-quark production in the multilepton final state with the ATLAS detector. Eur. Phys. J. C 83, 496 (2023).

    Article  ADS  Google Scholar 

  288. Hayrapetyan, A. et al. Observation of four top quark production in proton–proton collisions at s=13 TeV. Phys. Lett. B 847, 138290 (2023).

    Article  Google Scholar 

  289. CMS Collaboration. Measurement of Higgs boson production in association with a W or Z boson in the H → WW decay channel. Report No. CMS-PAS-HIG-19-017 (CERN Document Server, 2021).

  290. Aad, G. et al. Observation of WWW production in pp collisions at \(\sqrt{s}\) =13 TeV with the ATLAS detector. Phys. Rev. Lett. 129, 061803 (2022).

    Article  ADS  Google Scholar 

  291. Tumasyan, A. et al. Measurements of the Higgs boson production cross section and couplings in the W boson pair decay channel in proton–proton collisions at \(\sqrt{s}=13\,{\rm{TeV}}\). Eur. Phys. J. C 83, 667 (2023).

    Article  ADS  Google Scholar 

  292. Buchmuller, W., Ruckl, R. & Wyler, D. Leptoquarks in lepton–quark collisions. Phys. Lett. B 191, 442–448 (1987) (Erratum: Phys. Lett. B 448, 320–320 (1999)).

    Article  ADS  Google Scholar 

  293. Doršner, I., Fajfer, S., Greljo, A., Kamenik, J. F. & Košnik, N. Physics of leptoquarks in precision experiments and at particle colliders. Phys. Rep. 641, 1–68 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  294. Pati, J. C. & Salam, A. Lepton number as the fourth color. Phys. Rev. D 10, 275–289 (1974) (Erratum: Phys. Rev. D 11, 703–703 (1975)).

    Article  ADS  Google Scholar 

  295. Georgi, H. & Glashow, S. L. Unity of all elementary particle forces. Phys. Rev. Lett. 32, 438–441 (1974).

    Article  ADS  Google Scholar 

  296. Barbier, R. et al. R-parity violating supersymmetry. Phys. Rep. 420, 1–202 (2005).

    Article  ADS  Google Scholar 

  297. Hewett, J. L. & Rizzo, T. G. Low-energy phenomenology of superstring inspired E(6) models. Phys. Rep. 183, 193 (1989).

    Article  ADS  Google Scholar 

  298. Weinberg, S. Elementary particle theory of composite particles. Phys. Rev. 130, 776–783 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  299. Randall, L. & Sundrum, R. A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  300. Froggatt, C. D. & Nielsen, H. B. Hierarchy of quark masses, Cabibbo angles and CP violation. Nucl. Phys. B 147, 277–298 (1979).

    Article  ADS  Google Scholar 

  301. Mohapatra, R. N. & Pati, J. C. A natural left-right symmetry. Phys. Rev. D 11, 2558 (1975).

    Article  ADS  Google Scholar 

  302. Langacker, P. Grand unified theories and proton decay. Phys. Rep. 72, 185 (1981).

    Article  ADS  Google Scholar 

  303. Antoniadis, I. A possible new dimension at a few TeV. Phys. Lett. B 246, 377–384 (1990).

    Article  ADS  Google Scholar 

  304. Haber, H. E. & Kane, G. L. The search for supersymmetry: probing physics beyond the standard model. Phys. Rep. 117, 75–263 (1985).

    Article  ADS  Google Scholar 

  305. Minkowski, P. μ → eγ at a rate of one out of 109 muon decays? Phys. Lett. B 67, 421–428 (1977).

    Article  ADS  Google Scholar 

  306. Lee, B. W. & Shrock, R. E. Natural suppression of symmetry violation in gauge theories: muon–lepton and electron lepton number nonconservation. Phys. Rev. D 16, 1444 (1977).

    Article  ADS  Google Scholar 

  307. Foot, R., Lew, H., He, X. G. & Joshi, G. C. Seesaw neutrino masses induced by a triplet of leptons. Z. Phys. C 44, 441 (1989).

    Article  Google Scholar 

  308. Chanowitz, M. S. & Golden, M. Higgs boson triplets with \({M}_{W}={M}_{Z}\cos \theta \omega \). Phys. Lett. B 165, 105–108 (1985).

    Article  ADS  Google Scholar 

  309. Branco, G. C. et al. Theory and phenomenology of two-Higgs-doublet models. Phys. Rep. 516, 1–102 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of A.C. is supported by a professorship grant from the Swiss National Science Foundation (No. PP00P2_211002). B.M. gratefully acknowledges the South African Department of Science and Innovation through the SA-CERN programme, the National Research Foundation and the Research Office of the University of the Witwatersrand for various forms of support. The authors thank W. Murray for pointing to excess in the Zhh final state and L. Donaldson for assistance with the prospects of investigating the X17 anomaly.

Author information

Authors and Affiliations

Authors

Contributions

The main part of the writing was done by A.C.; B.M. contributed to sections on the definition of anomalies, multilepton anomalies, the X17 excess, the di-di-jet excesses and the Higgs-like signals.

Corresponding authors

Correspondence to Andreas Crivellin or Bruce Mellado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Mitesh Patel, Mark Smith and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crivellin, A., Mellado, B. Anomalies in particle physics and their implications for physics beyond the standard model. Nat Rev Phys 6, 294–309 (2024). https://doi.org/10.1038/s42254-024-00703-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00703-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing