Abstract
The standard model (SM) of particle physics is the mathematical description of the fundamental constituents and interactions of matter. Its last missing particle, the Higgs boson, was observed in 2012. However, there are several phenomena that the SM cannot account for (such as dark-matter particles, or non-vanishing neutrino masses), neither does it describe gravity. There must be more to discover, to extend the SM into a full description of nature. Here we review the hints of new physics, called anomalies, that are seen for various interactions as discrepancies between standard-model predictions and experimental measurements. We consider both direct high-energy searches for new particles at the Large Hadron Collider at CERN and indirect low-energy precision experiments. These anomalies span an energy scale of more than four orders of magnitude: from the mass of the proton, to the electroweak scale (approximately the mass of the Higgs boson), to the teraelectronvolt scale, which is the highest scale directly accessible at the Large Hadron Collider. We discuss the experimental and theoretical status of various anomalies and summarize possible explanations in terms of new particles and new interactions as well as discovery prospects. We suggest, in particular, that new additional Higgs bosons and so-called leptoquarks are promising candidates for extending the standard model.
Key points
-
The standard model (SM) of particle physics describes the fundamental constituents of matter and their interactions and was completed with the discovery of the Higgs particle at the Large Hadron Collider (LHC) at CERN in 2012.
-
The SM cannot account for the existence of dark matter or for non-vanishing neutrino masses and must therefore be extended, but there is a plethora of viable options for this extension.
-
In experiments, several interesting deviations from the standard-model predictions have been found. These anomalies appear both in high-energy searches at the LHC and in low-energy precision observables: ranging from precision measurements of properties of the muon, to hints for new scalar bosons at the electroweak scale, to the existence of heavy teraelectronvolt-scale resonances.
-
The anomalies can be explained by supplementing the SM with new particles and new interactions — in particular, additional Higgs bosons, new fermions and new strongly interacting particles.
-
Data accumulating from the third run of the LHC could establish the existence of some of these new particles, if one or more of the anomalies are indeed driven by new physics. The high-luminosity upgrade of the LHC, future linear or circular colliders and new precision experiments will be needed for a comprehensive study of the properties of particles.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Higgs, P. W. Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132–133 (1964).
Englert, F. & Brout, R. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964).
Aad, G. et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012).
Chatrchyan, S. et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012).
Aalbers, J. et al. First dark matter search results from the LUX-ZEPLIN (LZ) experiment. Phys. Rev. Lett. 131, 041002 (2023).
Workman, R. L. et al. Review of particle physics. PTEP 2022, 083C01 (2022).
Schwinger, J. S. On quantum electrodynamics and the magnetic moment of the electron. Phys. Rev. 73, 416–417 (1948).
Bennett, G. W. et al. Final report of the muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006).
Abi, B. et al. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys. Rev. Lett. 126, 141801 (2021).
Aguillard, D. P. et al. Measurement of the positive muon anomalous magnetic moment to 0.20 ppm. Phys. Rev. Lett. 131, 161802 (2023).
Aoyama, T., Kinoshita, T. & Nio, M. Theory of the anomalous magnetic moment of the electron. Atoms 7, 28 (2019).
Colangelo, G., Hoferichter, M. & Stoffer, P. Two-pion contribution to hadronic vacuum polarization. J. High Energy Phys. 02, 006 (2019).
Davier, M., Hoecker, A., Malaescu, B. & Zhang, Z. A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to \(\alpha ({m}_{Z}^{2})\). Eur. Phys. J. C 80, 241 (2020) (Erratum: Eur. Phys. J. C 80, 410 (2020)).
Keshavarzi, A., Nomura, D. & Teubner, T. g − 2 of charged leptons, \(\alpha ({M}_{Z}^{2})\), and the hyperfine splitting of muonium. Phys. Rev. D 101, 014029 (2020).
Borsanyi, S. et al. Leading hadronic contribution to the muon magnetic moment from lattice QCD. Nature 593, 51–55 (2021).
Ignatov, F. V. et al. Measurement of the e+e− → π+π− cross-section from threshold to 1.2 GeV with the CMD-3 detector. Preprint at https://arxiv.org/abs/2302.08834 (2023).
Stoffer, P., Colangelo, G. & Hoferichter, M. Puzzles in the hadronic contributions to the muon anomalous magnetic moment. J. Instrum. 18, C10021 (2023).
Hanneke, D., Fogwell, S. & Gabrielse, G. New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008).
Aoyama, T., Kinoshita, T. & Nio, M. Revised and improved value of the QED tenth-order electron anomalous magnetic moment. Phys. Rev. D 97, 036001 (2018).
Laporta, S. High-precision calculation of the 4-loop contribution to the electron g − 2 in QED. Phys. Lett. B 772, 232–238 (2017).
Crivellin, A., Hoferichter, M. & Schmidt-Wellenburg, P. Combined explanations of (g−2)μ,e and implications for a large muon EDM. Phys. Rev. D 98, 113002 (2018).
Athron, P. et al. New physics explanations of aμ in light of the FNAL muon g − 2 measurement. J. High Energy Phys. 09, 080 (2021).
Ma, E., Roy, D. P. & Roy, S. Gauged Lμ − Lτ with large muon anomalous magnetic moment and the bimaximal mixing of neutrinos. Phys. Lett. B 525, 101–106 (2002).
Baek, S., Deshpande, N. G., He, X. G. & Ko, P. Muon anomalous g − 2 and gauged Lμ − Lτ models. Phys. Rev. D 64, 055006 (2001).
Lees, J. P. et al. Search for a muonic dark force at BABAR. Phys. Rev. D 94, 011102 (2016).
Czank, T. et al. Search for \({Z}^{{\prime} }\to {\mu }^{+}{\mu }^{-}\) in the Lμ − Lτ gauge-symmetric model at Belle. Phys. Rev. D 106, 012003 (2022).
Everett, L. L., Kane, G. L., Rigolin, S. & Wang, L.-T. Implications of muon g − 2 for supersymmetry and for discovering superpartners directly. Phys. Rev. Lett. 86, 3484–3487 (2001).
Feng, J. L. & Matchev, K. T. Supersymmetry and the anomalous magnetic moment of the muon. Phys. Rev. Lett. 86, 3480–3483 (2001).
Czarnecki, A. & Marciano, W. J. The muon anomalous magnetic moment: a Harbinger for ‘new physics’. Phys. Rev. D 64, 013014 (2001).
Kannike, K., Raidal, M., Straub, D. M. & Strumia, A. Anthropic solution to the magnetic muon anomaly: the charged see-saw. J. High Energy Phys. 02, 106 (2012) (Erratum: J. High Energy Phys. 10, 136 (2012)).
Kowalska, K. & Sessolo, E. M. Expectations for the muon g − 2 in simplified models with dark matter. J. High Energy Phys. 09, 112 (2017).
Crivellin, A. & Hoferichter, M. Consequences of chirally enhanced explanations of (g−2)μ for h → μμ and Z → μμ. J. High Energy Phys. 07, 135 (2021) (Erratum: J. High Energy Phys. 10, 030 (2022)).
Djouadi, A., Kohler, T., Spira, M. & Tutas, J. (e b), (e t) type leptoquarks at e p colliders. Z. Phys. C 46, 679–686 (1990).
Bauer, M. & Neubert, M. Minimal leptoquark explanation for the \({R}_{{D}^{(* )}}\), RK, and (g−2)μ anomalies. Phys. Rev. Lett. 116, 141802 (2016).
Crivellin, A., Mueller, D. & Saturnino, F. Correlating h → μμ to the anomalous magnetic moment of the muon via leptoquarks. Phys. Rev. Lett. 127, 021801 (2021).
Coluccio Leskow, E., D’Ambrosio, G., Crivellin, A. & Müller, D. (g − 2)μ, lepton flavor violation, and Z decays with leptoquarks: correlations and future prospects. Phys. Rev. D 95, 055018 (2017).
Altmannshofer, W. et al. The Belle II physics book. PTEP 2019, 123C01 (2019). (Erratum: PTEP 2020, 029201 (2020)).
Abbiendi, G. et al. Measuring the leading hadronic contribution to the muon g − 2 via μe scattering. Eur. Phys. J. C 77, 139 (2017).
Aad, G. et al. Observation of the γγ → ττ process in Pb+Pb collisions and constraints on the τ-lepton anomalous magnetic moment with the ATLAS detector. Phys. Rev. Lett. 131, 151802 (2023).
Haisch, U., Schnell, L. & Weiss, J. LHC tau-pair production constraints on aτ and dτ. SciPost Phys. 16, 048 (2024).
Crivellin, A., Hoferichter, M. & Roney, J. M. Toward testing the magnetic moment of the tau at one part per million. Phys. Rev. D 106, 093007 (2022).
Krasznahorkay, A. J. et al. Observation of anomalous internal pair creation in Be8 : a possible indication of a light, neutral boson. Phys. Rev. Lett. 116, 042501 (2016).
Krasznahorkay, A. J. et al. New anomaly observed in He4 supports the existence of the hypothetical X17 particle. Phys. Rev. C 104, 044003 (2021).
Krasznahorkay, A. J. et al. New anomaly observed in C12 supports the existence and the vector character of the hypothetical X17 boson. Phys. Rev. C 106, L061601 (2022).
de Boer, F. W. N. et al. A deviation in internal pair conversion. Phys. Lett. B 388, 235–240 (1996).
de Boer, F. W. N. et al. Further search for a neutral boson with a mass around 9-MeV/c2. J. Phys. G 27, L29 (2001).
Aleksejevs, A., Barkanova, S., Kolomensky, Y. G. & Sheff, B. A standard model explanation for the ‘ATOMKI Anomaly’. Preprint at https://arxiv.org/abs/2102.01127 (2021).
Alves, D. S. M. et al. Shedding light on X17: community report. Eur. Phys. J. C 83, 230 (2023).
Nomura, T. & Sanyal, P. Explaining Atomki anomaly and muon g − 2 in U(1)X extended flavour violating two Higgs doublet model. J. High Energy Phys. 05, 232 (2021).
Tien Du, P., Ai Viet, N. & Van Dat, N. Decay of neutron with participation of the light vector boson X17. J. Phys. Conf. Ser. 1506, 012004 (2020).
Darmé, L., Mancini, M., Nardi, E. & Raggi, M. Resonant search for the X17 boson at PADME. Phys. Rev. D 106, 115036 (2022).
Echenard, B., Essig, R. & Zhong, Y.-M. Projections for dark photon searches at Mu3e. J. High Energy Phys. 01, 113 (2015).
Bastin, B. et al. Investigation of a light dark boson existence: the new JEDI project. EPJ Web Conf. 275, 01012 (2023).
Aguilar, A. et al. Evidence for neutrino oscillations from the observation of \({\bar{\nu }}_{e}\) appearance in a \({\bar{\nu }}_{e}\) beam. Phys. Rev. D 64, 112007 (2001).
Aguilar-Arevalo, A. A. et al. Significant excess of electron-like events in the MiniBooNE short-baseline neutrino experiment. Phys. Rev. Lett. 121, 221801 (2018).
Aguilar-Arevalo, A. A. et al. Updated MiniBooNE neutrino oscillation results with increased data and new background studies. Phys. Rev. D 103, 052002 (2021).
Brdar, V. & Kopp, J. Can standard model and experimental uncertainties resolve the MiniBooNE anomaly? Phys. Rev. D 105, 115024 (2022).
Acciarri, R. et al. Design and construction of the MicroBooNE detector. J. Instrum. 12, P02017 (2017).
Abratenko, P. et al. Search for an excess of electron neutrino interactions in MicroBooNE using multiple final-state topologies. Phys. Rev. Lett. 128, 241801 (2022).
Aguilar-Arevalo, A. A. et al. MiniBooNE and MicroBooNE combined fit to a 3+1 sterile neutrino scenario. Phys. Rev. Lett. 129, 201801 (2022).
Adamson, P. et al. Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit. Phys. Rev. Lett. 122, 091803 (2019).
Aartsen, M. G. et al. eV-scale sterile neutrino search using eight years of atmospheric muon neutrino data from the IceCube Neutrino Observatory. Phys. Rev. Lett. 125, 141801 (2020).
Dentler, M. et al. Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos. J. High Energy Phys. 08, 010 (2018).
Babu, K. S., Brdar, V., de Gouvêa, A. & Machado, P. A. N. Addressing the short-baseline neutrino anomalies with energy-dependent mixing parameters. Phys. Rev. D 107, 015017 (2023).
Acero, M. A. et al. White paper on light sterile neutrino searches and related phenomenology. Preprint at https://arxiv.org/abs/2203.07323 (2022).
Declais, Y. et al. Search for neutrino oscillations at 15-meters, 40-meters, and 95-meters from a nuclear power reactor at Bugey. Nucl. Phys. B 434, 503–534 (1995).
Apollonio, M. et al. Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station. Eur. Phys. J. C 27, 331–374 (2003).
Mention, G. et al. The reactor antineutrino anomaly. Phys. Rev. D 83, 073006 (2011).
Hampel, W. et al. Final results of the Cr-51 neutrino source experiments in GALLEX. Phys. Lett. B 420, 114–126 (1998).
Kaether, F., Hampel, W., Heusser, G., Kiko, J. & Kirsten, T. Reanalysis of the GALLEX solar neutrino flux and source experiments. Phys. Lett. B 685, 47–54 (2010).
Abdurashitov, J. N. et al. Measurement of the solar neutrino capture rate with gallium metal. III: results for the 2002–2007 data-taking period. Phys. Rev. C 80, 015807 (2009).
Acero, M. A., Giunti, C. & Laveder, M. Limits on nu(e) and anti-nu(e) disappearance from gallium and reactor experiments. Phys. Rev. D 78, 073009 (2008).
Giunti, C. & Laveder, M. Statistical significance of the gallium anomaly. Phys. Rev. C 83, 065504 (2011).
Brdar, V., Gehrlein, J. & Kopp, J. Towards resolving the gallium anomaly. J. High Energy Phys. 05, 143 (2023).
Giunti, C., Li, Y. F., Ternes, C. A. & Xin, Z. Reactor antineutrino anomaly in light of recent flux model refinements. Phys. Lett. B 829, 137054 (2022).
Berryman, J. M., Coloma, P., Huber, P., Schwetz, T. & Zhou, A. Statistical significance of the sterile-neutrino hypothesis in the context of reactor and gallium data. J. High Energy Phys. 02, 055 (2022).
Losada, M., Nir, Y., Perez, G., Savoray, I. & Shpilman, Y. Parametric resonance in neutrino oscillations induced by ultra-light dark matter and implications for KamLAND and JUNO. J. High Energy Phys. 03, 032 (2023).
Barinov, V. V. et al. Search for electron-neutrino transitions to sterile states in the BEST experiment. Phys. Rev. C 105, 065502 (2022).
Acciarri, R. et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): conceptual design report, Vol. 2: the Physics Program for DUNE at LBNF (2015).
Fava, A. FNAL SBL Program Status. PoS NuFACT2018, 011 (2019).
Kobayashi, M. & Maskawa, T. CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973).
Cabibbo, N. Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963).
Czarnecki, A., Marciano, W. J. & Sirlin, A. Neutron lifetime and axial coupling connection. Phys. Rev. Lett. 120, 202002 (2018).
Hardy, J. C. & Towner, I. S. Superallowed 0+ → 0+ nuclear β decays: 2020 critical survey, with implications for Vud and CKM unitarity. Phys. Rev. C 102, 045501 (2020).
Ambrosino, F. et al. Measurement of the absolute branching ratio for the K+ → μ+ν(γ) decay with the KLOE detector. Phys. Lett. B 632, 76–80 (2006).
Ambrosino, F. et al. Measurement of the charged kaon lifetime with the KLOE detector. J. High Energy Phys. 01, 073 (2008).
Marciano, W. J. & Sirlin, A. Improved calculation of electroweak radiative corrections and the value of Vud. Phys. Rev. Lett. 96, 032002 (2006).
Seng, C.-Y., Gorchtein, M., Patel, H. H. & Ramsey-Musolf, M. J. Reduced hadronic uncertainty in the determination of Vud. Phys. Rev. Lett. 121, 241804 (2018).
Moulson, M. Experimental determination of Vus from kaon decays. PoS CKM2016, 033 (2017).
Seng, C.-Y., Galviz, D., Marciano, W. J. & Meißner, U.-G. Update on ∣Vus∣ and ∣Vus/Vud∣ from semileptonic kaon and pion decays. Phys. Rev. D 105, 013005 (2022).
Cirigliano, V., Crivellin, A., Hoferichter, M. & Moulson, M. Scrutinizing CKM unitarity with a new measurement of the Kμ3/Kμ2 branching fraction. Phys. Lett. B 838, 137748 (2023).
Amhis, Y. S. et al. Averages of b-hadron, c-hadron, and τ-lepton properties as of 2021. Phys. Rev. D 107, 052008 (2023).
Crivellin, A., Hoferichter, M. & Manzari, C. A. Fermi constant from muon decay versus electroweak fits and Cabibbo–Kobayashi–Maskawa Unitarity. Phys. Rev. Lett. 127, 071801 (2021).
Capdevila, B., Crivellin, A., Manzari, C. A. & Montull, M. Explaining b → sℓ+ℓ− and the Cabibbo angle anomaly with a vector triplet. Phys. Rev. D 103, 015032 (2021).
Crivellin, A., Müller, D. & Schnell, L. Combined constraints on first generation leptoquarks. Phys. Rev. D 103, 115023 (2021) (Addendum: Phys. Rev. D 104, 055020 (2021)).
Crivellin, A., Kirk, F., Manzari, C. A. & Panizzi, L. Searching for lepton flavor universality violation and collider signals from a singly charged scalar singlet. Phys. Rev. D 103, 073002 (2021).
Buras, A. J., Crivellin, A., Kirk, F., Manzari, C. A. & Montull, M. Global analysis of leptophilic \({Z}^{{\prime} }\) bosons. J. High Energy Phys. 06, 068 (2021).
Coutinho, A. M., Crivellin, A. & Manzari, C. A. Global fit to modified neutrino couplings and the Cabibbo-angle anomaly. Phys. Rev. Lett. 125, 071802 (2020).
Kirk, M. Cabibbo anomaly versus electroweak precision tests: an exploration of extensions of the standard model. Phys. Rev. D 103, 035004 (2021).
Belfatto, B., Beradze, R. & Berezhiani, Z. The CKM unitarity problem: a trace of new physics at the TeV scale? Eur. Phys. J. C 80, 149 (2020).
Branco, G. C., Penedo, J. T., Pereira, P. M. F., Rebelo, M. N. & Silva-Marcos, J. I. Addressing the CKM unitarity problem with a vector-like up quark. J. High Energy Phys. 07, 099 (2021).
Belfatto, B. & Berezhiani, Z. Are the CKM anomalies induced by vector-like quarks? Limits from flavor changing and standard model precision tests. J. High Energy Phys. 10, 079 (2021).
Crivellin, A., Kirk, M., Kitahara, T. & Mescia, F. Global fit of modified quark couplings to EW gauge bosons and vector-like quarks in light of the Cabibbo angle anomaly. J. High Energy Phys. 03, 234 (2023).
Crivellin, A., Kirk, F., Manzari, C. A. & Montull, M. Global electroweak fit and vector-like leptons in light of the Cabibbo angle anomaly. J. High Energy Phys. 12, 166 (2020).
Byrne, J. & Dawber, P. G. A revised value for the neutron lifetime measured using a Penning trap. EPL 33, 187 (1996).
Yue, A. T. et al. Improved determination of the neutron lifetime. Phys. Rev. Lett. 111, 222501 (2013).
Gonzalez, F. M. et al. Improved neutron lifetime measurement with UCNτ. Phys. Rev. Lett. 127, 162501 (2021).
Fornal, B. & Grinstein, B. Dark matter interpretation of the neutron decay anomaly. Phys. Rev. Lett. 120, 191801 (2018) (Erratum: Phys. Rev. Lett. 124, 219901 (2020)).
Berezhiani, Z. Neutron lifetime puzzle and neutron–mirror neutron oscillation. Eur. Phys. J. C 79, 484 (2019).
Brodeur, M. et al. Nuclear β decay as a probe for physics beyond the standard model. Preprint at https://arxiv.org/abs/2301.03975 (2023).
Altmannshofer, W. et al. PIONEER: studies of rare pion decays. Preprint at https://arxiv.org/abs/2203.01981 (2022).
Ayres, N. J. et al. Improved search for neutron to mirror-neutron oscillations in the presence of mirror magnetic fields with a dedicated apparatus at the PSI UCN source. Symmetry 14, 503 (2022).
Bordone, M., Gubernari, N., Huber, T., Jung, M. & van Dyk, D. A puzzle in \({\bar{B}}_{(s)}^{0}\to {D}_{(s)}^{(* )+}\{{\pi }^{-},{K}^{-}\}\) decays and extraction of the fs/fd fragmentation fraction. Eur. Phys. J. C 80, 951 (2020).
Beneke, M., Buchalla, G., Neubert, M. & Sachrajda, C. T. QCD factorization in B → πK, ππ decays and extraction of Wolfenstein parameters. Nucl. Phys. B 606, 245–321 (2001).
Piscopo, M. L. & Rusov, A. V. Non-factorisable effects in the decays \({\overline{B}}_{s}^{0}\to {D}_{s}^{+}{\pi }^{-}\) and \({\overline{B}}_{s}^{0}\to {D}_{s}^{+}{\pi }^{-}\) from LCSR. J. High Energy Phys. 10, 180 (2023).
Iguro, S. & Kitahara, T. Implications for new physics from a novel puzzle in \({\bar{B}}_{(s)}^{0}\to {D}_{(s)}^{(* )+}\{{\pi }^{-},{K}^{-}\}\) decays. Phys. Rev. D 102, 071701 (2020).
Bordone, M., Greljo, A. & Marzocca, D. Exploiting di-jet resonance searches for flavor physics. J. High Energy Phys. 08, 036 (2021).
Aaij, R. et al. Evidence for CP violation in time-integrated D0 → h−h+ decay rates. Phys. Rev. Lett. 108, 111602 (2012).
Aaij, R. et al. Observation of CP violation in charm decays. Phys. Rev. Lett. 122, 211803 (2019).
Chala, M., Lenz, A., Rusov, A. V. & Scholtz, J. ΔACP within the standard model and beyond. J. High Energy Phys. 07, 161 (2019).
Aaij, R. et al. Measurement of the time-integrated CP asymmetry in D0 → K−K+ decays. Phys. Rev. Lett. 131, 091802 (2023).
Bause, R. et al. U-spin-CP anomaly in charm. Phys. Rev. D 108, 035005 (2023).
Altmannshofer, W., Primulando, R., Yu, C.-T. & Yu, F. New physics models of direct CP violation in charm decays. J. High Energy Phys. 04, 049 (2012).
Buras, A. J., Fleischer, R., Recksiegel, S. & Schwab, F. B → ππ, new physics in B → πK and implications for rare K and B decays. Phys. Rev. Lett. 92, 101804 (2004).
Aaij, R. et al. Measurement of CP violation in the decay B+ → K+π0. Phys. Rev. Lett. 126, 091802 (2021).
Fleischer, R., Jaarsma, R. & Vos, K. K. Towards new frontiers with B → πK decays. Phys. Lett. B 785, 525–529 (2018).
Aaij, R. et al. Measurement of CP asymmetries in two-body \({B}_{(s)}^{0}\)-meson decays to charged pions and kaons. Phys. Rev. D 98, 032004 (2018).
Algueró, M., Crivellin, A., Descotes-Genon, S., Matias, J. & Novoa-Brunet, M. A new B-flavour anomaly in \({B}_{d,s}\to {K}^{* 0}{\bar{K}}^{* 0}\): anatomy and interpretation. J. High Energy Phys. 04, 066 (2021).
Calibbi, L., Crivellin, A., Kirk, F., Manzari, C. A. & Vernazza, L. \({Z}^{{\prime} }\) models with less-minimal flavour violation. Phys. Rev. D 101, 095003 (2020).
Crivellin, A., Gross, C., Pokorski, S. & Vernazza, L. Correlating \({\epsilon }^{{\prime} }/\epsilon \) to hadronic B decays via U(2)3 flavour symmetry. Phys. Rev. D 101, 015022 (2020).
Buras, A. J. \({\varepsilon }^{{\prime} }/\varepsilon \) in the standard model and beyond: 2021. In 11th International Workshop on the CKM Unitarity Triangle. Preprint at https://arxiv.org/abs/2203.12632 (2022).
Bhattacharya, B., Kumbhakar, S., London, D. & Payot, N. U-spin puzzle in B decays. Phys. Rev. D 107, L011505 (2023).
Charles, J. et al. CP violation and the CKM matrix: assessing the impact of the asymmetric B factories. Eur. Phys. J. C 41, 1–131 (2005).
Bona, M. et al. The 2004 UTfit collaboration report on the status of the unitarity triangle in the standard model. J. High Energy Phys. 07, 028 (2005).
Gambino, P., Jung, M. & Schacht, S. The Vcb puzzle: an update. Phys. Lett. B 795, 386–390 (2019).
Crivellin, A. & Pokorski, S. Can the differences in the determinations of Vub and Vcb be explained by new physics? Phys. Rev. Lett. 114, 011802 (2015).
Lees, J. P. et al. Evidence for an excess of \(\bar{B}\to {D}^{(* )}{\tau }^{-}{\bar{\nu }}_{\tau }\) decays. Phys. Rev. Lett. 109, 101802 (2012).
Lees, J. P. et al. Measurement of an excess of \(\bar{B}\to {D}^{(* )}{\tau }^{-}{\bar{\nu }}_{\tau }\) decays and implications for charged Higgs bosons. Phys. Rev. D 88, 072012 (2013).
Huschle, M. et al. Measurement of the branching ratio of \(\bar{B}\to {D}^{(* )}{\tau }^{-}{\bar{\nu }}_{\tau }\) relative to \(\bar{B}\to {D}^{(* )}{\tau }^{-}{\bar{\nu }}_{\tau }\) decays with hadronic tagging at Belle. Phys. Rev. D 92, 072014 (2015).
Sato, Y. et al. Measurement of the branching ratio of \({\bar{B}}^{0}\to {D}^{* +}{\tau }^{-}{\bar{\nu }}_{\tau }\) relative to \({\bar{B}}^{0}\to {D}^{* +}{\tau }^{-}{\bar{\nu }}_{\tau }\) decays with a semileptonic tagging method. Phys. Rev. D 94, 072007 (2016).
Hirose, S. et al. Measurement of the τ lepton polarization and R(D*) in the decay \(\bar{B}\to {D}^{* }{\tau }^{-}{\bar{\nu }}_{\tau }\). Phys. Rev. Lett. 118, 211801 (2017).
Hirose, S. et al. Measurement of the τ lepton polarization and R(D*) in the decay \(\bar{B}\to {D}^{* }{\tau }^{-}{\bar{\nu }}_{\tau }\) with one-prong hadronic τ decays at Belle. Phys. Rev. D 97, 012004 (2018).
Caria, G. et al. Measurement of \({\mathcal{R}}(D)\) and \({\mathcal{R}}(D)\) with a semileptonic tagging method. Phys. Rev. Lett. 124, 161803 (2020).
Aaij, R. et al. Measurement of the ratio of branching fractions \({\mathcal{B}}({\bar{B}}^{0}\to {D}^{* +}{\tau }^{-}{\bar{\nu }}_{\tau })/\)\({\mathcal{B}}({\bar{B}}^{0}\to {D}^{* +}{\mu }^{-}{\bar{\nu }}_{\mu })\). Phys. Rev. Lett. 115, 111803 (2015) (Erratum: Phys. Rev. Lett. 115, 159901 (2015)).
Aaij, R. et al. Measurement of the ratio of the B0 → D*−τ+ντ and B0 → D*−μ+νμ branching fractions using three-prong τ-lepton decays. Phys. Rev. Lett. 120, 171802 (2018).
Aaij, R. et al. Test of lepton flavor universality by the measurement of the B0 → D*−τ+ντ branching fraction using three-prong τ decays. Phys. Rev. D 97, 072013 (2018).
Crivellin, A., Greub, C. & Kokulu, A. Explaining B → Dτν, B → D*τν and B → τν in a 2HDM of type III. Phys. Rev. D 86, 054014 (2012).
Fajfer, S., Kamenik, J. F., Nisandzic, I. & Zupan, J. Implications of lepton flavor universality violations in B decays. Phys. Rev. Lett. 109, 161801 (2012).
Celis, A., Jung, M., Li, X.-Q. & Pich, A. Sensitivity to charged scalars in B → D(*)τντ and B → τντ decays. J. High Energy Phys. 01, 054 (2013).
Bhattacharya, B., Datta, A., London, D. & Shivashankara, S. Simultaneous explanation of the RK and R(D(*)) puzzles. Phys. Lett. B 742, 370–374 (2015).
Sakaki, Y., Tanaka, M., Tayduganov, A. & Watanabe, R. Testing leptoquark models in \(\bar{B}\to {D}^{(* )}\tau \bar{\nu }\). Phys. Rev. D 88, 094012 (2013).
Freytsis, M., Ligeti, Z. & Ruderman, J. T. Flavor models for \(\bar{B}\to {D}^{(* )}\tau \bar{\nu }\). Phys. Rev. D 92, 054018 (2015).
Fajfer, S. & Košnik, N. Vector leptoquark resolution of RK and \({R}_{{D}^{(* )}}\) puzzles. Phys. Lett. B 755, 270–274 (2016).
Iguro, S. Revival of H− interpretation of R(D(*)) anomaly and closing low mass window. Phys. Rev. D 105, 095011 (2022).
Blanke, M., Iguro, S. & Zhang, H. Towards ruling out the charged Higgs interpretation of the \({R}_{{D}^{\left(* \right)}}\) anomaly. J. High Energy Phys. 06, 043 (2022).
Greljo, A., Isidori, G. & Marzocca, D. On the breaking of lepton flavor universality in B decays. J. High Energy Phys. 07, 142 (2015).
Calibbi, L., Crivellin, A. & Ota, T. Effective field theory approach to Springer InlineMath and B → D(*)τν with third generation couplings. Phys. Rev. Lett. 115, 181801 (2015).
Barbieri, R., Murphy, C. W. & Senia, F. β-decay anomalies in a composite leptoquark model. Eur. Phys. J. C 77, 8 (2017).
Di Luzio, L., Greljo, A. & Nardecchia, M. Gauge leptoquark as the origin of B-physics anomalies. Phys. Rev. D 96, 115011 (2017).
Calibbi, L., Crivellin, A. & Li, T. Model of vector leptoquarks in view of the B-physics anomalies. Phys. Rev. D 98, 115002 (2018).
Bordone, M., Cornella, C., Fuentes-Martin, J. & Isidori, G. A three-site gauge model for flavor hierarchies and flavor anomalies. Phys. Lett. B 779, 317–323 (2018).
Blanke, M. & Crivellin, A. B meson anomalies in a Pati–Salam model within the Randall–Sundrum background. Phys. Rev. Lett. 121, 011801 (2018).
King, S. F. Twin Pati–Salam theory of flavour with a TeV scale vector leptoquark. J. High Energy Phys. 11, 161 (2021).
Crivellin, A., Müller, D. & Ota, T. Simultaneous explanation of R(D()) and b → sμ+μ: the last scalar leptoquarks standing. J. High Energy Phys. 09, 040 (2017).
Crivellin, A., Müller, D. & Saturnino, F. Flavor phenomenology of the leptoquark singlet-triplet model. J. High Energy Phys. 06, 020 (2020).
Gherardi, V., Marzocca, D. & Venturini, E. Low-energy phenomenology of scalar leptoquarks at one-loop accuracy. J. High Energy Phys. 01, 138 (2021).
Bainbridge, R. Recording and reconstructing 10 billion unbiased b hadron decays in CMS. EPJ Web Conf. 245, 01025 (2020).
Aaij, R. et al. Tests of lepton universality using \({B}^{0}\to {K}_{S}^{0}{\ell }^{+}{\ell }^{-}\) and B+ → K*+ℓ+ℓ− decays. Phys. Rev. Lett. 128, 191802 (2022).
Aaij, R. et al. Test of lepton universality in b → sℓ+ℓ− decays. Phys. Rev. Lett. 131, 051803 (2023).
ATLAS, CMS & LHCb Collaborations. Combination of the ATLAS, CMS and LHCb results on the \({B}_{(s)}^{0}\to {\mu }^{+}{\mu }^{-}\) decays. Report No. CMS-PAS-BPH-20-003 (CERN Document Server, 2020).
Tumasyan, A. et al. Measurement of the \({B}_{s}^{0}\to {\mu }^{+}{\mu }^{-}\) decay properties and search for the B0 → μ+μ− decay in proton–proton collisions at \({B}_{s}^{0}\to {\mu }^{+}{\mu }^{-}\) = 13 TeV. Phys. Lett. B 842, 137955 (2023).
Hermann, T., Misiak, M. & Steinhauser, M. Three-loop QCD corrections to Bs → μ+μ−. J. High Energy Phys. 12, 097 (2013).
Beneke, M., Bobeth, C. & Szafron, R. Enhanced electromagnetic correction to the rare B-meson decay Bs,d → μ+μ−. Phys. Rev. Lett. 120, 011801 (2018).
Descotes-Genon, S., Matias, J., Ramon, M. & Virto, J. Implications from clean observables for the binned analysis of B → K*μ+μ− at large recoil. J. High Energy Phys. 01, 048 (2013).
Aaij, R. et al. Measurement of CP-averaged observables in the B0 → K*0μ+μ− decay. Phys. Rev. Lett. 125, 011802 (2020).
Aaij, R. et al. Differential branching fractions and isospin asymmetries of B → K(*)μ+μ− decays. J. High Energy Phys. 06, 133 (2014).
Parrott, W. G., Bouchard, C. & Davies, C. T. H. Standard model predictions for \(B\to K{\ell }^{+}{\ell }^{-},B\to K{\ell }_{1}^{-}{\ell }_{2}^{+}\) and B → Kνν using form factors from Nf=2+1+1 lattice QCD. Phys. Rev. D 107, 014511 (2023) (Erratum: Phys. Rev. D 107, 119903 (2023)).
Aaij, R. et al. Branching fraction measurements of the rare \({B}_{s}^{0}\to \phi {\mu }^{+}{\mu }^{-}\) and \({B}_{s}^{0}\to \phi {\mu }^{+}{\mu }^{-}\)-decays. Phys. Rev. Lett. 127, 151801 (2021).
Gubernari, N., Reboud, M., van Dyk, D. & Virto, J. Improved theory predictions and global analysis of exclusive b → sμ+μ− processes. J. High Energy Phys. 09, 133 (2022).
Isidori, G., Polonsky, Z. & Tinari, A. Semi-inclusive \(b\to s\bar{\ell }\ell \) transitions at high q2. Phys. Rev. D 108, 093008 (2023).
Buras, A. J. Standard model predictions for rare K and B decays without new physics infection. Eur. Phys. J. C 83, 66 (2023).
Ciuchini, M. et al. Constraints on lepton universality violation from rare B decays. Phys. Rev. D 107, 055036 (2023).
Algueró, M. et al. To (b)e or not to (b)e: no electrons at LHCb. Eur. Phys. J. C 83, 648 (2023).
Belle II Collaboration. Evidence for \({B}^{+}\to {K}^{+}\nu \bar{\nu }\) decays Preprint at https://arxiv.org/abs/2311.14647 (2023).
Algueró, M., Matias, J., Capdevila, B. & Crivellin, A. Disentangling lepton flavor universal and lepton flavor universality violating effects in b → sℓ+ℓ− transitions. Phys. Rev. D 105, 113007 (2022).
Buras, A. J. & Girrbach, J. Left-handed \({Z}^{{\prime} }\) and Z FCNC quark couplings facing new b → sμ+μ− data. J. High Energy Phys. 12, 009 (2013).
Gauld, R., Goertz, F. & Haisch, U. On minimal \({Z}^{{\prime} }\) explanations of the B → K*μ+μ− anomaly. Phys. Rev. D 89, 015005 (2014).
Di Luzio, L., Kirk, M. & Lenz, A. Updated Bs-mixing constraints on new physics models for b → sℓ+ℓ− anomalies. Phys. Rev. D 97, 095035 (2018).
Allanach, B., Queiroz, F. S., Strumia, A. & Sun, S. \({Z}^{{\prime} }\) models for the LHCb and g − 2 muon anomalies. Phys. Rev. D 93, 055045 (2016) (Erratum: Phys. Rev. D 95, 119902 (2017)).
LEP Collaborations, LEP Electroweak Working Group, SLD Electroweak & Heavy Flavour Groups. A combination of preliminary electroweak measurements and constraints on the standard model. Preprint at https://arxiv.org/abs/hep-ex/0312023 (2004).
Crivellin, A. et al. Lepton-flavour violating B decays in generic \({Z}^{{\prime} }\) models. Phys. Rev. D 92, 054013 (2015).
Crivellin, A., D’Ambrosio, G. & Heeck, J. Addressing the LHC flavor anomalies with horizontal gauge symmetries. Phys. Rev. D 91, 075006 (2015).
Bobeth, C., Haisch, U., Lenz, A., Pecjak, B. & Tetlalmatzi-Xolocotzi, G. On new physics in ΔΓd. J. High Energy Phys. 06, 040 (2014).
Crivellin, A., Fuks, B. & Schnell, L. Explaining the hints for lepton flavour universality violation with three S2 leptoquark generations. J. High Energy Phys. 06, 169 (2022).
Crivellin, A., Greub, C., Müller, D. & Saturnino, F. Importance of loop effects in explaining the accumulated evidence for new physics in B decays with a vector leptoquark. Phys. Rev. Lett. 122, 011805 (2019).
Crivellin, A., Kokulu, A. & Greub, C. Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure. Phys. Rev. D 87, 094031 (2013).
Crivellin, A., Müller, D. & Wiegand, C. b → sℓ+ℓ− transitions in two-Higgs-doublet models. J. High Energy Phys. 06, 119 (2019).
Iguro, S. Conclusive probe of the charged Higgs solution of Springer InlineMath and R(D(*)) discrepancies. Phys. Rev. D 107, 095004 (2023).
Crivellin, A. & Kirk, M. Diquark explanation of b → sℓ+ℓ−. Phys. Rev. D 108, L111701 (2023).
Gubernari, N., Reboud, M., van Dyk, D. & Virto, J. Dispersive analysis of B → K(*) and Bs → ϕ form factors. J. High Energ. Phys. 2023, 153 (2023).
Aaltonen, T. et al. High-precision measurement of the W boson mass with the CDF II detector. Science 376, 170–176 (2022).
Aaboud, M. et al. Measurement of the W-boson mass in pp collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. Eur. Phys. J. C 78, 110 (2018). (Erratum: Eur. Phys. J. C 78, 898 (2018)).
Chatrchyan, S. et al. Measurement of the weak mixing angle with the Drell–Yan process in proton–proton collisions at the LHC. Phys. Rev. D 84, 112002 (2011).
Aaij, R. et al. Measurement of the forward–backward asymmetry in Z/γ* → μ+μ− decays and determination of the effective weak mixing angle. J. High Energy Phys. 11, 190 (2015).
Aaij, R. et al. Measurement of the W boson mass. J. High Energy Phys. 01, 036 (2022).
Schael, S. et al. Electroweak measurements in electron–positron collisions at W-boson-pair energies at LEP. Phys. Rep. 532, 119–244 (2013).
de Blas, J., Pierini, M., Reina, L. & Silvestrini, L. Impact of the recent measurements of the top-quark and W-boson masses on electroweak precision fits. Phys. Rev. Lett. 129, 271801 (2022).
ATLAS Collaboration. Improved W boson mass measurement using 7 TeV proton–proton collisions with the ATLAS detector. Report No. ATLAS-CONF-2023-004 (CERN Document Server, 2023).
Schael, S. et al. Precision electroweak measurements on the Z resonance. Phys. Rep. 427, 257–454 (2006).
Konetschny, W. & Kummer, W. Nonconservation of total lepton number with scalar bosons. Phys. Lett. B 70, 433–435 (1977).
Algueró, M., Matias, J., Crivellin, A. & Manzari, C. A. Unified explanation of the anomalies in semileptonic B decays and the W mass. Phys. Rev. D 106, 033005 (2022).
Crivellin, A., Kirk, M., Kitahara, T. & Mescia, F. Large t → cZ as a sign of vectorlike quarks in light of the W mass. Phys. Rev. D 106, L031704 (2022).
Crivellin, A., Müller, D. & Saturnino, F. Leptoquarks in oblique corrections and Higgs signal strength: status and prospects. J. High Energy Phys. 11, 094 (2020).
Strumia, A. Interpreting electroweak precision data including the W-mass CDF anomaly. J. High Energy Phys. 08, 248 (2022).
Baer, H. et al. The International Linear Collider Technical Design Report — Vol. 2: Physics. Preprint at https://arxiv.org/abs/1306.6352 (2013).
Linssen, L., Miyamoto, A., Stanitzki, M. & Weerts, H. (eds) Physics and Detectors at CLIC: CLIC Conceptual Design Report. CERN Yellow Report CERN-2012-003 (CERN Document Server, 2012).
Charles, T. K. et al. The Compact Linear Collider (CLIC) — 2018 Summary Report 2/2018. Preprint at https://arxiv.org/abs/1812.06018 (2018).
Abada, A. et al. FCC-ee: the lepton collider: future circular collider conceptual design report volume 2. Eur. Phys. J. ST 228, 261–623 (2019).
Abada, A. et al. FCC physics opportunities: future circular collider conceptual design report volume 1. Eur. Phys. J. C 79, 474 (2019).
Dong, M. et al. CEPC conceptual design report: volume 2 — physics & detector. Preprint at https://arxiv.org/abs/1811.10545 (2018).
An, F. et al. Precision Higgs physics at the CEPC. Chin. Phys. C 43, 043002 (2019).
Fischer, O. et al. Unveiling hidden physics at the LHC. Eur. Phys. J. C 82, 665 (2022).
von Buddenbrock, S. et al. Phenomenological signatures of additional scalar bosons at the LHC. Eur. Phys. J. C 76, 580 (2016).
von Buddenbrock, S. et al. Multi-lepton signatures of additional scalar bosons beyond the standard model at the LHC. J. Phys. G 45, 115003 (2018).
Buddenbrock, S. et al. The emergence of multi-lepton anomalies at the LHC and their compatibility with new physics at the EW scale. J. High Energy Phys. 10, 157 (2019).
Hernandez, Y. et al. The anomalous production of multi-lepton and its impact on the measurement of Wh production at the LHC. Eur. Phys. J. C 81, 365 (2021).
von Buddenbrock, S., Ruiz, R. & Mellado, B. Anatomy of inclusive \(t\bar{t}W\) production at hadron colliders. Phys. Lett. B 811, 135964 (2020).
Banik, S., Coloretti, G., Crivellin, A. & Mellado, B. Uncovering new Higgses in the LHC analyses of Differential \(t\bar{t}\) cross sections (2023). Preprint at https://arxiv.org/abs/2308.07953 (2023).
Aad, G. et al. Inclusive and differential cross-sections for dilepton \(t\overline{t}\) production measured in \(t\overline{t}\) = 13 TeV pp collisions with the ATLAS detector. J. High Energy Phys. 07, 141 (2023).
Czakon, M., Mitov, A. & Poncelet, R. NNLO QCD corrections to leptonic observables in top-quark pair production and decay. J. High Energy Phys. 05, 212 (2021).
Gehrmann, T. et al. W+W− production at hadron colliders in next to next to leading order QCD. Phys. Rev. Lett. 113, 212001 (2014).
Grazzini, M., Kallweit, S., Pozzorini, S., Rathlev, D. & Wiesemann, M. W+W production at the LHC: fiducial cross sections and distributions in NNLO QCD. J. High Energy Phys. 08, 140 (2016).
Hamilton, K., Melia, T., Monni, P. F., Re, E. & Zanderighi, G. Merging WW and WW+jet with MINLO. J. High Energy Phys. 09, 057 (2016).
Re, E., Wiesemann, M. & Zanderighi, G. NNLOPS accurate predictions for W+W− production. J. High Energy Phys. 12, 121 (2018).
Caola, F., Melnikov, K., Röntsch, R. & Tancredi, L. QCD corrections to W+W− production through gluon fusion. Phys. Lett. B 754, 275–280 (2016).
Grazzini, M., Kallweit, S., Rathlev, D. & Wiesemann, M. W±Z production at the LHC: fiducial cross sections and distributions in NNLO QCD. J. High Energy Phys. 05, 139 (2017).
Brein, O., Djouadi, A. & Harlander, R. NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders. Phys. Lett. B 579, 149–156 (2004).
Ferrera, G., Grazzini, M. & Tramontano, F. Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO. Phys. Rev. Lett. 107, 152003 (2011).
Campbell, J. M., Ellis, R. K. & Williams, C. Associated production of a Higgs boson at NNLO. J. High Energy Phys. 06, 179 (2016).
Buonocore, L. et al. Precise predictions for the associated production of a W boson with a top-antitop quark pair at the LHC. Phys. Rev. Lett. 131, 231901 (2023).
Ciccolini, M. L., Dittmaier, S. & Kramer, M. Electroweak radiative corrections to associated WH and ZH production at hadron colliders. Phys. Rev. D 68, 073003 (2003).
Denner, A., Dittmaier, S., Kallweit, S. & Muck, A. Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK. J. High Energy Phys. 03, 075 (2012).
Denner, A. & Pellen, M. NLO electroweak corrections to off-shell top–antitop production with leptonic decays at the LHC. J. High Energy Phys. 08, 155 (2016).
Biedermann, B. et al. Next-to-leading-order electroweak corrections to pp → W+W− → 4 leptons at the LHC. J. High Energy Phys. 06, 065 (2016).
Dittmaier, S., Knippen, G. & Schwan, C. Next-to-leading-order QCD and electroweak corrections to triple-W production with leptonic decays at the LHC. J. High Energy Phys. 02, 003 (2020).
Sirunyan, A. M. et al. Search for heavy Higgs bosons decaying to a top quark pair in proton–proton collisions at \(\sqrt{s}=\) 13 TeV. J. High Energy Phys. 04, 171 (2020) (Erratum: J. High Energy Phys. 03, 187 (2022)).
Coloretti, G., Crivellin, A., Bhattacharya, S. & Mellado, B. Searching for low-mass resonances decaying into W bosons. Phys. Rev. D 108, 035026 (2023).
Ježo, T., Lindert, J. M. & Pozzorini, S. Resonance-aware NLOPS matching for off-shell \(t\overline{t}+tW\) production with semileptonic decays. J. High Energy Phys. 10, 008 (2023).
CMS Collaboration. Search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV in the diphoton final state in proton–proton collisions at \(\sqrt{s}=13\,{\rm{TeV}}\). Report No. CMS-PAS-HIG-20-002 (CERN Document Server, 2023).
ATLAS Collaboration. Search for diphoton resonances in the 66 to 110 GeV mass range using 140 fb−1 of 13 TeV pp collisions collected with the ATLAS detector. Report No. ATLAS-CONF-2023-035 (CERN Document Server, 2023).
Aad, G. et al. Search for dark matter in events with missing transverse momentum and a Higgs boson decaying into two photons in pp collisions at \(\sqrt{s}\) = 13 TeV with the ATLAS detector. J. High Energy Phys. 10, 013 (2021).
Sirunyan, A. M. et al. Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \(\sqrt{s}=13\) TeV. J. High Energy Phys. 11, 047 (2017).
Aad, G. et al. Search for resonances decaying into photon pairs in 139 fb−1 of pp collisions at \(\sqrt{s}\)=13 TeV with the ATLAS detector. Phys. Lett. B 822, 136651 (2021).
CMS Collaboration. Searches for additional Higgs bosons and vector leptoquarks in ττ final states in proton–proton collisions at \(\sqrt{s}=13\,{\rm{TeV}}\). J. High Energy Phys. 2023, 73 (2023).
Aad, G. et al. Measurements of Higgs boson production cross-sections in the H → τ+τ− decay channel in pp collisions at \(\sqrt{s}\) = 13 TeV with the ATLAS detector. J. High Energy Phys. 08, 175 (2022).
Barate, R. et al. Search for the standard model Higgs boson at LEP. Phys. Lett. B 565, 61–75 (2003).
Aad, G. et al. Model-independent search for the presence of new physics in events including H → γγ with \(\sqrt{s}\) = 13 TeV pp data recorded by the ATLAS detector at the LHC. J. High Energy Phys. 07, 176 (2023).
Bhattacharya, S. et al. Growing excesses of new scalars at the electroweak scale. Preprint at https://arxiv.org/abs/2306.17209 (2023).
Crivellin, A. et al. Accumulating evidence for the associated production of a new Higgs boson at the LHC. Phys. Rev. D 108, 115031 (2023).
Consoli, M., Cosmai, L. & Fabbri, F. Second resonance of the Higgs field: more signals from the LHC experiments. Preprint at https://arxiv.org/abs/2208.00920 (2022).
Aad, G. et al. Search for heavy resonances decaying into a pair of Z bosons in the \({\ell }^{+}{\ell }^{-}{\ell {\prime} }^{+}{\ell {\prime} }^{-}\) and \({\ell }^{+}{\ell }^{-}{\ell {\prime} }^{+}{\ell {\prime} }^{-}\) final states using 139 fb−1 of proton–proton collisions at \({\ell }^{+}{\ell }^{-}{\ell {\prime} }^{+}{\ell {\prime} }^{-}\) TeV with the ATLAS detector. Eur. Phys. J. C 81, 332 (2021).
CMS Collaboration. Search for a new resonance decaying to two spin-0 bosons in a final state with two photons and two bottom quarks in proton–proton collisions at \(\sqrt{s}=13\,{\rm{TeV}}\). Preprint at https://doi.org/10.48550/arXiv.2310.01643 (2023).
CMS Collaboration. Search for high mass resonances decaying into W+W− in the dileptonic final state with 138 fb−1 of proton–proton collisions at \(\sqrt{s}=13\,\,{\rm{TeV}}\). Report No. CMS-PAS-HIG-20-016 (CERN Document Server, 2022).
Tumasyan, A. et al. Search for a heavy Higgs boson decaying into two lighter Higgs bosons in the ττbb final state at 13 TeV. J. High Energy Phys. 11, 057 (2021).
Le Yaouanc, A. & Richard, F. As a consequence of H(650) → W+W−/ZZ, one predicts H++ → W+W+ and H+ → ZW+, as indicated by LHC data. In 2nd ECFA Workshop on e+e- Higgs/EW/Top Factories. Preprint at https://arxiv.org/abs/2308.12180 (2023).
Haisch, U. & Malinauskas, A. Let there be light from a second light Higgs doublet. J. High Energy Phys. 03, 135 (2018).
Ashanujjaman, S. et al. SU(2)L triplet scalar as the origin of the 95 GeV excess? Phys. Rev. D 108, L091704 (2023).
Biekötter, T., Heinemeyer, S. & Weiglein, G. Excesses in the low-mass Higgs-boson search and the W-boson mass measurement. Eur. Phys. J. C 83, 450 (2023).
Banik, S., Crivellin, A., Iguro, S. & Kitahara, T. Asymmetric di-Higgs signals of the next-to-minimal 2HDM with a U(1) symmetry. Phys. Rev. D 108, 075011 (2023).
Georgi, H. & Machacek, M. Doubly charged HIGGS bosons. Nucl. Phys. B 262, 463–477 (1985).
Kundu, A., Le Yaouanc, A., Mondal, P. & Richard, F. Searches for scalars at LHC and interpretation of the findings. In 2022 ECFA Workshop on e+e- Higgs/EW/Top factories. Preprint at https://arxiv.org/abs/2211.11723 (2022).
Consoli, M. & Cosmai, L. A resonance of the Higgs field at 700 GeV and a new phenomenology. Preprint at https://arxiv.org/abs/2007.10837 (2020).
Cid Vidal, X. et al. Report from Working Group 3: beyond the Standard Model physics at the HL-LHC and HE-LHC. CERN Yellow Rep. Monogr. 7, 585–865 (2019).
Aaboud, M. et al. Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in pp collisions at \(\sqrt{s}=13\) TeV. Phys. Rev. Lett. 121, 081801 (2018).
Tumasyan, A. et al. Search for resonant and nonresonant production of pairs of dijet resonances in proton–proton collisions at \(\sqrt{s}\) = 13 TeV. J. High Energy Phys. 07, 161 (2023).
Crivellin, A., Manzari, C. A., Mellado, B. & Dahbi, S.-E. Consistency and interpretation of the LHC dijet excesses. Phys. Rev. D 107, 054045 (2023).
Aad, G. et al. Pursuit of paired dijet resonances in the Run 2 dataset with ATLAS. Phys. Rev. D 108, 112005 (2023).
Aad, G. et al. Search for vector–boson resonances decaying into a top quark and a bottom quark using pp collisions at \(\sqrt{s}=13\) TeV with the ATLAS detector. J. High Energ. Phys. 2023, 73 (2023).
Sirunyan, A. M. et al. Search for resonant and nonresonant new phenomena in high-mass dilepton final states at \(\sqrt{s}\) = 13 TeV. J. High Energy Phys. 07, 208 (2021).
Aad, G. et al. Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector. J. High Energy Phys. 11, 005 (2020) (Erratum: J. High Energy Phys. 04, 142 (2021)).
Greljo, A. & Marzocca, D. High-pT dilepton tails and flavor physics. Eur. Phys. J. C 77, 548 (2017).
Crivellin, A., Manzari, C. A. & Montull, M. Correlating nonresonant di-electron searches at the LHC to the Cabibbo-angle anomaly and lepton flavor universality violation. Phys. Rev. D 104, 115016 (2021).
Crivellin, A., Hoferichter, M., Kirk, M., Manzari, C. A. & Schnell, L. First-generation new physics in simplified models: from low-energy parity violation to the LHC. J. High Energy Phys. 10, 221 (2021).
Fernández Navarro, M. & King, S. F. B-anomalies in a twin Pati–Salam theory of flavour including the 2022 LHCb \({R}_{{K}^{\left(* \right)}}\) analysis. J. High Energy Phys. 02, 188 (2023).
Aebischer, J., Isidori, G., Pesut, M., Stefanek, B. A. & Wilsch, F. Confronting the vector leptoquark hypothesis with new low- and high-energy data. Eur. Phys. J. C 83, 153 (2023).
Aaboud, M. et al. Measurement of fiducial and differential W+W− production cross-sections at \(\sqrt{s}=13\) TeV with the ATLAS detector. Eur. Phys. J. C 79, 884 (2019).
Aad, G. et al. Observation of four-top-quark production in the multilepton final state with the ATLAS detector. Eur. Phys. J. C 83, 496 (2023).
Hayrapetyan, A. et al. Observation of four top quark production in proton–proton collisions at s=13 TeV. Phys. Lett. B 847, 138290 (2023).
CMS Collaboration. Measurement of Higgs boson production in association with a W or Z boson in the H → WW decay channel. Report No. CMS-PAS-HIG-19-017 (CERN Document Server, 2021).
Aad, G. et al. Observation of WWW production in pp collisions at \(\sqrt{s}\) =13 TeV with the ATLAS detector. Phys. Rev. Lett. 129, 061803 (2022).
Tumasyan, A. et al. Measurements of the Higgs boson production cross section and couplings in the W boson pair decay channel in proton–proton collisions at \(\sqrt{s}=13\,{\rm{TeV}}\). Eur. Phys. J. C 83, 667 (2023).
Buchmuller, W., Ruckl, R. & Wyler, D. Leptoquarks in lepton–quark collisions. Phys. Lett. B 191, 442–448 (1987) (Erratum: Phys. Lett. B 448, 320–320 (1999)).
Doršner, I., Fajfer, S., Greljo, A., Kamenik, J. F. & Košnik, N. Physics of leptoquarks in precision experiments and at particle colliders. Phys. Rep. 641, 1–68 (2016).
Pati, J. C. & Salam, A. Lepton number as the fourth color. Phys. Rev. D 10, 275–289 (1974) (Erratum: Phys. Rev. D 11, 703–703 (1975)).
Georgi, H. & Glashow, S. L. Unity of all elementary particle forces. Phys. Rev. Lett. 32, 438–441 (1974).
Barbier, R. et al. R-parity violating supersymmetry. Phys. Rep. 420, 1–202 (2005).
Hewett, J. L. & Rizzo, T. G. Low-energy phenomenology of superstring inspired E(6) models. Phys. Rep. 183, 193 (1989).
Weinberg, S. Elementary particle theory of composite particles. Phys. Rev. 130, 776–783 (1963).
Randall, L. & Sundrum, R. A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999).
Froggatt, C. D. & Nielsen, H. B. Hierarchy of quark masses, Cabibbo angles and CP violation. Nucl. Phys. B 147, 277–298 (1979).
Mohapatra, R. N. & Pati, J. C. A natural left-right symmetry. Phys. Rev. D 11, 2558 (1975).
Langacker, P. Grand unified theories and proton decay. Phys. Rep. 72, 185 (1981).
Antoniadis, I. A possible new dimension at a few TeV. Phys. Lett. B 246, 377–384 (1990).
Haber, H. E. & Kane, G. L. The search for supersymmetry: probing physics beyond the standard model. Phys. Rep. 117, 75–263 (1985).
Minkowski, P. μ → eγ at a rate of one out of 109 muon decays? Phys. Lett. B 67, 421–428 (1977).
Lee, B. W. & Shrock, R. E. Natural suppression of symmetry violation in gauge theories: muon–lepton and electron lepton number nonconservation. Phys. Rev. D 16, 1444 (1977).
Foot, R., Lew, H., He, X. G. & Joshi, G. C. Seesaw neutrino masses induced by a triplet of leptons. Z. Phys. C 44, 441 (1989).
Chanowitz, M. S. & Golden, M. Higgs boson triplets with \({M}_{W}={M}_{Z}\cos \theta \omega \). Phys. Lett. B 165, 105–108 (1985).
Branco, G. C. et al. Theory and phenomenology of two-Higgs-doublet models. Phys. Rep. 516, 1–102 (2012).
Acknowledgements
The work of A.C. is supported by a professorship grant from the Swiss National Science Foundation (No. PP00P2_211002). B.M. gratefully acknowledges the South African Department of Science and Innovation through the SA-CERN programme, the National Research Foundation and the Research Office of the University of the Witwatersrand for various forms of support. The authors thank W. Murray for pointing to excess in the Zhh final state and L. Donaldson for assistance with the prospects of investigating the X17 anomaly.
Author information
Authors and Affiliations
Contributions
The main part of the writing was done by A.C.; B.M. contributed to sections on the definition of anomalies, multilepton anomalies, the X17 excess, the di-di-jet excesses and the Higgs-like signals.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Mitesh Patel, Mark Smith and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Crivellin, A., Mellado, B. Anomalies in particle physics and their implications for physics beyond the standard model. Nat Rev Phys 6, 294–309 (2024). https://doi.org/10.1038/s42254-024-00703-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-024-00703-6
This article is cited by
-
Novel collider signatures in the type-I 2HDM+a model
Journal of High Energy Physics (2024)
-
Anomalous thresholds in B → (P, V)γ* form factors
Journal of High Energy Physics (2024)